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Abstract: - A theoretical foundation of the generalized impermeability boundary conditions for the Navier—Stokes
eqguations is given in [1]. Although main results of the classical theory, already known for the Dirichlet boundary
condition, are true for the generalized impermeability boundary conditions as well, one can also prove some finer
theorems. In this brief article, we review some results from [1] and bring additional results and comments.
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1 Natural Question of Natural We call them thgeneralized impermeability boundary
it conditions.
Boundary Conditions One of the questions which immediately arise
In most works on incompressible viscous fluid flows, S the question of a physical sense of the boundary
the Navier-Stokes equation cqndltlon_s (4). The first condition in (4) commde_s
with the first part of (3) and we already know that it
ou+ (u-V)u=—-Vp+vAu+ f (1) expresses the zero flux through the boundary. The sec-
ond condition in (4) requires the normal component of
and the equation of continuity vorticity to be zero on the boundary. This condition
. is also contained in (3) — see Section 3, Lemma 2.
dive =0 (2) Sincecurl’u = —Aw for a divergence vector field
: - u, the third condition in (4) can be rewritten in the
22?1;232':1& with the homogeneous Dirichlet boundary form wAw -1 — DivTp - 1 — 0 whereTy, is the
dynamic stress tensor aftliv Tp represents the vec-
u=0 (3) tor of intensity of the local source of tensor fi€lg.

The third condition in (4) expresses the requirement
on the part of the boundary which coincides with a that the normal component of this vector equals zero
fixed wall. However, physicists and engineers know on the boundary. Lemma 2 in Section 3 shows that in
that this condition not always well reflects the behav- fact, the third condition in (4) is the only point where
ior of the fluid on and near the boundary and itis true the boundary conditions (3) and (4) differ.
especially if the boundary is smooth and the viscosity
of the fluid is small. (3) is equivalent with the two
conditionsu. - n = 0 andu x n = 0 wheren is the 2 Elements from the Theory of
outer normal vector on the boundary. The first equa-
tion expresses the zero flux through the boundary. The Operator curl
second equation says that the tangential component of
the velocityw is zero on the boundary and it is pre-
cisely this part which expresses the no—slip boundary
condition and which is a matter of discussion. _ _ _

In this paper, we consider the boundary condi- © L&(Q)? is a subspace of.*(2)* which contains
tions functionsu whose divergence equals zero{nin

the sense of distributions anfd - n)|sq = 0 in the
u-n=0, curlu-n=0, curlPu-n=0. (4) sense of traces.

Assume that the considered fluid fills a bounded simply
connected domaif2 ¢ R? whose boundarys) is a
smooth surface. We shall use the notation:
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o P, is the orthogonal projection of.?(f2)® onto

L2(Q)3. Q. is the complementary projection, i.e.

QU =1-PF,.
o D'is the set of functions € W12(Q)3 N L2(Q)3

such tha{curlu - n)|sq = 0 in the sense of traces.

Itis a closed subspace & 12 (€2)3.

o D~ ! is the dual toD!. The duality between the
elements ofD~! and D* is denoted by. , .).
o A= curl|p: (Thus,D' = D(A).)

o D? = D(A?). Itis shown in [1] that it is the set of
functionsv € W22(Q)3 N D' such that curl®v -
n)|sq = 0in the sense of traces.

tively the resolvent set) of operatdr, as an operator
in L2(Q)3.

o ||.||2 denotes the norm ik2(Q2)% and||.||x> de-
notes the norm ifl*2(Q)3.

It is well known that the orthogonal complement

of L2(Q)% in L%(Q)? is the space of gradien®¢
such thatp € W12(Q). D' is densein ()3 andA

mapsD' onto L2 ()3, We cite several results whose
proofs can be found in [1]. (We also refer to R. Picard

[11] for the proof of part c).)

Lemmal a) D' equals the set of functions of the

formv = wy + Vi wherevy € Wy2(Q)3, Ap =
—divwg in Q anddye/on |sq = 0.

b) D' = P, Wy % (Q)?

c) Operator A is selfadjoint inL2 (2)? and its resol-
vent operator is compact ifi2 ()3 for all A € p(A).
d)o(A) = {\i; i € Z*} (Z* = Z — {0}) where

A; are isolated real eigenvalues with the same finite
algebraic and geometric multiplicity which cluster at

400 and —oo.

e) || A* . || represents the norm i*, equivalent with
the norm|| . || 2 for k =1, 2.

3 An Equivalent Form of the Dirich-
let Boundary Condition (3)

Lemma 2 A functionu € Wh2(Q)3 N L2(Q)? sa-

tisfies the homogeneous Dirichlet boundary condition

(3) if and only if it satisfies

ou

%-n:0 (5)

u-n=0, curlu-n=0,

on the boundary(2 of domainf2.

Proof: Assume that is a smooth function ik (Q)3
at first.

o(A) (respectivelyp(A)) is the spectrum (respec-

If » satisfies (3) therw and curl v obviously
satisfy the first two conditions in (5). Let us verify the
third condition. Letry € 0€2. The cartesian system of
coordinates can be chosen so that the origin is at point
xo andn shows the direction of thes—axis. Since
u1 = ug = 0 on 92 anddy, d» represent tangential
derivatives at poinicy, we haved uy; + drus = 0 at
xg. This implies, due to the equation of continuity (2),
thatdsus = 0 atxg. This equation is identical with
the third condition in (5) at pointy.

On the other hand, let satisfy (5). The third
condition in (5) implies thatu satisfies the two—
dimensional surface form of the equation of continuity
(2) on 992, which means that i€ is a closed simple
smooth curve odf2 then the flux throughC' on 92
equals zero. This can be expressed by the formula

%u'(dlxn)zo. (6)
C

Due to the first two conditions in (5 belongs to
spaceD!. Lemma 1 and the smoothnesswimply
thatw coincides withV o (for somep € W32(Q)) on
oQ. If function ¢ is not constant o2 then it has
a maximum orof) at some pointy € 92 and there
exists a closed simple smooth cuiWearound pointy
on 0 such thatV ¢ differs from the zero vector on a
part ofC' which has a positivé—dimensional measure,
V is perpendicular t@' and shows to the “interior”
of C'in all points of curve”. ThenVy x n is tangent
to C' and we can suppose thatis oriented by this
tangent vector. This implies that

fcu'(dlxn):fc(uxn)-dl
—éj(vwxn)-dl>0

whichisin contradiction with (6). Thusg;is a constant
function on9f2 and the tangent components @iy

on 9092 (which coincide with the tangent components
of u) equal zero. This confirms that satisfies the
homogeneous Dirichlet boundary condition (3).

The statement of the lemma can finally be ex-
tended tou € W12(Q)3 N L2(Q)? by means of the
density argument. The third condition in (5) is sat-
isfied in the sense of duality between elements of
W=1/22(00Q) andW/22(0Q) : (dju-n, nj)aq = 0.
Indeed,0;u € L*(2)? (for j = 1,2, 3) and its diver-
gence equals zero in the sense of distributions, hence
the trace ob;u - n on 9Q belongs tolW ~1/22(9Q).

O

Lemma 2 confirms that the generalized imperme-
ability boundary conditions (4) differ from the no—slip
boundary condition (3) only in the third condition in
(4) and (5). We shall see that this difference has inter-
esting consequences.
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4 Boundary Conditions for Vorticity
and Pressure

Assume, for simplicity, thatf = 0. Denotew =
curl u. Applying operatokurl to the Navier—Stokes
equation (1), we obtain the equation
Ow+ (u-Vw — (w-V)u =rvAw. (7)
If the Navier—Stokes equation is considered with the
homogeneous Dirichlet boundary condition (3) then
we can only derive that the normal component of
w equals zero on the boundary, but this information
is not sufficient in order to formulate a well-posed
boundary—value problem for functior, based on
equation (7). We are going to show thatufsatis-
fies the boundary conditions (4) @4 thenw (if it is
smooth enough) also satisfies the boundary conditions
(4), i.e.

(8)

on dfQ2. The first two conditions in (8) directly follow
from (4). Thus, we only need to show thatsatisfies
the third condition in (8). SinceAw = —v curl?w
in equation (7), it is sufficient to show that

w-n=0, curlw-n =0, curPw-n=0

0

[(u-V)w— (w-V)u] -n= 9)

on 0f). However,
(u-Vw— (w-V)u = curl(w x u).

Both w andw are tangent t@€). Thus, their cross
product is normal t@f? and itscurl is again tangent.
This implies (9).

Applying operatordiv to the Navier—Stokes
equation (1), we obtain the well known Poisson-type
equation for pressure:

Ap = —81'6]' (uz ’LL]') + div f (10)
Equation (10) can be solved with the Neumann bound-
ary condition

9 = vAu-n —

o [(u-V)u] -n

(11)
on 02 which directly follows from equation (1).
Applying projection@, to equation (1), we obtain
Vp = Vp! + Vp!! where Vp! = vQ,Au and
Vp!l = Q.[(u - V)u]. Functionp! is harmonic.
In the case of boundary conditions (4), projectidtis
and@, commute withA because\ = —A2. Hence
Vp! = vAQ,u = 0 andp’ can be taken to be equal
to zero. FurthermoreyAu -n = vAP,u-n = 0

on 992 and thus the first term on the right hand side of
(11) can be omitted.

Boundary conditions (4) also enable to derive a
Dirichlet—type boundary condition for pressure. Sup-
pose thatu is a smooth solution of (1), (2) which
satisfies boundary conditions (4) afid ,¢) € D! for
all (or almost all)t from the considered time interval.
Then, due to Lemma ky = ug + Vo whereug = 0
on ). By analogy,f = f,+ Vx wheref, =0
on 9. Finally, the identitycurl’w - n = 0 in (8)
means thaturl A%u - n = 0 on 9 and soA?u be-
longs to D', too. Henced?u = wy + Vi where
wo(x,t) = 0if z € IQ. The Navier—Stokes equation
(1) can be written in the form

ou+ Aux u=—-Vqg—vA%u+ f (12)

whereq = p + %\u|2. The tangential component
of the termAwu x u on 9Q is zero because it is the
cross product of the two tangential vectors @fl.
Thus, assuming that equation (12) is satisfied up to the
boundary and multiplying it by an arbitrary tangent
vector, we can obtain

V(@tcp—kz/w—x—kp—i—%\VgoP) -7 =0.
This implies that

dp+vy—x+p+5|Vel* = h(t)  (13)

on 992 whereh is a function of time. Using the fact
that pressurgis determined uniquely up to an additive
function of time, we can choode(t) = 0. Equation
(13) suggests the Dirichlet boundary condition for
of course in a situation when the information on the
other quantities, v andy can be obtained separately.

5 The Weak Problem with Boundary
Conditions (4)

The initial-boundary value problem for equations
(12), (2) with the initial conditionu|;—g = uo and
with the generalized impermeability boundary condi-
tions (4) can be weakly formulated in this wayet

T >0, f € L*>0,7; D7) and ug € L2(Q)3.
Denote Q7 = Q x (0,7). We look foru €
L>(0,T; L2(2)3) N L?(0,T; DY) such that

/ (~u- 0+ (Aux w)- ¢+ Au- Ag) dwat

’ T
—/ uo-¢<.,0>dw=/ FO 0, (.. 1) dt
0 0

for all ¢ € C>([0,T); D') such thatg(.,T) = 0.
We shall denote this weak problem by (WP). It can be
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shown that ifu (together with pressurg) is a strong
solution to the problem (1), (2), (4) with the initial
conditionu|i—g = up thenw is a weak solution. In
order to confirm the sense of the weak formulation,
it is also necessary to show the opposite, i.e. that
a sufficiently smooth weak solutianthere exists an
associated pressupeso thatu, p is a strong solution.
The most steps of the proof are standard. Using at
first test functionsp that have for each € [0,7] a
compact support ifi2, we can show that there exists
a smooth functiory such that the paifs, ¢ satisfies
equations (12) and (2) together with the initial condi-
tionu(.,0) = ug inastrong sense. The validity of the
firsttwo conditions in (4) directly follows from the fact
thatwu(.,t) € D! for ¢t € (0,7). The crucial part is
to prove thatu satisfies in the sense of traces the third
boundary conditiorurl®u - n = 0 on 99 x (0, 7).

It is not obvious because a weak solution does not
necessarily belong to the domainairl?®. Neverthe-
less, choosing a general test functiprintegrating by
parts in the integral identity in the weak formulation
and using the information that is a strong solution,
we obtain:

T
/ / curlu - (¢ x n)dSdt =0.
0 [2/9]

Function ¢ can be, in accordance with Lemma 1,
expressed in the formp = ¢, + Vi where¢, <
C([0,T]; Wy(2)*) andy is, for eacht € [0, 7], a
solution of the Neumann problem

(14)

9

A
14 on

o0

Substitutingp = ¢, + V into (14), we obtain:

T
/ / curlu - (Vo xn)dSdt
0o Joo

T
—/ / div (Ve x curlu) de dt
0 Q

T
/ / Vo - curl®u dx dt
0 Q

/T<(curl2u ‘), p)aq dt. (15)
0

curl’u, for aat € (0,T), is a divergence—free
function in L2(Q)3 and so its normal component on
the boundary belongs &V —'/22(9). The term
((curl?u-n), p)sq therefore expresses the duality be-
tween the elements & —1/22(9Q) andiw'1/22(9Q).
The set of traces 062 of all possible function® is
dense inW'/22(9Q). Thus, (15) implies that for
a.a.t ¢ (0,7), curl>u - n = 0 on 9N in the sense of

traces. This shows that the third boundary condition
in (4) is implicitly contained in the formulation of the
weak problem (WP).

If wis a weak solution, i.e. a solution of problem
(WP), then we can prove similarly as in the case of
the Dirichlet boundary condition (3) that there exists
an associated pressupesuch thatu and g (where
q=p-+ % |u|?) satisfy equation (12) in the sense of
distributions inQ.

Boundary conditions (4) enable to derive many
results which are already known to hold for the Navier—
Stokes equation with the homogeneous Dirichlet
boundary condition. We present some of them.

Theorem 3 (Global in time existence of a weak so-
lution) The weak problem (WP) has a solutian
which satisfies the strong energy inequality

t
.. £)]3 + 20 /E IVl )| de

<

t
2 /f (Fo)ul,0)) do+ [[u(, O3 (16)
for aa. ¢ € (0,7) and all t € [,T) and
lim; o4 |lu(.,t) — ugll2 = 0. Moreover, ifug € D!
then the weak solution can be constructed so that it

satisfies
T
2/3
Il
0

The theorem can be proved by the Galerkin method.
Theideaisdueto J. Leray[9] and E. Hopf[7]and itcan
also be used in the case of the generalized imperme-
ability boundary conditions (4). The approximations
can naturally be constructed as linear combinations of
eigenfunctions of operatot.

The energy inequality was originally proved by
J. Leray (inR?) and by E. Hopf (in abounded domainin
IR3 with the Dirichlet boundary condition (3)) only for
¢ = 0. The generalization for a.g.€ (0,7"), which
is possible in the case of a large class of doméins
was discovered later and the inequality has therefore
been called the “strong energy inequality”.

Estimate (17) was proved by C. Foias, C. Guil-
lope and R. Temam [5] in the space—periodic case in
R3 and it was later modified by G. F. D. Duff [4] for
the case of a bounded domé&ihwith the Dirichlet
boundary condition (3). In our case, the integrability

of HA?uan/3 on (0,7") can be at first established for
approximationsu,, which are linear combinations of
eigenfunctions of operatad. Estimate (17) can be
obtained by a usual limit procedure far — +oc.
(17) provides another explication of the mathematical
sense in which the weak solution satisfies the third

dt < +o0. a7
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condition in (4): it shows thatu(.,t) € W?22(Q)3

for a.a.t € (0,T). Socurl®u(.,t) € L*(Q)® and
since it is divergence—free, its normal component on
the boundary belongs @ ~1/22(90Q).

Let us further note that the generalized imperme-
ability boundary conditions (4) enable to prove unique-
ness in the same well known classes of weak solutions
(defined by the so called Prodi—Serrin integrability
conditions) as the Dirichlet boundary condition (3).
Indeed, following the procedures described e.g. by
G. P. Galdi [6], one can verify that they can also be
performed, with only minor modifications, consider-
ing boundary conditions (4).

6 More from the Theory of the
Navier—Stokes Equation with
Boundary Conditions (4)

Suppose further for simplicity thaf = 0. It can
be easily observed that if solutiam of the Navier—
Stokes equation satisfies the boundary conditions (4)
then P,Au = AP,u = Au = A%u. The fact that
P, commutes with the Laplace operator has important

II. (A continuous family of solutions of the Euler

and Navier—Stokes equations)Paper [2] shows that
alocally in time continuous family of strong solutions
of the Euler or Navier—Stokes equations in a bounded
domain can be constructed, using slightly modified
conditions (4) for solutions of the Navier—Stokes equa-
tion. This result represents a contribution to solution
of one of the mostimportant questions of mathematical
fluid mechanics, i.e. the relation between solutions of
the Euler and the Navier—Stokes equations. The same
results are also known in the whole spa&e&or in a
bounded domain with space—periodic boundary con-
ditions (see P. Constantin and C. Foias [3]), however
a modification with the Dirichlet boundary condition
(possibly also non—homogeneous) for solutions of the
Navier—Stokes equation represents an open problem.
O

The next theorem confirms that considering
boundary conditions (4), we can prove a similar result
to a classical theorem of K. K. Kiselev and O. A. La-
dyzhenskaya (see [8]) which concerns the Dirichlet
boundary condition (3). Moreover, a deeper analysis
shows thatj = 2 is the limit case and the theorem
cannot be generalized for an arbitrgrg N.

consequences. It enables, except others, to Improve Theorem 4 (Local in time existence of a strong so-

some fine results from the theory of the Navier—Stokes
equation. Let us mention at least two of them:

I. (Interior regularity of a weak solution) The clas-
sical results of J. Serrin [12] say thatdf is a weak
solution to the Navier—Stokes equation that satisfies
inequality (16) and at least one of the conditions

(i) w € L5(t1,ta; L™(21)3) for somer, s such that
2<s< 400, 3<r<+o0, 2/s+3/r=1,

(ii) the norm ofw in L>®(ty,ta; L3(21)3) is suffi-
ciently small

(©; is a sub—domain of2 andt; < t; + ¢ <

ta — ( < t9) thenw has all space derivatives in
L (ty + (,ta — ¢ L°(Q2)3) (Where domairf2, sat-
isfiesQ, C €y), and this holds independently of a
boundary condition. However, in the case of boun-
dary condition (3),0,u and Vp (with all their space
derivatives) are only known to belong 16*(¢; + ¢,

ty — ¢; L™(92)?) with 1 < a < 2. Considering boun-
dary conditions (4), we can prove thétu and Vp
(with all their space derivatives) belong£6°(¢; + ¢,

ty — ¢; L®(Q2)3). The proof, which can be found
in [1], uses the fact that while in the case of the
Dirichlet boundary condition (3), satisfies the non—
homogeneous Neumann boundary condition (11) with
the not sufficiently controllable termAw - n, the same
problem can be simplified in the case of boundary con-
ditions (4) becauseAwu - n = 0 onof2. O

lution) Letj = 1 or2andug € D7. Then there exists
T > 0 and a strong solutiom of the problem (1), (2),
(4) on the time interva(0, 7}') such thatu|—o = uo,
w e C(0,T;; D7), Atlu € L*(0,T;; L2(Q)?) and
O AT € LQ(O,T;; L2(9)3).

Principle of the proof: Then—th approximationu,,

of solutionu can be constructed as a linear com-
bination of the eigenfunctions’ of operatorA for

i = +1,...,+n with coefficientsa; being functions
of ¢ so that
d

— un-eidw+/(Aun><un)-eida:

+1// Au, - Aeldx = 0 (18)
Q

foralli = £1,...,£n andu,(.,0) = II,,up. Multi-
plying thei—th equation in (18) by? a; and summing
overi = *£1,...,£n, we obtain an inequality which
provides a local in time estimate pflwu,,||2.

If we multiply the i—th equation in (18) by} a;
and sum oveir = +1, ..., +n, we obtain the equation

d1
— —/ | A%, |> dz + / (Au, X uy,) - Atu, dz

+l// |A3un|2dw = 0. (19)
Q
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It is important that we can integrate by parts in the References:

second integral and rewrite it as a sum of the integral
of (Av™ x v") - (n x A3v™) on 9N and the integral
of curl(Av™ x v™) - A3v™ on Q. The surface inte-
gral equals zero. (Indeedv™ andv™ are tangent on
00, henceAv™ x v™ is normal, whilen x A3v™ is
tangent.) The integral oft can be estimated by the
sum of || A%u,,||3 and|| A%u,, |3, multiplied by appro-
priate constants. This leads to estimateg 4fw,, |2,
respectivelyl| A3u, |2, in L°(0,Ty), respectively in
L?(0,T5) (for someTy > 0), which, forn — +o0,
verify the statement of the theorem. O

Theorem 4 enables to re—derive the so called the-
orem on structure of a weak solution, which is well
known in the case of the Dirichlet boundary condition
(3), for a solution satisfying the generalized imper-
meability boundary conditions (4). The core of the
theorem says that a solutianto problem (WP) that
satisfies the strong energy inequality (16) is “smooth”
on a union of open non—overlapping intervalginT’)
whose complement t0, 7") has thel—-dimensional
Hausdorff measure equal to zero. The rate of smooth-
ness on each of the open intervals is given by Theorem
4. The theorem on structure will be applied in a forth-
coming paper [10] which shows that one can use fine
properties of a solution of problem (WP) (i.e. the weak
problem with boundary conditions (4)) on and in the
neighborhood of the boundary and extend “up to the
boundary” some results on the interior regularityof
This concerns namely the result on regularity in de-
pendence on the eigenvalues of the rate of deformation
tensor, whose validity “up to the boundary” with the
Dirichlet boundary condition (3) remains open.

7 Conclusion

The results explained in the previous sections show
that the generalized impermeability boundary condi-
tions (4) represent a mathematically acceptable alter-
native to (3). The question of their physical relevance
on boundaries of various smoothness will be clearer
after we shall have results of numerical computations
and compare them with experimentally obtained data.
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