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Abstract: - A theoretical foundation of the generalized impermeability boundary conditions for the Navier–Stokes
equations is given in [1]. Although main results of the classical theory, already known for the Dirichlet boundary
condition, are true for the generalized impermeability boundary conditions as well, one can also prove some finer
theorems. In this brief article, we review some results from [1] and bring additional results and comments.
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1 Natural Question of Natural
Boundary Conditions

In most works on incompressible viscous fluid flows,
the Navier-Stokes equation

∂tu+ (u · ∇)u = −∇p+ ν∆u+ f (1)

and the equation of continuity

divu = 0 (2)

are treated with the homogeneous Dirichlet boundary
condition

u = 0 (3)

on the part of the boundary which coincides with a
fixed wall. However, physicists and engineers know
that this condition not always well reflects the behav-
ior of the fluid on and near the boundary and it is true
especially if the boundary is smooth and the viscosity
of the fluid is small. (3) is equivalent with the two
conditionsu · n = 0 andu × n = 0 wheren is the
outer normal vector on the boundary. The first equa-
tion expresses the zero flux through the boundary. The
second equation says that the tangential component of
the velocityu is zero on the boundary and it is pre-
cisely this part which expresses the no–slip boundary
condition and which is a matter of discussion.

In this paper, we consider the boundary condi-
tions

u · n = 0, curlu · n = 0, curl2u · n = 0. (4)

We call them thegeneralized impermeability boundary
conditions.

One of the questions which immediately arise
is the question of a physical sense of the boundary
conditions (4). The first condition in (4) coincides
with the first part of (3) and we already know that it
expresses the zero flux through the boundary. The sec-
ond condition in (4) requires the normal component of
vorticity to be zero on the boundary. This condition
is also contained in (3) – see Section 3, Lemma 2.
Sincecurl2u = −∆u for a divergence vector field
u, the third condition in (4) can be rewritten in the
form ν∆u · n = DivTD · n = 0 whereTD is the
dynamic stress tensor andDivTD represents the vec-
tor of intensity of the local source of tensor fieldTD.
The third condition in (4) expresses the requirement
that the normal component of this vector equals zero
on the boundary. Lemma 2 in Section 3 shows that in
fact, the third condition in (4) is the only point where
the boundary conditions (3) and (4) differ.

2 Elements from the Theory of
Operator curl

Assume that the considered fluid fills a bounded simply
connected domainΩ ⊂ R3 whose boundary∂Ω is a
smooth surface. We shall use the notation:

◦ L2
σ(Ω)3 is a subspace ofL2(Ω)3 which contains

functionsu whose divergence equals zero inΩ in
the sense of distributions and(u · n)|∂Ω = 0 in the
sense of traces.
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◦ Pσ is the orthogonal projection ofL2(Ω)3 onto
L2
σ(Ω)3. Qσ is the complementary projection, i.e.

Qσ = I − Pσ.

◦ D1 is the set of functionsu ∈ W 1,2(Ω)3 ∩ L2
σ(Ω)3

such that(curlu ·n)|∂Ω = 0 in the sense of traces.
It is a closed subspace ofW 1,2(Ω)3.

◦ D−1 is the dual toD1. The duality between the
elements ofD−1 andD1 is denoted by〈. , .〉.
◦ A = curl |D1 (Thus,D1 = D(A).)

◦ D2 = D(A2). It is shown in [1] that it is the set of
functionsv ∈ W 2,2(Ω)3 ∩ D1 such that(curl2v ·
n)|∂Ω = 0 in the sense of traces.

◦ σ(A) (respectivelyρ(A)) is the spectrum (respec-
tively the resolvent set) of operatorA, as an operator
in L2

σ(Ω)3.

◦ ‖ . ‖2 denotes the norm inL2
σ(Ω)3 and‖ . ‖k,2 de-

notes the norm inW k,2(Ω)3.

It is well known that the orthogonal complement
of L2

σ(Ω)3 in L2(Ω)3 is the space of gradients∇ϕ
such thatϕ ∈W 1,2(Ω). D1 is dense inL2

σ(Ω)3 andA
mapsD1 ontoL2

σ(Ω)3. We cite several results whose
proofs can be found in [1]. (We also refer to R. Picard
[11] for the proof of part c).)

Lemma 1 a) D1 equals the set of functions of the
form v = v0 + ∇ϕ wherev0 ∈ W 1,2

0 (Ω)3, ∆ϕ =
−div v0 in Ω and∂ϕ/∂n |∂Ω = 0.

b)D1 = PσW
1,2
0 (Ω)3

c) OperatorA is selfadjoint inL2
σ(Ω)3 and its resol-

vent operator is compact inL2
σ(Ω)3 for all λ ∈ ρ(A).

d) σ(A) = {λi; i ∈ Z∗} (Z∗ = Z − {0}) where
λi are isolated real eigenvalues with the same finite
algebraic and geometric multiplicity which cluster at
+∞ and−∞.
e)‖Ak . ‖2 represents the norm inDk, equivalent with
the norm‖ . ‖k,2 for k = 1, 2.

3 An Equivalent Form of the Dirich-
let Boundary Condition (3)

Lemma 2 A functionu ∈ W 1,2(Ω)3 ∩ L2
σ(Ω)3 sa-

tisfies the homogeneous Dirichlet boundary condition
(3) if and only if it satisfies

u · n = 0, curlu · n = 0,
∂u

∂n
· n = 0 (5)

on the boundary∂Ω of domainΩ.

Proof: Assume thatu is a smooth function inL2
σ(Ω)3

at first.

If u satisfies (3) thenu and curlu obviously
satisfy the first two conditions in (5). Let us verify the
third condition. Letx0 ∈ ∂Ω. The cartesian system of
coordinates can be chosen so that the origin is at point
x0 andn shows the direction of thex3–axis. Since
u1 = u2 = 0 on ∂Ω and∂1, ∂2 represent tangential
derivatives at pointx0, we have∂1u1 + ∂2u2 = 0 at
x0. This implies, due to the equation of continuity (2),
that∂3u3 = 0 at x0. This equation is identical with
the third condition in (5) at pointx0.

On the other hand, letu satisfy (5). The third
condition in (5) implies thatu satisfies the two–
dimensional surface form of the equation of continuity
(2) on∂Ω, which means that ifC is a closed simple
smooth curve on∂Ω then the flux throughC on ∂Ω
equals zero. This can be expressed by the formula∮

C
u · (dl× n) = 0. (6)

Due to the first two conditions in (5),u belongs to
spaceD1. Lemma 1 and the smoothness ofu imply
thatu coincides with∇ϕ (for someϕ ∈W 3,2(Ω)) on
∂Ω. If function ϕ is not constant on∂Ω then it has
a maximum on∂Ω at some pointy ∈ ∂Ω and there
exists a closed simple smooth curveC around pointy
on∂Ω such that∇ϕ differs from the zero vector on a
part ofC which has a positive1–dimensional measure,
∇ϕ is perpendicular toC and shows to the “interior”
of C in all points of curveC. Then∇ϕ×n is tangent
to C and we can suppose thatC is oriented by this
tangent vector. This implies that∮

C
u · (dl× n) =

∮
C

(u× n) · dl

=
∮
C

(∇ϕ× n) · dl > 0

which is in contradiction with (6). Thus,ϕ is a constant
function on∂Ω and the tangent components of∇ϕ
on ∂Ω (which coincide with the tangent components
of u) equal zero. This confirms thatu satisfies the
homogeneous Dirichlet boundary condition (3).

The statement of the lemma can finally be ex-
tended tou ∈ W 1,2(Ω)3 ∩ L2

σ(Ω)3 by means of the
density argument. The third condition in (5) is sat-
isfied in the sense of duality between elements of
W−1/2,2(∂Ω) andW 1/2,2(∂Ω) : 〈∂ju·n, nj〉∂Ω = 0.
Indeed,∂ju ∈ L2(Ω)3 (for j = 1, 2, 3) and its diver-
gence equals zero in the sense of distributions, hence
the trace of∂ju · n on ∂Ω belongs toW−1/2,2(∂Ω).
ut

Lemma 2 confirms that the generalized imperme-
ability boundary conditions (4) differ from the no–slip
boundary condition (3) only in the third condition in
(4) and (5). We shall see that this difference has inter-
esting consequences.
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4 Boundary Conditions for Vorticity
and Pressure

Assume, for simplicity, thatf = 0. Denoteω =
curlu. Applying operatorcurl to the Navier–Stokes
equation (1), we obtain the equation

∂tω + (u · ∇)ω − (ω · ∇)u = ν∆ω. (7)

If the Navier–Stokes equation is considered with the
homogeneous Dirichlet boundary condition (3) then
we can only derive that the normal component of
ω equals zero on the boundary, but this information
is not sufficient in order to formulate a well–posed
boundary–value problem for functionω, based on
equation (7). We are going to show that ifu satis-
fies the boundary conditions (4) on∂Ω thenω (if it is
smooth enough) also satisfies the boundary conditions
(4), i.e.

ω · n = 0, curlω · n = 0, curl2ω · n = 0 (8)

on∂Ω. The first two conditions in (8) directly follow
from (4). Thus, we only need to show thatω satisfies
the third condition in (8). Sinceν∆ω = −ν curl2ω
in equation (7), it is sufficient to show that

[ (u · ∇)ω − (ω · ∇)u ] · n = 0 (9)

on∂Ω. However,

(u · ∇)ω − (ω · ∇)u = curl(ω × u).

Both ω andu are tangent to∂Ω. Thus, their cross
product is normal to∂Ω and itscurl is again tangent.
This implies (9).

Applying operator div to the Navier–Stokes
equation (1), we obtain the well known Poisson–type
equation for pressure:

∆p = −∂i∂j (ui uj) + div f . (10)

Equation (10) can be solved with the Neumann bound-
ary condition

∂p

∂n
= ν∆u · n− [(u · ∇)u] · n (11)

on ∂Ω which directly follows from equation (1).
Applying projectionQσ to equation (1), we obtain
∇p = ∇pI + ∇pII where∇pI = νQσ∆u and
∇pII = Qσ[(u · ∇)u]. FunctionpI is harmonic.
In the case of boundary conditions (4), projectionsPσ
andQσ commute with∆ because∆ = −A2. Hence
∇pI = ν∆Qσu = 0 andpI can be taken to be equal
to zero. Furthermore,ν∆u · n = ν∆Pσu · n = 0

on∂Ω and thus the first term on the right hand side of
(11) can be omitted.

Boundary conditions (4) also enable to derive a
Dirichlet–type boundary condition for pressure. Sup-
pose thatu is a smooth solution of (1), (2) which
satisfies boundary conditions (4) andf(. , t) ∈ D1 for
all (or almost all)t from the considered time interval.
Then, due to Lemma 1,u = u0 +∇ϕ whereu0 = 0
on ∂Ω. By analogy,f = f0 + ∇χ wheref0 = 0
on ∂Ω. Finally, the identitycurl2ω · n = 0 in (8)
means thatcurlA2u · n = 0 on ∂Ω and soA2u be-
longs toD1, too. HenceA2u = w0 + ∇ψ where
w0(x, t) = 0 if x ∈ ∂Ω. The Navier–Stokes equation
(1) can be written in the form

∂tu+Au× u = −∇q − νA2u+ f (12)

where q = p + 1
2 |u|

2. The tangential component
of the termAu × u on ∂Ω is zero because it is the
cross product of the two tangential vectors on∂Ω.
Thus, assuming that equation (12) is satisfied up to the
boundary and multiplying it by an arbitrary tangent
vectorτ , we can obtain

∇
(
∂tϕ+ νψ − χ+ p+ 1

2 |∇ϕ|
2
)
· τ = 0.

This implies that

∂tϕ+ νψ − χ+ p+ 1
2 |∇ϕ|

2 = h(t) (13)

on ∂Ω whereh is a function of time. Using the fact
that pressurep is determined uniquely up to an additive
function of time, we can chooseh(t) = 0. Equation
(13) suggests the Dirichlet boundary condition forp,
of course in a situation when the information on the
other quantitiesϕ,ψ andχ can be obtained separately.

5 The Weak Problem with Boundary
Conditions (4)

The initial–boundary value problem for equations
(12), (2) with the initial conditionu|t=0 = u0 and
with the generalized impermeability boundary condi-
tions (4) can be weakly formulated in this way:Let
T > 0, f ∈ L2(0, T ; D−1) and u0 ∈ L2

σ(Ω)3.
Denote QT = Ω × (0, T ). We look for u ∈
L∞(0, T ; L2

σ(Ω)3) ∩ L2(0, T ; D1) such that∫
QT

(
−u · ∂tφ+ (Au× u) · φ+Au ·Aφ

)
dxdt

−
∫

Ω
u0 · φ(. , 0) dx =

∫ T

0
〈f(. , t),φ(. , t)〉dt

for all φ ∈ C∞([0, T ]; D1) such thatφ(. , T ) = 0.
We shall denote this weak problem by (WP). It can be
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shown that ifu (together with pressurep) is a strong
solution to the problem (1), (2), (4) with the initial
conditionu|t=0 = u0 thenu is a weak solution. In
order to confirm the sense of the weak formulation,
it is also necessary to show the opposite, i.e. thatto
a sufficiently smooth weak solutionu there exists an
associated pressurep so thatu, p is a strong solution.
The most steps of the proof are standard. Using at
first test functionsφ that have for eacht ∈ [0, T ] a
compact support inΩ, we can show that there exists
a smooth functionq such that the pairu, q satisfies
equations (12) and (2) together with the initial condi-
tionu(. , 0) = u0 in a strong sense. The validity of the
first two conditions in (4) directly follows from the fact
thatu(. , t) ∈ D1 for t ∈ (0, T ). The crucial part is
to prove thatu satisfies in the sense of traces the third
boundary conditioncurl2u · n = 0 on ∂Ω × (0, T ).
It is not obvious because a weak solution does not
necessarily belong to the domain ofcurl2. Neverthe-
less, choosing a general test functionφ, integrating by
parts in the integral identity in the weak formulation
and using the information thatu is a strong solution,
we obtain:∫ T

0

∫
∂Ω

curlu · (φ× n) dS dt = 0. (14)

Functionφ can be, in accordance with Lemma 1,
expressed in the formφ = φ0 + ∇ϕ whereφ0 ∈
C∞([0, T ]; W 1,2

0 (Ω)3) andϕ is, for eacht ∈ [0, T ], a
solution of the Neumann problem

∆ϕ = −∇ · φ0 in Ω,
∂ϕ

∂n

∣∣∣∣
∂Ω

= 0

Substitutingφ = φ0 +∇ϕ into (14), we obtain:

0 =
∫ T

0

∫
∂Ω

curlu · (∇ϕ× n) dS dt

= −
∫ T

0

∫
Ω

div (∇ϕ× curlu) dxdt

=
∫ T

0

∫
Ω
∇ϕ · curl2udxdt

=
∫ T

0
〈(curl2u · n), ϕ〉∂Ω dt. (15)

curl2u, for a.a t ∈ (0, T ), is a divergence–free
function inL2(Ω)3 and so its normal component on
the boundary belongs toW−1/2,2(∂Ω). The term
〈(curl2u·n), ϕ〉∂Ω therefore expresses the duality be-
tween the elements ofW−1/2,2(∂Ω) andW 1/2,2(∂Ω).
The set of traces on∂Ω of all possible functionsϕ is
dense inW 1/2,2(∂Ω). Thus, (15) implies that for
a.a.t ∈ (0, T ), curl2u · n = 0 on∂Ω in the sense of

traces. This shows that the third boundary condition
in (4) is implicitly contained in the formulation of the
weak problem (WP).

If u is a weak solution, i.e. a solution of problem
(WP), then we can prove similarly as in the case of
the Dirichlet boundary condition (3) that there exists
an associated pressurep such thatu and q (where
q = p + 1

2 |u|
2) satisfy equation (12) in the sense of

distributions inQT .
Boundary conditions (4) enable to derive many

results which are already known to hold for the Navier–
Stokes equation with the homogeneous Dirichlet
boundary condition. We present some of them.

Theorem 3 (Global in time existence of a weak so-
lution) The weak problem (WP) has a solutionu
which satisfies the strong energy inequality

‖u(. , t)‖22 + 2ν
∫ t

ξ
‖∇u(. , ξ)‖22 dξ

≤ 2
∫ t

ξ
〈f(. , σ),u(. , σ)〉dσ + ‖u(. , ξ)‖22 (16)

for a.a. ξ ∈ (0, T ) and all t ∈ [ξ, T ) and
limt→0+ ‖u(. , t)− u0‖2 = 0. Moreover, ifu0 ∈ D1

then the weak solutionu can be constructed so that it
satisfies ∫ T

0
‖u‖2/32,2 dt < +∞. (17)

The theorem can be proved by the Galerkin method.
The idea is due to J. Leray [9] and E. Hopf [7] and it can
also be used in the case of the generalized imperme-
ability boundary conditions (4). The approximations
can naturally be constructed as linear combinations of
eigenfunctions of operatorA.

The energy inequality was originally proved by
J. Leray (inR3) and by E. Hopf (in abounded domain in
R

3 with the Dirichlet boundary condition (3)) only for
ξ = 0. The generalization for a.a.ξ ∈ (0, T ), which
is possible in the case of a large class of domainsΩ,
was discovered later and the inequality has therefore
been called the “strong energy inequality”.

Estimate (17) was proved by C. Foias, C. Guil-
lope and R. Temam [5] in the space–periodic case in
R

3 and it was later modified by G. F. D. Duff [4] for
the case of a bounded domainΩ with the Dirichlet
boundary condition (3). In our case, the integrability
of ‖A2un‖2/32 on (0, T ) can be at first established for
approximationsun which are linear combinations of
eigenfunctions of operatorA. Estimate (17) can be
obtained by a usual limit procedure forn → +∞.
(17) provides another explication of the mathematical
sense in which the weak solution satisfies the third
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condition in (4): it shows thatu(. , t) ∈ W 2,2(Ω)3

for a.a.t ∈ (0, T ). So curl2u(. , t) ∈ L2(Ω)3 and
since it is divergence–free, its normal component on
the boundary belongs toW−1/2,2(∂Ω).

Let us further note that the generalized imperme-
ability boundary conditions (4) enable to prove unique-
ness in the same well known classes of weak solutions
(defined by the so called Prodi–Serrin integrability
conditions) as the Dirichlet boundary condition (3).
Indeed, following the procedures described e.g. by
G. P. Galdi [6], one can verify that they can also be
performed, with only minor modifications, consider-
ing boundary conditions (4).

6 More from the Theory of the
Navier–Stokes Equation with
Boundary Conditions (4)

Suppose further for simplicity thatf = 0. It can
be easily observed that if solutionu of the Navier–
Stokes equation satisfies the boundary conditions (4)
thenPσ∆u = ∆Pσu = ∆u = A2u. The fact that
Pσ commutes with the Laplace operator has important
consequences. It enables, except others, to improve
some fine results from the theory of the Navier–Stokes
equation. Let us mention at least two of them:

I. (Interior regularity of a weak solution) The clas-
sical results of J. Serrin [12] say that ifu is a weak
solution to the Navier–Stokes equation that satisfies
inequality (16) and at least one of the conditions

(i) u ∈ Ls(t1, t2; Lr(Ω1)3) for somer, s such that
2 ≤ s ≤ +∞, 3 < r ≤ +∞, 2/s+ 3/r = 1,

(ii) the norm ofu in L∞(t1, t2; L3(Ω1)3) is suffi-
ciently small

(Ω1 is a sub–domain ofΩ and t1 < t1 + ζ <
t2 − ζ < t2) then u has all space derivatives in
L∞(t1 + ζ, t2 − ζ; L∞(Ω2)3) (where domainΩ2 sat-
isfies Ω2 ⊂ Ω1), and this holds independently of a
boundary condition. However, in the case of boun-
dary condition (3),∂tu and∇p (with all their space
derivatives) are only known to belong toLα(t1 + ζ,
t2 − ζ; L∞(Ω2)3) with 1<α<2. Considering boun-
dary conditions (4), we can prove that∂tu and∇p
(with all their space derivatives) belong toL∞(t1 + ζ,
t2 − ζ; L∞(Ω2)3). The proof, which can be found
in [1], uses the fact that while in the case of the
Dirichlet boundary condition (3),p satisfies the non–
homogeneous Neumann boundary condition (11) with
the not sufficiently controllable termν∆u·n, the same
problem can be simplified in the case of boundary con-
ditions (4) becauseν∆u · n = 0 on∂Ω. ut

II. (A continuous family of solutions of the Euler
and Navier–Stokes equations)Paper [2] shows that
a locally in time continuous family of strong solutions
of the Euler or Navier–Stokes equations in a bounded
domain can be constructed, using slightly modified
conditions (4) for solutions of the Navier–Stokes equa-
tion. This result represents a contribution to solution
of one of the most important questions of mathematical
fluid mechanics, i.e. the relation between solutions of
the Euler and the Navier–Stokes equations. The same
results are also known in the whole spaceR3 or in a
bounded domain with space–periodic boundary con-
ditions (see P. Constantin and C. Foias [3]), however
a modification with the Dirichlet boundary condition
(possibly also non–homogeneous) for solutions of the
Navier–Stokes equation represents an open problem.
ut

The next theorem confirms that considering
boundary conditions (4), we can prove a similar result
to a classical theorem of K. K. Kiselev and O. A. La-
dyzhenskaya (see [8]) which concerns the Dirichlet
boundary condition (3). Moreover, a deeper analysis
shows thatj = 2 is the limit case and the theorem
cannot be generalized for an arbitraryj ∈ N.

Theorem 4 (Local in time existence of a strong so-
lution) Letj = 1 or 2 andu0 ∈ Dj . Then there exists
T ∗j > 0 and a strong solutionu of the problem (1), (2),
(4) on the time interval(0, T ∗j ) such thatu|t=0 = u0,
u ∈ C(0, T ∗j ; Dj),Aj+1u ∈ L2(0, T ∗j ; L2

σ(Ω)3) and
∂tA

j−1u ∈ L2(0, T ∗j ; L2
σ(Ω)3).

Principle of the proof: Then–th approximationun
of solution u can be constructed as a linear com-
bination of the eigenfunctionsei of operatorA for
i = ±1, . . . ,±n with coefficientsai being functions
of t so that

d
dt

∫
Ω
un · ei dx+

∫
Ω

(Aun × un) · ei dx

+ν
∫

Ω
Aun ·Aei dx = 0 (18)

for all i = ±1, . . . ,±n andun(. , 0) = Πnu0. Multi-
plying thei–th equation in (18) byλ2

i ai and summing
over i = ±1, . . . ,±n, we obtain an inequality which
provides a local in time estimate of‖Aun‖2.

If we multiply thei–th equation in (18) byλ4
i ai

and sum overi = ±1, . . . ,±n, we obtain the equation

d
dt

1
2

∫
Ω
|A2un|2 dx+

∫
Ω

(Aun × un) ·A4un dx

+ ν

∫
Ω
|A3un|2 dx = 0. (19)
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It is important that we can integrate by parts in the
second integral and rewrite it as a sum of the integral
of (Avn × vn) · (n × A3vn) on ∂Ω and the integral
of curl(Avn × vn) · A3vn on Ω. The surface inte-
gral equals zero. (Indeed,Avn andvn are tangent on
∂Ω, henceAvn × vn is normal, whilen × A3vn is
tangent.) The integral onΩ can be estimated by the
sum of‖A2un‖22 and‖A2un‖32, multiplied by appro-
priate constants. This leads to estimates of‖A2un‖2,
respectively‖A3un‖2, in L∞(0, T ∗2 ), respectively in
L2(0, T ∗2 ) (for someT ∗2 > 0), which, forn → +∞,
verify the statement of the theorem. ut

Theorem 4 enables to re–derive the so called the-
orem on structure of a weak solution, which is well
known in the case of the Dirichlet boundary condition
(3), for a solution satisfying the generalized imper-
meability boundary conditions (4). The core of the
theorem says that a solutionu to problem (WP) that
satisfies the strong energy inequality (16) is “smooth”
on a union of open non–overlapping intervals in(0, T )
whose complement to(0, T ) has the1–dimensional
Hausdorff measure equal to zero. The rate of smooth-
ness on each of the open intervals is given by Theorem
4. The theorem on structure will be applied in a forth-
coming paper [10] which shows that one can use fine
properties of a solution of problem (WP) (i.e. the weak
problem with boundary conditions (4)) on and in the
neighborhood of the boundary and extend “up to the
boundary” some results on the interior regularity ofu.
This concerns namely the result on regularity in de-
pendence on the eigenvalues of the rate of deformation
tensor, whose validity “up to the boundary” with the
Dirichlet boundary condition (3) remains open.

7 Conclusion

The results explained in the previous sections show
that the generalized impermeability boundary condi-
tions (4) represent a mathematically acceptable alter-
native to (3). The question of their physical relevance
on boundaries of various smoothness will be clearer
after we shall have results of numerical computations
and compare them with experimentally obtained data.
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