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Abstract: - Numerical computer algorithms to model physical processes in continuous media are 
generally based on one of the schemes of discretezation of PDEs, which are considered 
mathematical models of phenomena. PDEs, on their own, are relations between values of given 
functions, unknown functions and their derivatives calculated through a limit process for small 
media elements interactions when elements’ sizes and evolution time steps both approach zero. 
The limits can typically only be calculated using (many) simplifying assumptions not based on 
the principles of physics. It follows that traditional numerical schemes simulate oversimplified 
mathematical models and not real processes. In the Direct Computer Modeling approach, an 
algorithm exactly reproduces interactions between small volume elements. That paradigm can be 
mapped onto the object-oriented computer language structure (or class) type variables. 
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1 Introduction 
A recently published article [1] state “… the 
new discipline [computational simulation] 
…is still troublingly immature”. One of the 
reasons for that may be the legacy of 
mathematical approaches. For roughly the 
last three centuries, partial differential 
equations (PDE) have comprised the basis 
for model phenomena in continuous media. 
Even the newly introduced computers are 
used simply as numerical solvers of PDEs. 
That means that PDEs are still considered 
basic models of real physical phenomena in 
continuous media and computers play the 
role of a powerful resource to numerically 
solve equations. 

Fig.1 shows the logic of the traditional 
approach. What may look strange is the 
necessity to model, through a finite 
numerical scheme, a symbolic model, PDE, 
as opposed to the physical process itself. 
PDEs are derived through a discretezation 
procedure of real physical media, with a 
subsequent mathematical limit process 

accompanied generally by many 
assumptions not based on the principles of 
physics. Any PDE is just an expression 
symbolically encoding some unnecessary 
oversimplifications of a real physical 
process. A computer, being a finite machine, 
can run a discrete time/spatial scheme 
evaluating functions satisfying PDE, so 
would it not be more practical to run discrete 
algorithms of interactions/states evolution of 
small media elements? In other words, it is 
more consistent to exclude blocks 3 and 4 
from the traditional scheme and remove the 
statement “oversimplified assumptions 
necessary to derive PDE from” from the 
block 2.        

In terms of the described approach, it is 
difficult to explain the sense of nonlinearity. 
When somebody says “nonlinear process”, it 
really means “nonlinear equations” 
corresponding to the process. 

The approach is applicable not just to 
modeling continuous media but to arbitrary 
networks (for example, electronic schemes). 
The first model of soliton like behavior, was 
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a nonlinear elastic string simulation. Wide 
spectrum of potential applications expands 
as far as simulating relativistic charges 
beams. 

 
 

 
Fig. 1 

 
 
 
 
 

 
 

 
 

Fig. 2 
 
 
 

 
2  Quasi Analog Dream 
An option existed to use a huge array of 
microprocessors, corresponding to elements 
in a physical medium [2]. Each 
microprocessor would save all numerical 
parameters defining the state of an element, 
implementation of all functions necessary to 
transform the element state parameters, and 
sufficient number of ports to communicate 
with processors within the network. In that 
case, the array should behave exactly like a 
real physical medium. To some extent, it 
would resemble an analog computer but 
have much greater capabilities. Something 
similar but much more simple was 
implemented in the “cellular automata” 
approach [3]. 
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 It was not obvious then which 
operating system could work with such 
multiprocessor  systems, though some good 
projects existed. Fortunately, common 
computer languages such as C++ (and 
object-oriented PASCAL) had special types 
of variables that could support interacting 
media elements on a software (program) 
level. 

Let me remind the reader the definition 
of the structure type variable in the C++ 
language. 

In plain “C” language, the struct type 
variable can be thought of as a list of 
“standard” type variables (integers, doubles, 
strings, etc.), for example: 

 
struct sample 
{ 
 int i; 
 double d; 
 char c[30]; 
} st_one ,st_ two; 
 
In C++, structure fields may be 

functions: 
 
struct cl 
{ 
 int i; 
 int get_i(void); 
 void put_i(int j); 
}; 
 
Functions declared in the structure must 

have implementations: 
 
int cl::get_i(void) 
{ 
 return i; 
} 
 
void cl::put_i(int j) 
{ 
i = j; 
} 
 

 The class type variables are more 
flexible in the sense that you can keep class 
members, for example, private, accessible 
just to functions from the class. In struct all 

members are by default public. Any function 
from a program can get access to all of 
them.  
 It is evident that such types of 
variables ideally match the requirements for 
modeling small media elements interactions. 
Each single media element can be uniquely 
identified, at a particular instant of time, by 
some number of its state parameters that are 
“regular” type variables of the class. The 
class member functions derived from laws 
of physics then define the element behavior 
(its evolution in time). 
 All that exactly resembles what is 
going on in real physical media when we 
want to simulate it through partitioning and 
small element interactions. In that sense, we 
have analog simulation scheme implemented 
on software level. 
 
3 Elements Behaviors and 
C++ Classes 
It is more convenient to use C++ class type 
variables to represent elements’ states and 
transformations, mainly because in C++ (or 
any other object-oriented language) it is 
definitely stressed that a class is an object 
type variable comprising of both elements’ 
state variables and their transformation 
functions. Inheritance also makes the class 
approach more flexible. 

 
Base abstract class representing a 

medium element can be defined as: 
 
class MediumElement { 
 double current_t, delta_t; 
 double* state_parameters; 
 int nmb_parameters = 0; 
 
public: 
 virtual void 
transform_parameters(void (func*)(double* 
param, double* m_param, 
     
 MediumElement** neighbors))=0; 
 
// some interface functions 
  
// etc. 
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} 
 

The pointer to doubles, 
state_parameters, is a dynamically allocated 
array of numerical parameters, uniquely 
identifying (physical) element state at a 
particular instant in time. 
 Virtual (specifically implemented 
for each considered physical process) 
function transform_parameters should 
model arbitrary element behavior, 
depending on its current state (pointer 
param), global media parameters (pointer 
m_param) and an array of pointers to other 
elements interacting with the current 
element. 
 A derived class corresponding to 
some special type of a medium and specific 
model then can be defined as: 
 
class SpecMediumElement: public 
MediumElement { 
 double* model_parameters; 
 void Model(double* param, double* 
m_param, SpecMediumElement** 
neighbors); 
 
// and necessary interface functions 
} 
 

The function Model( … ) is used to 
input variable for the transform_parameters. 
Actual implementation of it should be 
written in accordance with physical laws 
applied to a particular model. 
Unquestionably, additional interface 
functions to initialize elements’ state 
parameters, model parameters and external 
inputs should be defined. 

 
The whole medium volume of 

interest may be represented as an array, 
SpecMediumElement*, (with one index per 
element as assumed in previous sections) or 
as  SpecMediumElement***, with three 
indexes for each single element, which may 
be more convenient. 

 
 

4 String Elements and C++ 
Class Type Variables 

 
Let me demonstrate how all that looks for 
the well-known elastic string physical and 
mathematical model.  
 

 
Consider an element of a string. Let’s create 
a class, describing the element in the same 
way as in deriving the string wave equation. 
The element state is fully defined by: 
- moment in time, t  
- element’s position on x-

axis, x  
- element’s length projection 

on x-axis, x∆  
- element’s left and right 

ends’ tangent directions, 1α  and 2α , or 
their trigonometric functions 

- element’s current vertical 
displacement from x-axis, u  

- element’s velocity in the 
direction perpendicular to x-axis,  v

- two global parameters, 
stretch tension force value, T  and linear 
density, ρ  

 
We have to consider string element’s state 
evolution in time. Let’s take the simplest 
rule of time parameter transformation: 

ttt ∆+→ , 
t∆ is constant. 

Parameters x and x∆ , for a single element, do 
not change values. 
For now, we can express  and v  as: u
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( ) ( 21,),(),(,,,, )ααtutvxxtVxttv ∆=∆+  
 

( ) ( 21,),(),(,,,, )ααtutvxxtUxttu ∆=∆+ , 
 

where  and U  are some (integration) 
functions (schemes). 

V

An interesting issue is how we can 
define parameters 1α and 2α . I do not want 
to consider unnecessary complicated 
schemes involving predefined 1α , and have 
to average element’s curvature, etc. I will 
consider a much more relevant scheme with 
explicitly involved elements’ interactions 
(that do not take place in a traditional 
scheme). In that scheme, the element 
representing class should contain two 
pointers to (left and right) neighbors: 
 

}
......

;_*
;_*

......
_{_

rightelement
leftelement

elementclass

 

 
Then, we have: 
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At this point, we already have: 
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Implementation of the last function is 
already known: 
 

},

;))((tan

{
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that gives both left_α  and  right_α , 
depending on the  argument. elmnt
 
 
 

 
5 Conclusion 
I have tried to briefly describe an approach to 
computer modeling of physical phenomena in 
continuous media. The Direct Computer 
Modeling approach is an attempt to use 
computers and software more adequately, 
instead of using an outdated method of 
symbolically representing real processes flows. 
This approach (or something similar) may 
become a good alternative to numerical 
schemes, based on hieroglyphic PDE 
descriptions.  
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The approach was initially outlined [4] 

and described putting more stress on object-
oriented implementation [5] in earlier works. 
A general scheme for continuous media 
dynamics has also been addressed [6]. As I 
mentioned before, the first computer 
program modeling an elastic string 
dynamics with Direct Computer Modeling 
demonstrated soliton type string excitation 
behaviors and showed that split stresses, not 
the stretch ones, actually defined the whole 
picture. I mention this example to emphasize 
that with Direct Computer Modeling we can 
make further discoveries even in well-
known situations [7]. 
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