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Abstract: - In this paper, we present a hydrodynamic model related to fluid models of high-speed commu-
nication or queueing network. We adopt a hydrodynamic analogy to describe the behavior of a fluid buffer
using the Navier-Stokes equations jointly appropriate boundary conditions. The variational formulation of
the problem leads to study a variational inequality. The existence of a weak solution is proved in the case
where the fluid occupies the flowing domain, completely.
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1 Introduction
Computer networks continue to evolve, increasing
in size and complexity. There are currently sev-
eral classes of models which describe in various
levels of detail the behavior of the network. The
utility of a particular model depends upon one’
s particular goals: controlling delay, loss, stabil-
ity (queue lengths remain bounded for any time).
Fluid buffer models have extensively been the fo-
cus of considerable attention because of their ap-
plicability in modelling of modern communication
networks. Note that, in general, the buffer con-
tent is a discrete random variable whereas in the
fluid model the buffer content is a continuous ran-
dom variable. Justification to considering this ide-
alization comes from theory that establishes sol-
idarity between idealized fluid models and more
accurate discrete models, when the load is close
to the capacity [2], or the state of the system is
large (e.g., the network is congested [6]). More-
over fluid models lead to significant reduction in
the computational effort. Indeed, when a long
burst of cells or packets is sent through a link, in-
stead of handling each individual unit, it suffices
to manage only two events: the beginning of the
burst and the end. Furthermore, there are sev-
eral motivations for considering the deterministic
approach (see [5],[7]); e.g., robust policy synthe-
sis, i.e., any policy should be sufficiently robust
to tolerate modelling errors resulting from uncer-
tain variability in service or arrival rates. So our
considerations are of deterministic type. Now we

describe, briefly, the dynamics of a fluid model.
Let us consider a single fluid buffer or ”reservoir”
of capacityB ≤ ∞ and a work discipline service.
Let Λ(t) ∈ [0,∞) be the total rate of fluid be-
ing fed into the buffer at timet ≥ 0. The volume
of the fluid arriving in the interval [0,t] is given
by A(t) =

∫ t
0 Λ(s)ds. Let Q(t) be the volume

(”level”) of fluid in the buffer at timet ≥ 0. Let
R(t) be the output rate att ≥ 0. The volume
of the fluid flowing out of the buffer in[0, t] is
D(t) =

∫ t
0 R(s)ds. The evolution ofQ(t) is de-

scribed by

Q(t) = Q(0) +
∫ t

0
(Λ(s)−R(s))ds (1)

with some allocation or control policy. For exam-
ple, s ∈ {s ≥ 0|(Λ(s) − R(t)) > 0 or Q(s) >
0) and ((Λ(s) − R(t) < 0 or Q(s) < B)}. Cu-
mulative fluid losses in the interval[0, t] may be
computed byL(t) =

∫ t
0 (Λ(s) − R(s))ds where

s ∈ {s ≥ 0|Λ(s) > R(s) and Q(s) = B}, the
set of all overflow periods. The model described
so far can be applied to the more general case
where the buffer is fed byN distinct fluid flows
and the capacity of the buffer can be shared arbi-
trarily among the fluids with some control of the
volumeQi(t) of i- fluid ([3], [5], [7]). We call this
problem a multi-phase fluid model. It follows from
the aforementioned that mathematical approach to
the fluid model enables one to estimate the dynam-
ics of the flow, delays lengths and dynamics of
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formation of ”queues” or ”congestion” and other
”traffic” characteristics. Moreover, it offers the ad-
vantages of being several orders of magnitude less
expensive and of frequently leading to a deeper in-
sight into the properties of the analyzed system.
Furthermore the mathematical models are of sig-
nificant scientific interest in connection with stud-
ies of the ”traffic” flow as physical phenomenon
with complicated non trivial properties as men-
tioned in this introduction. The most widely used
tool is the macroscopic or hydrodynamic model.
In this paper we formulate a hydrodynamic model
of the fluid model described above. The paper is
organized as follows. In section 2 we consider
a hydrodynamic model of fluid buffer model by
analogy using the classical Navier-Stokes Equa-
tions. Section 4 is devoted to the variational for-
mulation of the problem . In section 3 an outline
of the existence proof of a solution to a particular
case ( extreme admissible state) is given.

2 Hydrodynamic model
Now we complete, from mathematical point of
view, the fluid model adopted to describe a net-
work based on hydrodynamic analogy. We assume
that: Equation (1) is an integral form of the conti-
nuity equation ; The value of the divergence of the
velocity of the fluid provides control of the volume
of the buffer and of the inflow and outflow rate;
The motion in the ”recevoir” is governed by the
classical Navier-Stokes equations; The processing
capacity is described by a constraint which can de-
pend on the velocity or the volume; Dynamic con-
ditions on the boundary simulate on/off process (
in other words the boundary conditions guarantee
the flowing of the fluid in the ”recevevoir”). In
literature there exist several mathematical models
of traffic flow (See [1], [10] for an overview) that
are of some interest in mathematical modelling of
networks. The description of this correlation is be-
yond the scope of the paper.

For simplicity of exposition we consider the
flow in a cylindrical pipeΩ. The generators of the
pipe are parallel toOx3 in the orthonormal sys-
tem of axesOx1x2x3. Let ω be the domain of
R2 which represents a cross section of the cylin-
der. We denoteΓ1 the cross section inx3 = 0
andΓ2 in x3 = L (L given length of the cylinder),
Γ3 the lateral surface of the cylinder. Letn be the
outward unit normal vector on∂Ω. Moreover, let
Ω1(t) andΩ2(t) be two subsets ofΩ such that

Ω = Ω1(t)∪Ω2(t), Γ(t) = (∂Ω1(t)∩∂Ω2(t))\∂Ω.

Moreover the linesΓ(t)∩Γ1, Γ(t)∩Γ2 andΓ(t)∩
Γ3 are not empty. We denoteΓi(t) = Γi ∩ ∂Ω1(t)
for i = 1, 2, 3.

In generalΩ1(t),Ω2(t) are filled with fluids
of different densities and viscosities, a two-phase
flow. Any way we assume that the ” fluid ” in
Ω2(t) is the vacuum (free surface problem).

In Ω1(t) we consider the Navier-Stokes
equations

∂tu+ u · ∇u−∆u+∇p = f,

∇ · u = g. (2)

Hereu is the velocity vector field,p the pres-
sure,f the external force andg is a given function
which can be a function ofu or of the volume of
Ω1(t). The density and the viscosity are assumed
constant and = 1. We complete (2) with the bound-
ary conditions

1
2
|u|2 + p = α, u× n = 0 on Γ1(t);

1
2
|u|2 + p = β, u× n = 0,

0 ≤ u · n < ψ, on Γ2(t);
u = 0 on Γ3(t);
T (u)n = 0 on Γ(t). (3)

HereT = ∇u− p is the stress tensor (for simplic-
ity we consider∇u instead of its symmetric part).

Furthermore, onΓ(t), u ·n represents the ve-
locity of Γ(t).

The conditions onΓ1(t),Γ2(t) mean that the
velocity is normal, the dynamic pressure is as-
signed so a constrain on the output rate is assigned.
On Γ3(t) the classical adherence is given and on
Γ(t) the continuity condition of the normal com-
ponent of the stress tensor is given in absence of
surface tension.

The domainΩ1(t) or its volume represents
an admissible queue. WhenΩ = Ω(t) we have
the ”extreme admissible state”. The existence of
a solution to (2),(3) is a complex problem. Al-
though considerably simplified, the equations are
fairly difficult to solve.

In this brief paper we consider the ”extreme
admissible state” just to evaluate the difficulty of
the problem.

3 Formulation in the Form of a
Variational Inequality
First we give some tools from functional Analy-
sis. In our notation we do not distinguishR-R3
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valued functions. LetΩ be a bounded open set in
R3 with boundary∂Ω sufficiently regular. We de-
noteHs(Ω) the classical Sobolev space of order
s ≥ 0 on L2(Ω). H0(Ω) ≡ L2(Ω). By ((·, ·))s

we will denote the scalar product inHs(Ω) and
((·, ·))0 ≡ (·, ·). Next, we introduce

V = {φ ∈ C∞0 (Ω),∇ · φ = 0},

Vs = closure ofV in Hs(Ω).
Vs is a Hilbert space for the norm||φ||2s =

((φ, φ))s and|φ|22 = (φ, φ). We setV1 = V , V ′,
V ′s the dual ofV , Vs, respectively.||·||1 ≡ ||·|| and
V0 = H. Let Ω be the cylinder defined in section
2. Moreover

K(t) denotes the set ofφ(t, x) for which0 ≤
φ(x, t) · n ≤ ψ(x, t) onΓ2(t).

K(t) is a closed convex set inH1(Ω1(t)).
Finally,QT = (0, T )× Ω.

Let v, u smooth functions inK(t) such that
v = 0 on Γ3 andv × n = 0 on Γ1 ∪ Γ2. Multi-
plying (2)1 by v − u and after integration by parts
onΩ1(t), having in mind the boundary conditions
(3), we get∫ T

0
((∂tv, v − u)Ω1(t) + (∇u,∇(v − u))Ω1(t) −

1
2
(v, |u|2n)Γ1(t)∪Γ2(t) + (αn, v − u)Γ1(t) +

(βn, v − u)Γ2(t) +
1
2
(u, n|v|22)Γ(t) −

(u · nu, v)Γ(t) + (u · ∇u, v)Ω1(t) −

(p,∇ · (v − u)))dt ≥ −1
2
|v0 − u0|22. (4)

The existence of a weak solution to 3D
Navier-Stokes equations in a time-independent
convex set was solved by the author in [8] ( see [4]
for a discussion of the problem). The case where
the convex set depends on time the existence is
an open problem. In [9] some particular cases are
considered. Moreover a variational inequality re-
lated to the free surface problem is a new problem,
completely.

In this brief paper we intend to consider the
case whereΩ ≡ Ω(t) for any t -the extreme ad-
missible queue problem described in section 2 -
with g = 0 to give evidence about the complexity
of the problem for a ”simplified” case.

We introduce (| · | = absolute value)

W = {φ|φ ∈ C∞(Ω), |φ · n| = |φ| on Γ1 ∪ Γ2,

φ = 0 on Γ3, ∇ · φ = 0},

W = closure ofW in H1(Ω),W ′ the dual of
W .

We notice that, forφ = (φ1, φ2, φ3) in W ,
on Γ1 ∪ Γ2, ∂x1φ1 = ∂x2φ2 = 0 consequently
∂x3φ3 = 0 thanks to∇ · φ = 0. We setφ+ =
(sup(φi, 0)), φ− = (inf(φi, 0)) for i = 1, 2, 3.
Moreover the Friedricks-Poncarè inequality holds.

We prove the following
Theorem - Letα, β ∈ L2(0, T ;H−1/2(Γ1 ∪

Γ2), 0 < c ≤ ψ ∈ L2(0, T ;L2(Γ2)) and u0 ∈
L2(Ω) ∩ K(t) and∇ · u0 = 0. Then there ex-
ists a (weak solution)u ∈ L∞(0, T ;L2(Ω)) ∩
L2(0, T ;W ) such that the inequality (4) is sat-
isfied for any v ∈ L2(0, T ;W ∩ K(t)) ∩
L6(Qt), ∂tv ∈ L2(0, T ;W ′).

4 Outline of the Proof.
Step 1 - Penalized System. We consider the fol-
lowing approximate problem ( for simplicity we
setα = β, uε,η ≡ u)∫ T

0
η(∂tu, ∂tφ)− (u, ∂tφ) + (∇u,∇φ) +

(u · ∇ū, φ̄) + (αn− 1
2
|ū|2n, φ)Γ1∪Γ2 +

1
ε
[((u · n− ψ)+Γ2

, φ) + ((u · n)−, φ)Γ2 ])dt+

(u(T ), φ(T )) =
∫ T

0
(f, φ)dt+ (u0, φ(0)).(5)

Hereη, ε are positive parameters andū, φ̄ are reg-
ularizations ofu, φ dependent on parameterε.

We denote bya(u, φ) the left-hand side in
(5). By direct computation, we havea(u, u) ≥
c||u||H1(QT ) and obtain the existence of a solution
in H1(QT ) ∩W of (5). To pass to the limit in (5)
we will need a priori estimates of the approxima-
tionsu.

Step 2. We replaceφ with u in (5). After some
calculations, we have

η

∫ T

0
|∂tu|22dt ≤ c,

∫ T

0
‖u‖2dt ≤ c,∫ T

0
(
∫

Γ2

(|(u · n− ψ)+|2 +

|(u · n)−|2)dΓ)dt ≤ cε,

|u(T )|22 ≤ c, |u(0)|22 ≤ c. (6)

It follows that uη,ε → uε weakly in
L2(0, T ;W ). Then passing to the limit with re-
spect toη in (5) with smoothφ with support in
(0, T ) we obtain
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∫ T

0
(−(u, ∂tφ) + (∇u,∇φ) + (u · ∇ū, φ̄) +

(α− 1
2
|ū|2, φ)Γ1∪Γ2 +

1
ε
((u · n− ψ)+, φ)Γ2 +

((u · n)−, φ)Γ2)− (f, φ))dt. (7)

To pass to the limit with respect toε we need
the convergence inL2(QT ) (for example).

Step 3. In (7) we considerφ(t) ∈ C1
0 (0, T ;V) and

obtain

∫ T

0
(u, ∂tφ)dt =

∫ T

0
((∇u,∇φ) +

(u · ∇ū, φ̄)− (f, φ))dt (8)

(8) implies that∂tu
ε is bounded inL2(0, T ;V ′2)

uniformly with respect toε. Using the classical
compactness result (see [4]) we obtain{Puε} is a
compact set inL2(QT ) whereP is the projector
operator fromL2(Ω) ontoH. Now we prove that
{uε} converges inL2(QT ). LetΩδ be the cylinder
contained inΩ with δ ≤ x3 ≤ L − δ and cross
sectionω. Let θδ ≡ θ ∈ C∞0 (Ω), Suppθ ⊂ Ω,
θ ≡ 1 on Ωδ. Let wε

δ ≡ w be the solution in
Ω̃ = Ω \ Ωδ of

∇ · w = uε∇θ, w = 0 on ∂Ω̃.

We notice that∫ T

0

∫
Ω̃
|uε|2dxdt ≤

cδ2/3

∫ T

0
(
∫

Ω̃
|uε|6dx)1/3dt ≤ cδ2/3.

We sethε = θ(uε − u) − w, ( w is extended
by 0 in Ωδ). Note that∇ · hε = 0 and hε ∈
L2(0, T ;H1

0 (Ω)).
Now ∫ T

0

∫
Ωδ

hεuεdxdt =

∫ T

0
(
∫

Ω
hεuεdx−

∫
Ω̃
hεuεdx)dt.

The first integral on the right-hand side tends
to zero asε → 0 because ofhε → 0 weakly
in L2(0, T ;H1

0 (Ω)) andPuε → Pu strongly in

L2(0, T ;H−1(Ω)). Moreover the second integral
satisfies

|
∫ T

0

∫
Ω̃
hεuεdxdt| ≤ cδ2/3

with c independent ofε. The strong convergence
in L2(QT ) of {uε}is proved.

An alternative proof of the strong conver-
gence of{uε} can be obtained by the use of the
compactness theorem of Fréchet-Kolmogorov. In
fact, consider the Steklov function

uε
h =

∫ t

t−h
uε(x, s)ds.

Hereh > 0 anduε(x, t) can be considered0 for
t < 0.

By virtue of the estimates (6) and the Jensen
inequality one has∫ T

0
(∂tu

ε, uε
h)dt = (uε(T ),

1
h

∫ T

T−h
uε(s, x))−

1
h

∫ T

0
(uε(t), uε(t)− uε(t− h))dt ≤

c√
h
− 1

2h

∫ T

0
|uε(t)− uε(t− h|22dt;

|
∫ T

0
(∇uε,∇uε

h)dt| ≤∫ T

0
‖uε‖2 1√

h
(
∫ t

t−h
‖uε‖2ds)1/2dt ≤ c√

h
;

|
∫ T

0
(uε · ∇ūε, ūε

h)dt| ≤ c√
h

;

1
ε

∫ T

0
((uε · n)−, uε

h)Γ2dt =≤ c√
h

;

1
ε

∫ T

0
((uε · n− ψ)+, uε

h)Γ2dt ≤
1√
h
.

In (7) we replaceφwith uε
h and thanks to the above

estimates we obtain∫ T

0
|uε(t)− uε(t− h)|22dt ≤ c

√
h. (9)

The estimates on∇uε and (9) imply the compact-
ness of{uε} in L2(QT ). Now it is routine matter
to obtain (4).
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