
Object-oriented Language Variables
and New Continuous Media Simulation Approach

ALEXANDER SOIGUINE

Tinsley Labs, Inc.
4040 Lakeside Dr., Richmond, CA 94806

 USA
alexsoiguine@cox.net http://www.dcmodeling.net

Abstract: - Numerical computer algorithms to model physical processes in continuous media are
generally based on one of the schemes of discretezation of PDEs, which are considered
mathematical models of phenomena. PDEs, on their own, are relations between values of given
functions, unknown functions and their derivatives calculated through a limit process for small
media elements interactions when elements’ sizes and evolution time steps both approach zero.
The limits can typically only be calculated using (many) simplifying assumptions not based on
the principles of physics. It follows that traditional numerical schemes simulate oversimplified
mathematical models and not real processes. In the Direct Computer Modeling approach, an
algorithm exactly reproduces interactions between small volume elements. That paradigm can be
mapped onto the object-oriented computer language structure (or class) type variables.

Keywords: - Computational Physics, Continuous Media Simulation.

1 Introduction
A recently published article [1] state “… the
new discipline [computational simulation]
…is still troublingly immature”. One of the
reasons for that may be the legacy of
mathematical approaches. For roughly the
last three centuries, partial differential
equations (PDE) have comprised the basis
for model phenomena in continuous media.
Even the newly introduced computers are
used simply as numerical solvers of PDEs.
That means that PDEs are still considered
basic models of real physical phenomena in
continuous media and computers play the
role of a powerful resource to numerically
solve equations.

Fig.1 shows the logic of the traditional
approach. What may look strange is the
necessity to model, through a finite
numerical scheme, a symbolic model, PDE,
as opposed to the physical process itself.
PDEs are derived through a discretezation
procedure of real physical media, with a
subsequent mathematical limit process

accompanied generally by many
assumptions not based on the principles of
physics. Any PDE is just an expression
symbolically encoding some unnecessary
oversimplifications of a real physical
process. A computer, being a finite machine,
can run a discrete time/spatial scheme
evaluating functions satisfying PDE, so
would it not be more practical to run discrete
algorithms of interactions/states evolution of
small media elements? In other words, it is
more consistent to exclude blocks 3 and 4
from the traditional scheme and remove the
statement “oversimplified assumptions
necessary to derive PDE from” from the
block 2.

In terms of the described approach, it is
difficult to explain the sense of nonlinearity.
When somebody says “nonlinear process”, it
really means “nonlinear equations”
corresponding to the process.

The approach is applicable not just to
modeling continuous media but to arbitrary
networks (for example, electronic schemes).
The first model of soliton like behavior, was

Proceedings of the 3rd IASME/WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING AND ENVIRONMENT, Corfu, Greece, August 20-22, 2005 (pp326-331)

mailto:alexsoiguine@cox.net

a nonlinear elastic string simulation. Wide
spectrum of potential applications expands
as far as simulating relativistic charges
beams.

Fig. 1

Fig. 2

2 Quasi Analog Dream
An option existed to use a huge array of
microprocessors, corresponding to elements
in a physical medium [2]. Each
microprocessor would save all numerical
parameters defining the state of an element,
implementation of all functions necessary to
transform the element state parameters, and
sufficient number of ports to communicate
with processors within the network. In that
case, the array should behave exactly like a
real physical medium. To some extent, it
would resemble an analog computer but
have much greater capabilities. Something
similar but much more simple was
implemented in the “cellular automata”
approach [3].

5. Computer
algorithm dealing
with finite
numerical scheme

3. Symbolic
mathematical
model –
system of
PDEs

2. Oversimplified
assumptions
necessary to
derive PDEs from
small media
elements
state/interaction
principal laws

1. Physical
process in
continuous
media

4. Discretezation scheme
necessary to transform
PDEs into something a
finite numerical method
can work with

6. Computer
software
implementat
ion and
algorithm
execution

7. Numerical,
graphical
results
considered to
describe
physical
phenomenon

5. Computer
algorithm
dealing with
finite numerical
scheme

2. Small media
elements
state/interaction
principal laws

1. Physical
process in
continuous
media

6. Computer
software
implementation
and algorithm
execution

7. Numerical,
graphical
results
considered to
describe
physical
phenomenon

Proceedings of the 3rd IASME/WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING AND ENVIRONMENT, Corfu, Greece, August 20-22, 2005 (pp326-331)

 It was not obvious then which
operating system could work with such
multiprocessor systems, though some good
projects existed. Fortunately, common
computer languages such as C++ (and
object-oriented PASCAL) had special types
of variables that could support interacting
media elements on a software (program)
level.

Let me remind the reader the definition
of the structure type variable in the C++
language.

In plain “C” language, the struct type
variable can be thought of as a list of
“standard” type variables (integers, doubles,
strings, etc.), for example:

struct sample
{
 int i;
 double d;
 char c[30];
} st_one ,st_ two;

In C++, structure fields may be

functions:

struct cl
{
 int i;
 int get_i(void);
 void put_i(int j);
};

Functions declared in the structure must

have implementations:

int cl::get_i(void)
{
 return i;
}

void cl::put_i(int j)
{
i = j;
}

 The class type variables are more
flexible in the sense that you can keep class
members, for example, private, accessible
just to functions from the class. In struct all

members are by default public. Any function
from a program can get access to all of
them.
 It is evident that such types of
variables ideally match the requirements for
modeling small media elements interactions.
Each single media element can be uniquely
identified, at a particular instant of time, by
some number of its state parameters that are
“regular” type variables of the class. The
class member functions derived from laws
of physics then define the element behavior
(its evolution in time).
 All that exactly resembles what is
going on in real physical media when we
want to simulate it through partitioning and
small element interactions. In that sense, we
have analog simulation scheme implemented
on software level.

3 Elements Behaviors and
C++ Classes
It is more convenient to use C++ class type
variables to represent elements’ states and
transformations, mainly because in C++ (or
any other object-oriented language) it is
definitely stressed that a class is an object
type variable comprising of both elements’
state variables and their transformation
functions. Inheritance also makes the class
approach more flexible.

Base abstract class representing a

medium element can be defined as:

class MediumElement {
 double current_t, delta_t;
 double* state_parameters;
 int nmb_parameters = 0;

public:
 virtual void
transform_parameters(void (func*)(double*
param, double* m_param,

 MediumElement** neighbors))=0;

// some interface functions

// etc.

Proceedings of the 3rd IASME/WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING AND ENVIRONMENT, Corfu, Greece, August 20-22, 2005 (pp326-331)

}

The pointer to doubles,
state_parameters, is a dynamically allocated
array of numerical parameters, uniquely
identifying (physical) element state at a
particular instant in time.
 Virtual (specifically implemented
for each considered physical process)
function transform_parameters should
model arbitrary element behavior,
depending on its current state (pointer
param), global media parameters (pointer
m_param) and an array of pointers to other
elements interacting with the current
element.
 A derived class corresponding to
some special type of a medium and specific
model then can be defined as:

class SpecMediumElement: public
MediumElement {
 double* model_parameters;
 void Model(double* param, double*
m_param, SpecMediumElement**
neighbors);

// and necessary interface functions
}

The function Model(…) is used to
input variable for the transform_parameters.
Actual implementation of it should be
written in accordance with physical laws
applied to a particular model.
Unquestionably, additional interface
functions to initialize elements’ state
parameters, model parameters and external
inputs should be defined.

The whole medium volume of

interest may be represented as an array,
SpecMediumElement*, (with one index per
element as assumed in previous sections) or
as SpecMediumElement***, with three
indexes for each single element, which may
be more convenient.

4 String Elements and C++
Class Type Variables

Let me demonstrate how all that looks for
the well-known elastic string physical and
mathematical model.

Consider an element of a string. Let’s create
a class, describing the element in the same
way as in deriving the string wave equation.
The element state is fully defined by:
- moment in time, t
- element’s position on x-

axis, x
- element’s length projection

on x-axis, x∆
- element’s left and right

ends’ tangent directions, 1α and 2α , or
their trigonometric functions

- element’s current vertical
displacement from x-axis, u

- element’s velocity in the
direction perpendicular to x-axis, v

- two global parameters,
stretch tension force value, T and linear
density, ρ

We have to consider string element’s state
evolution in time. Let’s take the simplest
rule of time parameter transformation:

ttt ∆+→ ,
t∆ is constant.

Parameters x and x∆ , for a single element, do
not change values.
For now, we can express and v as: u

Proceedings of the 3rd IASME/WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING AND ENVIRONMENT, Corfu, Greece, August 20-22, 2005 (pp326-331)

() (21,),(),(,,,,)ααtutvxxtVxttv ∆=∆+

() (21,),(),(,,,,)ααtutvxxtUxttu ∆=∆+ ,

where and U are some (integration)
functions (schemes).

V

An interesting issue is how we can
define parameters 1α and 2α . I do not want
to consider unnecessary complicated
schemes involving predefined 1α , and have
to average element’s curvature, etc. I will
consider a much more relevant scheme with
explicitly involved elements’ interactions
(that do not take place in a traditional
scheme). In that scheme, the element
representing class should contain two
pointers to (left and right) neighbors:

}
......

;_*
;_*

......
{

rightelement
leftelement

elementclass

Then, we have:

x
uleftu

∆
→−

=
)(tan 1α

x
urightu

∆
→−

=
)(tan 2α

At this point, we already have:

}
......

);_*(__
);_,_*,*,,,,,(_
);_,_*,*,,,,,(_

:
;_*

;_*
;_
;_

;__
;__

;_
;_
;_

;_
......

{

elmntelementalphagetdouble
rightleftvuxxttVdouble
rightleftvuxxttUdouble

public
rightelement
leftelement

vdouble
udouble

rightdouble
leftdouble

xdouble
xdouble

tdouble
tdouble

elementclass

αα
αα

α
α

∆∆
∆∆

∆

∆

Implementation of the last function is
already known:

},

;))((tan

{
)_*(_

1

x
uelmntureturn

elmntelementalphaget

∆
→−−

that gives both left_α and right_α ,
depending on the argument. elmnt

5 Conclusion
I have tried to briefly describe an approach to
computer modeling of physical phenomena in
continuous media. The Direct Computer
Modeling approach is an attempt to use
computers and software more adequately,
instead of using an outdated method of
symbolically representing real processes flows.
This approach (or something similar) may
become a good alternative to numerical
schemes, based on hieroglyphic PDE
descriptions.

Proceedings of the 3rd IASME/WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING AND ENVIRONMENT, Corfu, Greece, August 20-22, 2005 (pp326-331)

The approach was initially outlined [4]

and described putting more stress on object-
oriented implementation [5] in earlier works.
A general scheme for continuous media
dynamics has also been addressed [6]. As I
mentioned before, the first computer
program modeling an elastic string
dynamics with Direct Computer Modeling
demonstrated soliton type string excitation
behaviors and showed that split stresses, not
the stretch ones, actually defined the whole
picture. I mention this example to emphasize
that with Direct Computer Modeling we can
make further discoveries even in well-
known situations [7].

References:
[1] D. E. Post, L. G. Votta, Computational
Science Demands a New Paradigm, Physics
Today, January, 2005, pp.35-41.

[2] V. V. Alexandrov, A. Soiguine, The
method of direct computer modeling,
Institute of Informatics of Russian Academy
of Science, preprint #102, 1989.

[3] S. Wolfram, Cellular Automata and
Complexity: Collected Papers. Reading,
MA, Addison-Wesley, 1994.

[4] A. Soiguine, Direct Computer Modeling
vs. Traditional Methods of Mathematical
Modeling of Physical Processes,
Proceedings of the 1st International
Workshop on Human-Computer
Interactions, Moscow, Russia, 3-7 August,
pp.707-718, 1991.

[5] A. Soiguine, User Interface in Direct
Computer Modeling, Proceedings of the 2nd

International Workshop on Human-
Computer Interactions, St. Petersburg,
Russia,12-15 August, 1992, pp.622-626.

[6] A. Soiguine, The Direct Computer
Modeling Approach To Continuous Media
Dynamics: C++ Implementation, 1st
International Conference “From Scientific

Computing to Computational Engineering”,
Athens, Greece. September 1994.

[7] A. Soiguine, The Direct Computer
Modeling Paradigm applied To String
Simulation: An Example of Intellectual
Medium, 1st International Conference on
Experiments/Process/System
Modeling/Optimization, Patras, Greece.
July 2005.

Proceedings of the 3rd IASME/WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING AND ENVIRONMENT, Corfu, Greece, August 20-22, 2005 (pp326-331)

