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Abstract: - We prove that the Navier–Stokes initial–boundary value problem with the generalized impermeability
boundary conditions has a global in time suitable weak solution (in the sense of [2]) that satisfies the generalized
energy inequality up to the boundary of the flow field. We suggest the method how the solution can be constructed.

Key-Words:- Navier–Stokes equation, Suitable weak solution, Generalized energy inequality

1 Introduction

The Navier–Stokes system

∂tu+ u · ∇u = −∇p+ ν∆u+ f , (1)

divu = 0, (2)

is mostly studied with the no–slip condition

u = 0 (3)

on the fixed boundary of the flow field. The Navier–
Stokes equation (1) expresses the conservation of mo-
mentum and the equation of continuity (2) expresses
the conservation of mass in a viscous incompressible
fluid. u = (u1, u2, u3) is the velocity,p denotes the
pressure,ν is the kinematic coefficient of viscosity and
f is the external body force. We shall further assume,
for simplicity, thatν = 1. Although many important
questions still remain open, it is possible to say that the
theory of the system (1), (2) with boundary condition
(3) is deeply elaborated. The survey of main results
on non–steady solutions can be found e.g. in paper [3]
by G. P. Galdi. The Navier–Stokes equation was orig-
inally derived in the 19th century by physicists under
the a priori assumption on smoothness of its solutions.
However, in spite of an enormous effort of many sci-
entists, the question of the global in time existence of
a smooth solution for arbitrarily large smooth initial
data has not been solved yet and it belongs to most
challenging open problems of today’s theory of par-
tial differential equations. It is only known that the
problem (1)–(3) with an appropriate initial condition

u |t=0 = u0 (4)

has a global in time weak solution. (See e.g. [3] for
the exact definition.) A series of papers shows that
the weak solution can be constructed so that the set
of its singular points, if it is not empty, is in some
sense relatively small. The most exhausting result was
given by L. Caffarelli, R. Kohn and L. Nirenberg in
[2]. The authors introduced the notion of a “suitable
weak solution” of (1)–(4) onQT ≡ Ω× (0, T ) (where
Ω is a domain inR3 andT > 0 is given) as a pair
of measurable functionsu, p which fulfill equations
(1) and (2) in the sense of distributions,u is a weak
solution of (1)–(4),p ∈ L5/4(QT ) andu andp satisfy
a so called generalized energy inequality in the inte-
rior ofQT . The inequality will be shown in Section 2.
In [2], L. Caffarelli, R. Kohn and L. Nirenberg proved
the global in time existence of a suitable weak solution
under certain restriction on the smoothness of the ini-
tial data, but not on the size of the data. Nevertheless,
the restriction was later removed by Y. Taniuchi (see
[10]) and thus, the suitable weak solution becomes a
natural type of a weak solution of the problem (1)–(4).
The generalized energy inequality plays a fundamen-
tal role in treatments of local properties of the suitable
weak solution. It enables to derive the important in-
formation on the1–dimensional Hausdorff measure of
the setS(u) of eventual singular points of the suitable
weak solution(u; p) in QT : the measure equals zero.

H. Bellout, J. Neustupa and P. Penel [1] have
shown that a systematic theory of the Navier–Stokes
equation can also be created with the boundary condi-
tions

u · n = 0, curlu · n = 0, curl2u · n = 0 (5)

on∂Ω, which were later called thegeneralized imper-
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meability boundary conditions.(n is the outer normal
vector on∂Ω.) Most of qualitative results from the the-
ory of the Navier–Stokes equation with the Dirichlet
boundary condition (3) are also in some form true for
the Navier–Stokes equation with boundary conditions
(5) and moreover, conditions (5) enable to derive some
finer results on the regularity of a solution – see the
papers [1], [7] and [8]. (The last paper also discusses
the physical sense of the boundary conditions (5) and
the relation between these boundary condition and the
homogeneous Dirichlet boundary condition (3) and it
was submitted to the same journal as the presented
paper.)

The aim of this paper is to show that a suitable
weak solution of the problem (1), (2), (4) with the
generalized impermeability boundary conditions (5)
can be constructed so that it satisfies the generalized
energy inequality not only in the interior ofQT , but
also up to the boundary.

2 Notation, Definitions and Formula-
tion of the Main Result

We assume thatΩ is a bounded domain inR3 with the
boundary∂Ω of the classC2+µ for someµ > 0. We
shall use the notation:

– H is a closure of{v ∈ C∞0 (Ω)3; div v = 0} in
L2(Ω)3. It represents the space of divergence–free
(in the sense of distributions) vector functions in
L2(Ω)3 whose normal component on∂Ω equals zero
in the sense of traces.

– PH is the orthogonal projection ofL2(Ω)3 ontoH.

– H⊥ is the orthogonal complement toH in
L2(Ω)3. It coincides with{∇ϕ; ϕ ∈W 1,2(Ω)}.

– (. , .)0,2 is the scalar product inL2(Ω)3 and inH.

– ‖ . ‖0,s denotes the norm inLs(Ω) and‖ . ‖k,s is the
norm in the Sobolev spaceW k,s(Ω).

– ||| . |||r; 0,s is the norm in the anisotropic Lebesgue
spaceLr(0, T ; Ls(Ω)) and||| . |||r; k,s is the norm in
the spaceLr(0, T ; W k,s(Ω)).

– The norms of vector functions will be denoted in the
same way as the norms of scalar functions.

– D1 is the set of functionsu ∈ W 1,2(Ω)3 ∩H such
that(curlu · n)|∂Ω = 0 in the sense of traces. It is
a closed subspace ofW 1,2(Ω)3.

– D−1 is the dual toD1. The duality between the
elements ofD−1 andD1 is denoted by〈. , .〉. The
norm inD−1 is denoted by‖ . ‖−1,2.

– A = curl |D1 (Thus,D1 = D(A).)

– D2 ≡ D(A2). It is proved in [1] thatD2 = {v ∈
W 2,2(Ω)3; div v = 0 a.e. inΩ andcurlju·n)|∂Ω =
0 for j = 0, 1, 2 in the sense of traces}.

– Note thatA2 = curl2 = −∆ onD2.

The next lemma reviews some results from [1]. The
self–adjointness of operatorA was also earlier proved
by Z. Yosida, Y. Giga [12] and R. Picard [9] and some
other of its properties directly follow from a series of
articles of O. A. Ladyzhenskaya, V. A. Solonnikov and
their co–workers on operatorcurl; let us cite e.g. [5].

Lemma 1 a) D1 = PHW
1,2
0 (Ω)3 = {v = v0 +

∇ϕ; v0 ∈ W 1,2
0 (Ω)3, ∆ϕ = −div v0 in Ω and

∂ϕ/∂n |∂Ω = 0}
b) A is a selfadjoint operator inH with a compact
resolvent.
c) The norm‖ . ‖k,2 is equivalent with the norm
‖Ak . ‖0,2 in Dk for k = 1, 2.

Lemma 1 implies thatA2 is a positive selfadjoint
operator with a compact resolvent inH. Its eigenval-
ues can be ordered into a non–decreasing sequenceλi
(i = 1, 2, . . .) and the corresponding eigenfunctions
ei form an orthonormal complete system inH which
is also orthogonal inD1 and inD2. The spacesDk

(k = 1, 2) can be characterized by the identities

Dk =
{
v =

+∞∑
i=1

αi ei;
+∞∑
i=1

α2
iλ

k
i < +∞

}
.

The spacesL2(0, T ; Dk) (k = 1, 2) coincide with the
sets{

w =
+∞∑
i=1

ai(t) ei;
+∞∑
i=1

λki

(∫ T

0
a2
i

)
< +∞

}
.

Definition 2 Let f ∈ Lq(QT )3 for someq > 5/2,
div f = 0 in QT in the sense of distributions and
u0 ∈ H. The pair(u; p) is called asuitable weak
solution of (1), (2), (4), (5) ifu ∈ L2(0, T ; D1) ∩
L∞(0, T ; H), u(. , t) −→ u0 weakly inH as t →
0+, p ∈ L5/4(QT ), the Navier–Stokes equation (1) is
satisfied in the sense of distributions inQT and∫

Ω×{t2}
|u|2φ + 2

∫ t2

t1

∫
Ω
|Au|2φ ≤

∫
Ω×{t1}

|u|2φ

+
∫ t2

t1

∫
Ω

(
|u|2(∂tφ+ ∆φ) + (|u|2 + 2p)u · ∇φ

− 2uiuj ∂i∂jφ+ 2f · uφ
)
−
∫ t2

t1

∫
∂Ω
|u|2 ∂φ

∂n
(6)

for everyφ ∈ C∞(QT ) such thatφ ≥ 0, φ is only a
function of t on ∂Ω × [0, T ] and for a.a.t1 ∈ [0, T )
(includingt1 = 0) and allt2 ∈ (t1, T ].

Proceedings of the 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August 20-22, 2005 (pp36-41)



Inequality (6) is thegeneralized energy inequal-
ity mentioned in Section 1. It can be formally obtained
by multiplying equation (1) byuφ and integrating by
parts overΩ× (t1, t2).

Definition 2 is analogous to the definition of the
suitable weak solution given by L. Caffarelli, R. Kohn
and L. Nirenberg in [2], but it is not quite identical.
The first reason is that the boundary condition (3) is
considered in [2], while we use the boundary con-
ditions (5). The second reason is that functionφ is
required to have a compact support inΩ × [0, T ) in
[2], while we admit a wider class of test functionsφ in
Definition 2. Thus, our suitable weak solution extends
the notion of the suitable weak solution introduced in
[2] because our definition already involves the validity
of the generalized energy inequality “up to the bound-
ary”. On the other hand, in a special case whenφ has
a compact support inΩ× [0, T ), using the well known
identity |∇u|2 = |curlu|2 + (∂jui)(∂iuj), we can
show that inequality (6) formally coincides with the
generalized energy inequality from [2].

The next theorem represents the main result of
this paper.

Theorem 3 Let f ∈ L2(QT )3 andu0 ∈ D2. Then
there exists a suitable weak solution(u; p) of the prob-
lem (1), (2), (4), (5), introduced by Definition 2. More-
over,u is a weakly continuous mapping from[0, T ]
into L2(Ω)3 and p ∈ Lα(0, T ; Lβ(Ω)) for arbitrary
α ∈ (1, 2), β ∈ (3

2 , 3) such that

2
α

+
3
β

= 3.

3 Proof of Theorem 3

In order to prove Theorem 3, we shall need several
lemmas. The first one is proved in [6].

Lemma 4 If g ∈ L∞(0, T ; L2(Ω)) ∩ L2(0, T ;
L6(Ω)) and 2 ≤ α ≤ +∞, 2 ≤ β ≤ 6 and
2/α+ 3/β ≥ 3

2 then

|||g|||α; 0,β ≤ |||g|||
2/α+3/β−3/2
2; 0,2

·
(
|||g|||∞; 0,2 + |||g|||2; 0,6

)5/2−(2/α+3/β)
. (7)

Particularly, if 2/α+ 3/β = 3
2 then

|||g|||α; 0,β ≤ |||g|||∞; 0,2 + |||g|||2; 0,6 . (8)

We shall further consider functions onQT to be
mappings from(0, T ) with values in an appropriate
function space and we shall therefore prefer e.g. the
shorter notationw(t) tow(. , t). By analogy, we shall
writew′ instead of∂tw.

Lemma 5 Letg ∈ L2(0, T ; H) andw0 ∈ D1. Then
the non–steady Stokes problem

w′ +A2w = g (9)

w(0) = w0 (10)

has a unique solutionw ∈ L2(0, T ; D2)∩
L∞(0, T ; D1) such thatw′ ∈ L2(0, T ; H) and

|||w|||2; 2,2 + |||w|||∞; 1,2 + |||w′|||2; 0,2

≤ c1 ‖w0‖1,2 + c2 |||g|||2; 0,2 . (11)

Proof: The existence and uniqueness of a solution
w ∈ L2(0, T ; D2) ∩ L∞(0, T ; D1) such thatw′ ∈
L2(0, T ; D−1) follows from [1]. The solution can
thus be expressed in the form

w(t) =
+∞∑
i=1

ai(t) ei

where functionsai(t) satisfy the initial–value prob-
lems

a′i + λi ai = (g, ei)0,2 a.e. on (0, T ), (12)

ai(0) = (w0, ei)0,2 (13)

for i = 1, 2, . . .Multiplying equation (12) byλiai and
integrating from0 to t, we obtain

λi
2
a2
i (t) + λ2

i

∫ t

0
a2
i =

λi
2
a2
i (0) + λi

∫ t

0
(g, ei)0,2 ai

≤ λi
2
a2
i (0) +

λ2
i

2

∫ t

0
a2
i +

1
2

∫ t

0
(g, ei)2

0,2 ,

λi
2
a2
i (t) +

λ2
i

2

∫ t

0
a2
i ≤

λi
2
a2
i (0) +

1
2

∫ T

0
(g, ei)2

0,2 .

This implies that

+∞∑
i=1

[
λ2
i

(∫ T

0
a2
i

)
+ sup
t∈(0,T )

ess λi ai(t)
]
< +∞

and thusw ∈ L2(0, T ; D2) ∩ L∞(0, T ; D1). The
rest of the proof is obvious. ut

Lemma 6 Let g ∈ L2(0, T ; H), w0 ∈ D1 and
ψ ∈ L2(0, T ; D2) such thatψ′ ∈ L2(0, T ; H). Then
there exists a unique solutionw ∈ L2(0, T ; D2) ∩
L∞(0, T ; D1) of the problem

w′ +A2w + PH(ψ · ∇w) = g (14)

w(0) = w0 (15)

on the interval(0, T ) such thatw′ ∈ L2(0, T ; H).
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Proof: Let

X = {v ∈ L2(0, T ; D2); v′ ∈ L2(0, T ; H)},
Y = { [g,ω]; g ∈ L2(0, T ; H), ω ∈ D1}

be the Banach spaces with the norms

|||v|||X = |||v|||2; 2,2 + |||v′|||2; 0,2,

||| [g,ω] |||Y = |||g|||2; 0,2 + ‖ω‖1,2 .

Then due to Lemma 5,

S : v −→ Sv ≡ [v′ +A2v, v(0)]

is a one–to–one operator fromX onto Y . The op-
eratorBv = [PH(ψ · ∇v), 0] is a compact operator
from X into Y andS + B is an injective operator.
HenceS+B is a one–to–one operator fromX ontoY
and consequently, the problem (14), (15) has a unique
solution inX. ut

Lemma 7 Letψ ∈ L2(0, T ; D2), ψ′ ∈ L2(0, T ; H),
f ∈ L2(0, T ; L2(Ω)3) andw0 ∈ D1. Then there
exists a unique solution(w, q) of the problem

w′ −∆w +ψ · ∇w +∇q = f , (16)

w(0) = w0 (17)

such thatw ∈ L2(0, T ; D2) ∩ L∞(0, T ; D1), w′ ∈
L2(0, T ; H),∇q ∈ L2(0, T ; L2(Ω)) and the average
of q(t) onΩ equals zero for a.a.t ∈ (0, T ). Moreover,

|||q|||α; 0,β + |||∇q|||α; 0,γ ≤ c3

(
|||f |||2; 0,2 +

‖w0‖1,2
)
·
(
|||ψ|||∞; 0,2 + |||ψ|||2; 0,6 + 1

)
(18)

for arbitrary α, β andγ such that 1 < α < 2, 3
2 <

β < 3, 1 < γ < 3
2 and

2
α

+
3
β

= 3,
2
α

+
3
γ

= 4. (19)

Proof: f can be expressed in the formf1 +f2 where
f1 ∈ L2(0, T ; H) and f2 ∈ L2(0, T ; H⊥). Due
to Lemma 6, there exists a unique solutionw of the
problem (14), (15) withg = f1. Moreover, applying
the standard estimate to equation (14), we obtain:

|||w|||2; 1,2 + |||w|||∞; 0,2

≤ c4 ‖w0‖0,2 + c5 |||f1|||2; 0,2 . (20)

This estimate, together with the information onψ,
implies thatψ · ∇w ∈ L2(0, T ; L2(Ω)3). Put∇q =
f2−(I−PH)(ψ·∇w). Then∇q ∈ L2(0, T ; L2(Ω)3)
and the pairw, q solves (16), (17). Choosingq so that

its average onΩ is zero at a.a. timest ∈ (0, T ), we
achieve thatq ∈ L2(0, T ; L6(Ω)). Using the inequal-
ity

|||ψ · ∇w|||α; 0,γ ≤ c6 |||∇w|||2; 0,2 |||ψ|||r; 0,s

≤ c7 |||∇w|||2; 0,2

(
|||ψ|||∞; 0,2 + |||ψ|||2; 0,6

)
where

r =
2α

2− α
, s =

2γ
2− γ

andα,β, γ satisfy (19), we can also derive the estimate

|||(I − PH)(ψ · ∇w)|||α; 0,γ

≤ c8 |||∇w|||2; 0,2

(
|||ψ|||∞; 0,2 + |||ψ|||2; 0,6

)
.

This and (20) enable to obtain the estimate of the norm
of ∇q in (18). The estimate ofq can now be easily
derived using mainly the fact that the integral ofq on
Ω equals zero. ut

Multiplying equation (16) by2φw, whereφ is a
non–negative function inC∞(QT ) such that it depends
only onton∂Ω×[t1, t2], and integrating onΩ×[t1, t2],
wheret1 ∈ [0, T ), t2 ∈ (t1, T ], we can arrive at the
generalized energy equality∫

Ω×{t2}
|w|2φ+ 2

∫ t2

t1

∫
Ω
|Aw|2φ =

∫
Ω×{t1}

|w|2φ

+
∫ t2

t1

∫
Ω

(
|w|2(∂tφ+ ∆φ) + (|w|2ψ + 2qw) · ∇φ

− 2wiwj ∂i∂jφ+ 2f ·w φ
)
−
∫ t2

t1

∫
∂Ω
|w|2 ∂φ

∂n
(21)

Letϕ ∈ C(0, T ; H) andn ∈ N. Putδn = T/n
and

Ψn(ϕ)(t) =
{
ϕ(0) for t ∈ (0, δn),
ϕ(t− δn) for t ∈ [δn, T ).

Obviously,Ψn(ϕ) ∈ C(0, T ; H).
Let (wn; qn) be the solution of the problem

w′n +A2wn + Ψn(wn) · ∇wn +∇q = f (22)

wn(0) = u0 (23)

on (0, T ). We can easily verify thatwn, Ψn(wn) ∈
L2(0, δn; D2). Applying successively Lemma 7 on
the time intervals(kδn, (k+ 1)δn), k = 1, . . . , n− 1,
we can even obtain thatwn, Ψn(wn) ∈ L2(0, T ; D2).
Standard energy estimates, applied to solutionwn,
show that all the norms|||wn|||2; 1,2, |||wn|||∞; 0,2 and
consequently also|||Ψn(wn)|||2; 1,2, |||Ψn(wn)|||∞; 0,2

can be estimated by a constant independent ofn. Sim-
ilarly, using estimate (18), we can derive that the
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norms |||qn|||α; 0,β and |||∇qn|||α; 0,γ are estimated by
a constant independent ofn. (α, β and γ satisfy
(19).) Moreover, we can directly deduce from equa-
tion (22) that the norm|||w′n|||4/3;−1,2 can be estimated
by c9 which is independent ofn. (||| . |||4/3;−1,2 is
the norm in the spaceL4/3(0, T ; [W 1,2(Ω)3]∗) where
[W 1,2(Ω)3]∗ denotes the dual toW 1,2(Ω)3.) Using
finally this estimate and the structure ofΨn(wn), we
can derive that the same also holds about the norm
of Ψn(wn)′ in L4/3(0, T ; [W 1,2(Ω)3]∗). The space
L2(0, T ; W 1,2(Ω)3) is reflexive, hence there exists a
sub–sequence of{wn} (we denote the sub–sequence
in the same way in order to preserve a simple notation)
andu, u∗ ∈ L2(0, T ; W 1,2(Ω)3) such that

wn → u, (24)

Ψn(wn) → u∗; (25)

both (24) and (25) represent the weak convergence in
L2(0, T ; W 1,2(Ω)3). The information on a strong
convergence in some spaces can be deduced from
the boundedness of the time derivatives ofwn and
Ψn(wn). Indeed, applying Lions’ lemma (see e.g.
R. Temam [11], Theorem 2.1, Chap. III), we obtain
that

wn → u strongly in L2(0, T ; H), (26)

wn → u strongly ∈ L2(0, T ; L3(∂Ω)3), (27)

Ψn(wn)→ u∗ strongly ∈ L2(0, T ; H). (28)

Lemma 8 u andu∗ from (24)–(28) satisfy

u = u∗. (29)

Proof: {wn} and{Ψn(wn)} are relatively compact
sets inL2(0, T ; H). Using [4], Theorem 2.13.1, con-
dition(ii), we get that the componentswn1, wn2, wn3

of wn are 2–mean equicontinuous functions, i.e. to
eachε > 0 there existsδ > 0 such that for allh ∈ R,
|h| < δ,∫

QT

|wnk(x, t+ h)− wnk(x, t)|2 < ε2 (30)

for k = 1, 2, 3. (If necessary,wnk are defined to be
equal to zero outsideQT ). The inequalities in (30) and
the way how functionsΨn are defined imply (29).ut

The solution(wn; qn) of (22), (23) naturally sat-
isfies the same generalized energy inequality as (21).

Using Lemma 4, (24) and (26), we can derive
that

wn → u strongly in Lr(0, T ; Ls(Ω)3)

for all r ∈ (2,∞), s ∈ (2, 6) such that

2
r

+
3
s
>

3
2
.

Thus, using the boundedness of the sequence{qn}
(respectively{∇qn}) in the spaceLα(0, T ; Lβ(Ω))
(respectively inLα(0, T ; Lγ(Ω)3)) (see (19)), we can
deduce that there existsp ∈ Lα(0, T ; Lβ(Ω)), such
that∇p ∈ Lα(0, T ; Lγ(Ω)3) (whereα,β andγ satisfy
(19)) so that

qn → p weakly in Lα(0, T ; Lβ(Ω)), (31)

∇qn → ∇p weakly in Lα(0, T ; Lγ(Ω)3). (32)

Proof of Theorem 3: Applying the standard proce-
dure which is explained e.g. in [11], Chapter III, in the
proof of Theorem 3.1, we can show that functionu is
a weak solution of the problem (1)–(4). Furthermore,
functionp from (31) and (32) is an associated pressure.
(26) implies that

‖wn(t)‖H → ‖u(t)‖H (33)

for a.a.t ∈ (0, T ) for a sub–sequence of{wn}. (We
preserve the same notation for the sub–sequence.) (24)
implies that

lim
n→+∞

inf
∫ t2

t1

∫
Ω
|Awn|2 ≥

∫ t2

t1

∫
Ω
|Au|2

for all t1, t2 ∈ [0, T ] such thatt1 < t2. It is not
difficult to get a slightly modified statement

lim
n→+∞

inf
∫ t2

t1

∫
Ω
|Awn|2 φ ≥

∫ t2

t1

∫
Ω
|Au|2 φ

(for all non–negative functionsφ ∈ C∞(QT )). This
inequality and all types of convergence (24), (26), (27),
(28), (31), (32), (33) enable the limit transition forn→
+∞ in the generalized energy inequality (21), written
down for the solution(wn; qn) of (22), (23). Thus,
we obtain inequality (6) for almost allt1, t2 ∈ (0, T )
such thatt1 < t2. Using the semi–lower continuity of
the function

t ∈ [0, T ] −→
∫

Ω×{t}
|u|2 φ,

we can extend the validity of (6) to almost allt1 ∈
[0, T ) and allt2 ∈ (0, T ] such thatt1 < t2. Moreover,
as (21) holds witht1 = 0, we can deduce that (6) also
holds fort1 = 0. This completes the proof of Theorem
3. ut
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Remark 9 Notice that the so called strong energy in-
equality∫

Ω×{t2}
|u|2 + 2

∫ t2

t1

∫
Ω
|Au|2

≤
∫

Ω×{t1}
|u|2 + 2

∫ t2

t1

∫
Ω
f · u (34)

follows from (6) by the choiceφ ≡ 1.

4 Conclusion

As we have already mentioned, L. Caffarelli, R. Kohn
and L. Nirenberg [2] used the “interior” version of
the generalized energy inequality in the study of the
1–dimensional Hausdorff measure of the set of the
interior singular points of the suitable weak solution.
The presented paper shows that the generalized im-
permeability boundary conditions (5) enable the ex-
tension of the generalized energy inequality “up to the
boundary”. By analogy with L. Caffarelli, R. Kohn
and L. Nirenberg, the extended version of the gener-
alized energy inequality can be further applied to the
treatment of the1–dimensional Hausdorff measure of
all singular points (interior as well as boundary) of the
suitable weak solution which will be described in a
forthcoming paper. This is the main reason why the
“up to the boundary” version of the generalized energy
inequality (6) is important.
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