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Abstract: - Given prescribed quantities of two or more thermal insulation materials, how should they be 

distributed around a body so as to minimize the rate of loss of heat from that body? The application of the 

calculus of variations enables us to answer this question. The governing optimal coupled boundary-value 

problem posed over the domains occupied by the two materials has been formulated previously by the author 

and solved for the special case of a spherical body. In this paper the optimal boundary-value problem is posed 

for the general two-dimensional case where several thin layers of material are to be distributed around an 

arbitrary infinite prismatic body, whose surface has smoothly varying curvature. A regular perturbation 

procedure is applied to obtain the solution. The interesting finding emerges, that there is no unique optimal 

solution, but a family of solutions satisfying the optimality conditions. 
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1   Introduction 
The problem of optimising the shape of a body to 

maximise or minimise some property associated 

with it has interested mathematicians and engineers 

for centuries. Perhaps the most fundamental 

example of this type of problem is that of 

minimising the surface area of a body while keeping 

its volume fixed, which has the well-known 

solution, the sphere. This is an example of the class 

of problem known as isoperimetric. The author [1] 

has provided a short review of examples of this 

class. 

     This paper is concerned with a particular 

example of this class, namely the minimisation of 

the heat loss from a body of arbitrary shape by the 

variation of the shape of the multiple insulation 

layers around it. The minimisation is subject to the 

constraints that the volume, or equivalently the 

mass, of each layer is prescribed, and that the 

temperatures on the surface of the body, and on the 

outside of the outer layer, are also prescribed. Thus 

there is a limited quantity of insulation and the 

requirement is to distribute it optimally to reduce 

heat loss to a minimum, given the prescribed 

temperature drop across the insulation layers. This 

temperature difference may vary around the body. 

     The mathematics of the derivation of the 

governing boundary value problem has been 

presented in the preceding sister paper by the author 

[1]. In that paper he showed that, in addition to the 

governing heat conduction equations holding in each 

of the domains occupied by each body, the 

associated Dirichlet conditions and the continuity of 

the temperature and heat flux at the interfaces 

between adjacent insulation layers, three optimal 

boundary conditions hold, together with additional 

field equations in two ‘adjoint’ field variables. 

These new field variables were introduced to enable 

the elimination of awkward variations in derivatives 

of the temperature. The treatment bore similarity to 

the treatment by the author [2] of a single layer with 

a mixed boundary condition representing Newton’s 

Law of Cooling. 

     We do not repeat the derivation of the variational 

minimisation principle here, but simply state it. Our 

concern here is with the detailed derivation of the 

optimal solution for the important general case of an 

infinite prism of arbitrary cross-section, with 

smoothly varying curvature of the boundary of the 

cross-section within its own plane. We address the 

situation where the thicknesses of the insulation 

layers are small compared with the associated radius 

of curvature of the body. 

     We apply a regular perturbation method, first 

used on this type of optimisation problem by 

Banichuk [3]. We solve to the first order and obtain 

a family of optimal solutions. It is shown that they 

can improve significantly upon the standard practice 

of applying constant thickness layers.  

     We expect the method to find application where 

mass constraints and extreme temperature variations 

dominate, e.g. in insulation of spacecraft 
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components. Moreover, the use of resources in the 

most efficient way is highly pertinent as one means 

of attack on the global warming issue. 

 

2   Problem Formulation 
The coupled-domain optimal boundary value 

problem is shown in Figure 1 for the case of two 

layers of insulation. Extra layers can be treated 

analogously, as described by the author [1]. It 

addresses the heat flow in the two layers of 

insulation represented by domains 21 ,ΩΩ  

surrounding a body B  respectively. As in [1], 1T , 

2T  are the temperatures in 21 ,ΩΩ , respectively. 

The inner surface of 1Ω  is 0S , the outer surface of 

1Ω  (and hence the inner surface of 2Ω ) is 1S , and 

the outer surface of 2Ω  is 2S . The temperatures on 

these surfaces 210 ,, SSS  are 
*

0T , 
*

1T , 
*

2T  

respectively, where 
*

0T  and 
*

2T  are known, but the 

interface temperature 
*

1T  is not. 

 

     In 1Ω  the heat conduction equation is  

 

01

2 =∇ T  .   (1) 

 

Similarly in 2Ω   

 

02

2 =∇ T  .   (2) 

 

The boundary conditions are:  

 
*

01 TT =  on 0S ,   (3) 

 
*

121 TTT ==  on 1S ,  (4) 

 

and  

 
*

22 TT =  on 2S .   (5) 

 

Continuity of the heat flux yields 

 

222111 TnTn ∇⋅=∇⋅− κκ   on 1S , (6) 

 

where 1κ  and 2κ  are the thermal conductivities.  

 

     The total rate of heat loss from the body B  

through the surface 0S  is given by  

dSTn
S

111

0

∇⋅∫κ .  (7) 

 

     The author [1] introduced two further new 

variables 1v  and 2v , defined in 1Ω  and in 2Ω , with 

the only constraints imposed upon these functions 

being that they be twice differentiable and that 

 

21 vv =  on 1S .   (8)  

 

The heat loss was then written as a functional  

 

[ ]

( ) ( ){ } .

,;,,,

1

0

22221111

111212121

dSTnvTnv

dSTnvvTTI

S

S

∫

∫

∇⋅−+∇⋅−+

∇⋅=ΩΩ

κκ

κ

 (9) 

 

The constraint (8) and boundary condition (6) ensure 

that this functional always equals the rate of heat 

loss (7). In [1] it is the functional (9) that is made 

stationary to find the minimum heat loss from 0S .  

 

     The extra Euler equations 

 

01

2 =∇ v   in 1Ω ,   (10) 

 

and 

 

02

2 =∇ v   in 2Ω    (11)  

 

are found to apply. Since the role of the variables 1v  

and 2v  was to act as Lagrange multipliers on 1S , we 

imposed the boundary conditions  

 

11 −=v  on 0S ,   (12)  

  

02 =v  on 2S .   (13)  

 

Consideration of the variations of 1v  and 2v  

satisfying constraint (8) yields the optimality 

condition 

 

2

2
2

1

1
1

n

v

n

v

∂

∂
−=

∂

∂
κκ   on 1S .  (14) 

 

Further optimal boundary conditions result from the 

variational principle: 
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Fig.1. The body B , the two surrounding insulation layers occupying domains 

21 ,ΩΩ  and the governing coupled boundary-value problems in the 

temperatures and adjoint variables. 
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holding on 1S , and 

 

const
n

T

n

v
Tv =

∂

∂

∂

∂
−∇⋅∇

2

2

2

2
2222 2κκ ,   (16)  

 

holding on 2S . 

     All of the equations and boundary conditions for 

the optimal boundary–value problem are now stated 

and we may proceed to seek their solution. 

 

3   Solution for Infinite Prism 

Consider now the case of an infinite prism, in which 

Fig. 1 now represents a right cross-section of the 

infinitely long body. This solution will provide a 

good approximation to the temperature field and 

heat flow for the mid regions of long bodies where 

the end-effects will be negligible. We confine our 

attention as yet to the case where there is smoothly 

0,0 2

2

2

2 =∇=∇ vT  

0,0 1

2

1

2 =∇=∇ vT  

*

01 TT =  

11 −=v  

*

121 TTT ==  

21 vv =  

2S  

1S  

*

22 TT =  

02 =v  

B  

2n  

2n  

1n  

1n  

222111 TnTn ∇⋅=∇⋅− κκ  

222111 vnvn ∇⋅=∇⋅− κκ  

 

constTnvnTv

TnvnTv

=∇⋅∇⋅+∇⋅∇−

∇⋅∇⋅−∇⋅∇

11111111
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constTnvnTv =∇⋅∇⋅−∇⋅∇ 22222222 2κκ  
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varying curvature of the boundary of the cross-

section within its own plane. We furthermore 

address the situation where the thicknesses of the 

insulation layers are small compared with the 

associated radius of curvature of the body, which is 

usually a desirable characteristic of insulation layers. 

     We now apply an extension of the regular 

perturbation method of Banichuk [3]. We introduce 

intrinsic co-ordinates ( )ts,  on 1S , where s  is the 

arc length around the boundary of the cross-section, 

measured in the anti-clockwise sense and t  is the 

orthogonal co-ordinate taken outwards from 1S . 

     If we introduce the small parameter ε  given by 
the ratio of the cross-sectional area A  of the 
insulation layers to the square of the perimeter of 

1S , denoted by L , so that 

 

2L

A
=ε ,   (17) 

 

we may seek a regular perturbation solution to the 

boundary-value problem established by eqs. (1)-(16) 

and displayed in Fig. 1. Denote the zero-th order 

values of each variable by a subscript ‘0 ’, and let 

the surfaces 1S  and 2S  be given by  

 

)(10 sht = ,   (18) 

 

and  

 

)()( 2010 shsht += ,  (19) 

 

respectively. We may then write the zero-th order 

problem as follows, relation by relation, denoting 

derivatives with respect to s  and t  by subscripts of 

the respective variable. Addressing the domain 1Ω  

first, Eq. (1) becomes 

 

1010 0,0 htT tt ≤≤= , (20) 

 

Let ( )sTT 0

*

0 = . Then condition (3) becomes 

 

( ),010 sTT = on 0=t . (21) 

 

Condition (4) is simply 

 

,2010 TT = on 10ht = . (22) 

 

The interface condition (6) reduces to 

 

,202101 tt TT κκ = on 10ht = .  (23) 

 

Condition (8) in the adjoint variables is now 

 

,2010 vv = on 10ht = .  (24) 

 

Equation (10) becomes  

 

1010 0,0 htv tt ≤≤= . (25) 

 

The imposed boundary condition (12) is 

 

,110 −=v on 0=t .  (26) 

 

The optimality condition (14) is  

 

,202101 tt vv κκ = on 10ht = .  (27) 

 

It may be shown that the optimality condition (15) 

reduces to  

 

( ) ,10202010 λ=+ ttt vTT on )(10 sht = ,  (28) 

 

where 10λ  is a constant to be found. 

     Now consider the domain 2Ω . Eq. (2) becomes  

 

20101020 ,0 hhthT tt +≤≤=  . (29) 

 

Condition (5) becomes 

 

,*220 TT = on 2010 hht +=  .  (30) 

 

Equation (11) becomes  

 

20101020 ,0 hhthv tt +≤≤=  . (31) 

 

The boundary condition (13) becomes 

 

,020 =v on 2010 hht += .  (32) 

 

Condition (16) reduces to  

 

202020 λ=tt vT  ,       on 2010 hht += , (33) 

 

where 20λ  is a constant to be determined. Finally, 

we introduce the cross-sectional areas of the inner 

and outer layers as 1a  and 2a , so that  
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∫ =
L

adsh
0

110    (34) 

and  

∫ =
L

adsh
0

220  .  (35) 

 

We may now solve eqs. (17)-(35) to obtain the zero-

th-order solution to the pair of coupled boundary 

value problems given by eqs. (1)-(16) as  

 

( )
)(

)(

)(
0

201102

0

*

22
10 sT

hh

tsTT
T +

+

−
=

κκ
κ

,     (36) 

 

( )( )( )
( )

*

2

201102

20100

*

21
20 T

hh

hhtsTT
T +

+

−−−
=

κκ
κ

,  (37) 

 

( )
1

201102

2
10 −

+
=

hh

t
v

κκ
κ

,     (38) 

 

( )
( )201102

20101

20
hh

hht
v

κκ
κ

+

−−
= ,      (39) 

 

( ) ( ){ }
( )22112

2
*

20
0

212

10

2

1

)(

aa

dsTsT
L

κκ

κκκ
λ

+

−+
−=

∫
  (40) 

 

and 

 

( ){ }
( )22112

2
*

20
0

2

1

20

2

1

)(

aa

dsTsT
L

κκ

κ
λ

+

−
−=

∫
.     (41) 

 

     It is then straightforward to show that the local 

heat flux is given by 

 

( )( ) ( )( )
( )2112

0

*

20

*

2021
2

1

2

1

aa

dsTsTTsT
L

κκ

κκ

+

−− ∫
.   (42) 

 

Thus the optimal, minimal, total rate of heat loss 

from 0S  is given by  

 

( )( ){ }
( )2112

2

0

*

2021
2

1

aa

dsTsT
L

κκ

κκ

+

−∫
 .     (43) 

 

 

 

4   Discussion 
It is an interesting aspect of the solution that 

individual explicit expressions for 10h  and 20h  do 

not appear. They are, however, related by the 

relationship  

 

( ) 2

1

20

0

*

2

1201102 






 −
=+

λ
κκκ

sTT
hh  (44) 

 

and so a family of optimal solutions is possible so 

long as Eqs. (34), (35) and (44) are satisfied. One 

can vary the thicknesses of the layers in any way so 

long as these equations are satisfied and still deliver 

the optimal lowest heat loss. 

     It is also of interest to compare with the solution 

of constant thickness layers, the common practice in 

application of insulation. In this case, 

 

L

a
h 1
10 = ,  

L

a
h 2
20 = .   (45) 

 

The solutions for 10T  and 20T  are in fact identical to 

those given by eqs. (36) and (37), but the 

corresponding total heat loss is now given by  

 

( )( )
( )2112

0

*

2021

aa

dsTsTL
L

κκ

κκ

+

−∫
.  (46) 

 

Following Banichuk’s [3] similar treatment for 

torsional rigidity, Schwarz’s inequality can be 

applied to the expressions (43) and (46) to show that 

the optimal solution indeed gives less heat loss than 

the constant thicknesses solution. We show an 

example of the saving made in the next section. 

     At present we have limited the analysis for the 

multiple layer case to a Dirichlet condition on the 

outer surface 2S , but, as discussed by Curtis [1], 

one may consider radiation or mixed boundary 

conditions such as result from Newton’s Law of 

Cooling on the outer surface. Other problems of 

interest would include the relaxation of the 

constraints of thin layers and a smoothly curving 

body. Such extensions lie beyond the scope of this 

paper. 

 

5   An Example 
Let the total temperature difference across the 

double insulation layer be: 
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( ) ( ) 422*

20

−−=− LsLsTsT θ .  (47) 

 

It is straightforward to evaluate the following 

integrals: 

( )( )
6

2

1

2

1

0

*

20

L
dsTsT

L θ
=−∫ ,  (48) 

 

( )( )
300

*

20

L
dsTsT

L θ
=−∫ .  (49) 

 

Expressions (43) and (46) then reduce respectively 

to 

 

( )2112

2

21

36 aa

L

κκ
θκκ
+

,  
( )2112

2

21

30 aa

L

κκ
θκκ
+

,   (50) 

 

showing that for the temperature difference as 

defined by eq. (47) the optimal value is lower than 

the constant thicknesses solution by 16.67%. 

 

6   Conclusions 
The problem of deploying a double thin layer of 

insulation around a prismatic body of smoothly 

curved cross-sectional shape in such a way as to 

minimize heat loss from the body, subject to the 

constraints of keeping the mass of each layer 

constant has been addressed. The problem has first 

been posed mathematically and then solved by a 

regular perturbation procedure. The interesting 

finding has emerged, that there is no unique optimal 

solution, but rather a family of possible solutions 

satisfying the fundamental boundary-value problem 

and the optimality conditions. A proof that the 

optimal value of the heat loss lies below the 

traditionally applied and practical constant 

thicknesses solution has been indicated, based on 

Schwarz’s inequality. 

     A simple example considering a smoothly 

varying temperature field has been solved explicitly 

and a saving of 16.67% results by adopting an 

optimal solution as compared with the constant 

thicknesses solution. The value of the saving will in 

general be dependent upon the temperature 

difference between the body and the outer layer. The 

use of the method is most likely to find application 

in situations where mass is a critical issue, such as in 

spacecraft, aerospace or possibly automobile 

engineering. However, energy saving is becoming 

ever more important in the face of the global 

warming issue and the method or refinements 

thereof may find applications in this connection. 

     The constraints imposed in this work, of thin 

layers and smooth curvature, may need to be relaxed 

for some future applications. It is expected that the 

requirement to address such situations numerically, 

rather than analytically as here, would then arise. 
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