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1 Introduction

The problem of the motion of a rigid body
through a liquid has attracted the attention of
several scientists over a century ago. The first
systematic study on this subject initiated with
the pioneering work of Kirchhoff [K], Lord Kelvin
[T] regarding the motion of one or more bodies in
a frictionless liquid. After that many mathemati-
cians have furnished significant contributions to
this fascinating field under different assumptions
on the body and on the fluid. We wish to quote
the work of Brenner [B] concerning the steady
motion of one or more bodies in a linear viscous
liquid in the Stokes approximation. Weinberger
[W1]-[W2] and Serre [S] regarding the fall of a
body in a incompressible Navier-Stokes fluid un-
der the action of gravity. Further we can refer
to the work of Farwig, Hisdida, Muller [FHM],
Galdi [G2]-[G3], Gunther, Hudspeth, Thomann
[GHT], etc.

Before describing the main results, we would
like to introduce some basic problemes of practi-
cal interest. The orientation of a long bodies in
liquid of different nature is a fundamental issue
in many practical interest. A first, fundamen-
tal step in modelling and the orientation of long
bodies in liquids is to investigate experimantally
their free fall behavior (sedimentation), both in
Newtonian and viscoelastic liquids see [Le], [PC].

In our paper we consider the Stokes and Oseen
problem with Coriolis force ����� when � = 	�

in the whole space �� . Our plan is the following.

First we deal with the problem

��� ∆ � + 	�
���� = ��� + ��� (1)

div � = 0 � (2)

For simplicity we consider 
 = ������	 = 1. This
happens, for example, when characteristic veloc-
ity is small (slow motion). Secondly, we consider
the linearization of the Navier-Stokes equations
Oseen problem

 �! �"� + 	�
#�$� �%� ∆ � = ��� + ��� (3)

div � = 0 � (4)

We assume 
 = �&� ,  = �'� .

2 Preliminaries

The Lebesgue spaces are denoted by (*) ( +-, ), 1 .�/.10 , and equipped the norms 2 ! 243�5 ) . By687 5 ) ( +#9 ), :<; 0 an integer, 1 .=�>.?0 , we
denote the usual Sobolev spaces with the norms

2 ! 2 7 5 ) =

7@
A BCA D 3

2FE B ! 2F3�5 ) (5)

where G = ( GIH&�FGJ�K�FG  ) denotes the standard
multi-index. Further, we define the homogeneous
Sobolev spaces E#L 5 M ( + , ) as

E L 5 M (Ω) = N�O3 (Ω) PRQTS PRUJVXWRY Z (6)
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equipped with the norm 2�� ! 2 L � H 5 M . Denote by�
( + , ) the space of functions of rapid decrease
consisting of element � from N O ( + , ) such that

sup������� ( � 	 H�� B W �'�'��� 	 , � B � � E�
X� ( 	 ) � ) � 0 (7)

for all GIH&�'�'�'�&�FG ,� 0 and � ����; 0. For ����
( + , ) we denote by �� its Fourier transform:

�� ( � ) =
1

(2 � ) ,�� �
�
��� �̄�� � S � � ( 	 ) ��	J� (8)

where � stands for the imaginary unit. It is well-
known that ���� � ( + , ) and that moreover,

� ( 	 ) =
1

(2 � ) ,�� �
�
��� ��� � S � �� ( � ) ����� (9)

Given a function Φ : + , � + , let us consider the
integral transform

! �#"%$ ( 	 ) =
1

(2 � ) ,�� �
�
��� ��� � S �'& ( � ) �� ( � ) ��	J� (10)

where ��� � ( + , ).
Lemma 1 Let Φ : + ,(� + be continuous to-
gether with the derivative ) �+*) � W-, , , ) � � and all preced-ing derivatives for � � � �  0, � = 1 �'�'�'���/. . Then, if
for some �0� [0 � 1) and 1  0

� �KH�� 7 W32 
 �'�'��� � , � 7 � 2 
5444 6
7 &

6
� 7 WH �'�'�

6
� 7 �, 444 .71 (11)

where : � is zero or one and 8 = 9 ,� D H : � =
0 � 1 �'�'�'���/. , the integral transform (10) defines
a bounded linear operator from ( M ( + , ) into(�: ( + , ), 1 �<; ��0 , 1 =?> = 1 =�; � � and we have2 ! �*2 : .7@ 2F�*2FM , with a constant @ depending only
on 1 �/> and ; .
For more details see [L].

3 Stokes problem in the whole

space A 3

We are interested in the Stokes problem with the
Coriolis forces in the whole space.

��� ∆ � + 	�
��$� = ��� + B#C � (12)

div � = 0 � (13)

Let 
 = �'� .
In establishing estimates for (12), (13) it is im-
portant to single out the dependence of the con-
stants entering the estimates on the dimension-
less parametr B . We will consider the problem

��� ∆ � + 	 �'� �$� = ��� + C � (14)

div � = 0 � (15)

and we prove corresponding estimates for its so-

lutions. The estimates for (12), (13) will be ob-
tained if we make replacements

C � CD=+B � (16)

� � �E=+B � (17)	 � � B�	 � � (18)

Main theorem 1
Given C��$( M ( + , ), 1 �7;F� 0 , there exists a pair
of functions � �R� with � H&� �  � ( M , �G� E ��5 M ( + , ),���H�$( M satisfying the Stokes problem (12), (13)
and moreover

� �I� ��5 M + � �I� H 5 M + 2F� H 2FM + 2F�  2FM�.7@&H/B 2JCT2FM�� (19)
Also, if 1 �7;F� 3 and � = 1 � 3
� � � � H 5 M + B H �  � � �K� H 5ML ZL VKZ + � �I� ��5 M + � �I� H 5 M .7@���B 2JCT2FM (20)
and if 1 �7;F� � , � = 1 � 3
� � � � H 5 M + � � � � M + B  � � 2F� �X2 L ZL VON Z + B H �  � � �K� H 5ML ZL VKZ (21)

+ � �I� ��5 M + � �I� H 5 M�.7@  B 2JCT2FM��
where @QP �SR = 1 � 2 � 3 depend on . �T; .
Proof. We shall look for a solution to (12), (13)
corresponding to C�� N O3 ( + , ) of the form

� ( 	 ) =
1

(2 � ) ,�� �
�
��� ��� � S �+U ( � ) ����� (22)

� ( 	 ) =
1

(2 � ) ,�� �
�
��� ��� � S �JV ( � ) ����� (23)

Replacing (22), (23) into (14), (15) furnishes
the following algebraic system for U and V :

� � U H + �W�KH V ( � ) + 	 U  = �C H'� (24)� � U � + �W�&� V ( � ) = �CK��� (25)� � U  + �W�  V ( � ) � 	 U H = �C  � (26)�W� L U L = 0 �YX = 1 �'�'�'��� 3 � (27)
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Solving (24)-(27) for U and V delivers

U H =
( � � + 	 �KH/�  )( �C H-� � � �KH-� L �C L )� (28)

� 	 ( � �� + � � )( �C  � � � �  � L �C L )� (29)�
= � � + 	 � � �H � � + 	 � ( � �H + � �� )( � �� + � � ) � (30)

U  =
	 ( � � �C H � �KH-� L �C L )( � �H + � �� )� (31)

+
( � � + 	 �KH-�  )( � � �C  � �  � L �C L )� (32)�

= � � + 	 � � �H � � + 	 � ( � �H + � �� )( � �� + � � ) � (33)

V =
� L �C L�W� � � 	 ( �KH U  � �  U H )�W� � � (34)

U � =
�CK�� � � �W�&�� �

� � L �C L�W� � � 	 ( �KH U  � �  U H )�W� � � � (35)
We are interested in the behavior of U H'� U �K� U  � V
with �C�� � ( +#9 ).
We define

( = � � + 	 � � �H � � + 	 � ( � �H + � �� )( � �� + � � ) �

& H H =
( � � + 	 �KH-�  )( � �� + � � )( � (36)

& H � =
� ( � � + 	 �KH-�  ) �KH/�&�( (37)

+
	 ( � �� + � � ) �  �&�( � (38)

& H  = � 	 ( � �� + � � ) � �( + (39)

� 	 ( � � + 	 �KH-�  ) �KH/� ( � (40)

&  H = 	 ( � �� + � � )( � �H + � �� )
( � (41)

� 	 ( � � + 	 �KH-�  ) �  �KH( � (42)

&  � =
� 	 �KH-�&� ( � �H + � �� )

( (43)

+ 	 ( � � + 	 �KH-�  ) �  �&�( � (44)

&   =
	 ( � � � �KH-�  )( � �H + � �� )

( (45)

+ 	 ( � � + 	 �KH-�  )( � �H + � �� )
( � (46)

& ��H = � �W�&�� ��� �KH�W� � � 	 ( �KH &  H � �  & H H�W� � � � (47)

& � � =
1� � � �W�&�� �	� �&��W� � � 	 ( �KH &  � � �  & H ��W� � � � (48)

& �  = � �W�&�� ��� � �W� � � 	 ( �KH &   � �  & H  )�W� � � � (49)


 7 =
� 7�W� � � 	 ( �KH &  7 � �  & H 7 )�W� � � (50)

Lemma 2 Let & H 7 � & � 7 � &  7 � 
 7 be given by (36)-
(50), then the assumptions of Lemma 1 are sat-
isfied
(a) & H 7 � &  7 � = 0;
(b) ��� & H 7 �-��� &  7 � = 0;
(c) ��� � L & H 7 �-��� � 7 &  7 � ��� � L & � 7 � = 0;
(d) ��� 
 7 � = 0;
(e) & � 7 � =

�
 ;

(f) ��� & � 7 � =
H
 .

Proof:

� &  7 �X.
� 	5� � � � + � � � 
	 � � � � � + � � � � � � (51)

� ��� � 444 )
* L��) ��� 444 . A � A ��� A � A L 2 A � A ���� N A � A � 2 A � A � +A � A ��� N A � A � 2 A � WRW ����'A � A � 2 A � A W�� �

� �KH-�&�K� 444 ) N
* L��) � W ) � N 444 . A � A N ��� A � A N 2 A � A � �� N A � A � 2 A � A �

+
A � A N ��� N A � A � 2 A � A W�� ����4A �'P � 2 A � A W�� +

A � A N ��� L A � A W�� 2 A � A W�� �� � A � A W N 2 A � A N � �

� �KH-�  � 444 ) N
* L��) � W ) � L 444 . A � A N ��� A � A N 2 A � A � �� N A � A � 2 A � A �

+
A � A N ��� N A � A � 2 A � A W�� ����4A �'P � 2 A � A W�� +

A � A N ��� L A � A W�� 2 A � A W�� �� � A � A W N 2 A � A N � �
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� �&���  � 444 ) N
* L��) � N ) � L 444 . A � A N ��� A � A N 2 A � A � �� N A � A � 2 A � A �

+
A � A N ��� N A � A � 2 A � A W�� ����'A �'P � 2 A � A W�� +A � A N ��� L A � A W�� 2 A � A W�� �� � A � A W N 2 A � A N � �

� �KH/�&�J�  � 444 )
L � L) � WW� N � L 444 .

� � A � A W�� 2 A � A N ����'A � A W�� 2 A � A L N
+
A � A L ��� N A � A � 2 A � A W L �� � A � A W N 2 A � A N � +

A � A L ��� N A � A � 2 A � A � ����'A � A � 2 A � A W��
+
A � A L ��� A � A 2 A � A L� N A � A � 2 A � A � �

From formulas above (a)-(f) are satisfied.

Lemma 2 implies that

��� 6
� �
6
	 �

��� M .7@ 2JCT2FM�� � = 1 � 3 � (52)

� � � � ��5 M�.7@ 2JCT2FM�� � = 1 � 2 � 3 � (53)

� �I� H 5 M .7@ 2JCT2FM�� (54)

��� 6
�

6
	 �

��� L ZL VKZ .7@ 2JCT2FM�� (55)

� � � � H 5 M . 2JCT2FM�� � = 1 � 3 � (56)

� � �O� H 5 L ZL VKZ .7@ 2JCT2FM�� (57)

2F� � 2FM�. 2JCT2FM�� � = 1 � 3 � (58)

2F� �X2 L ZL VON Z .7@ 2JCT2FM�� (59)

where @ is a constant which depends on . �T; . This
give us the proof of Theorem 1.

4 Oseen problem in the whole

space

We will consider the problem

� B ˜ �! �"� + 	�
��$� � � ∆ � + ��� = B#C �
� ! � = 0 � (60)

Let ˜ = �'� , 
 = �'� . We investigate the following
problem

�
˜ �! �"� + 	�
��$� � � ∆ � + ��� = C �
� ! � = 0 � (61)

In establishing estimates for (60), it is impor-
tant to single out the dependence of the con-
stants entering the estimates on the dimension-
less parametr B . The estimates for (60) will be
obtained if we make replacements

C � CD=+B �
� � �E=+B �	 � � B�	 � �

Theorem 2. Given C�� ( M ( + , ), 1 � ; �/0 ,
there exists a pair of functions ( � �R� ) with � �
E ��5 M , ��� � ( M , � H'� �  � ( M , )�� W) � N , )�� N) � N , )�� L) � N � ( M ,satisfying (60) and moreover

B ��� )��) � N
��� M + B

��� )�� W) � �
��� M + B ��� )�� L) � �

��� M +
+ 2F� H 2FM + 2F�  2FM + � �I� H 5 M + � �I� ��5 M�.7@&H/B 2JCT2FM��

(62)
Moreover, if 1 �7;F� 4, � = 1 � 3 then
B ��� )��) � N

��� M + B
��� )����) � �

��� M + 2F� � 2FM + B H � � � � �K� H 5 � Z� VKZ +
+ � �I� H 5 M + � �I� ��5 M�.7@���B 2JCT2FM��

(63)
Also, if 1 �7;F� 2, � = 1 � 3 then
B ��� )��) � N

��� M + 2F� � 2FM + B H � � 2F� �X2 N ZN VKZ +
+ � � � � H 5 M + B H � � � � �K� H 5 � Z� VKZ + � �I� H 5 M + � �I� ��5 M�.7@  B 2JCT2FM��

(64)
where @QP �SR = 1 � 2 � 3 depend on . �T; .
Proof: We shall look for a solution to (60) corre-
sponding to C �%N O3 ( + , ) of the form (22), (23).
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Replacing (22), (23) into (60) furnishes to the fol-
lowing algebraic system for U and V

( � � + �W�&� ) U H ( � ) + �W�KH V ( � ) + 	 U  ( � ) = �C H ( � ) �
( � � + �W�&� ) U � ( � ) + �W�&� V ( � ) = �CK� ( � ) �
( � � + �W�&� ) U  ( � ) + �W�  V ( � ) � 	 U H ( � ) = �C  ( � ) ��W� L U L = 0 � X = 1 � 2 � 3 �

� ��������
(65)

Solving (65) for U and V delivers
U H =

� � N � � N 2 � � N � � � � WS� L � � � N��� W � � WW� U �� U ��
W �

� � � � NN 2 � NL � � �� N��� L � � L � U �� U ��
W(�H = 	 � ( � �� � �H + � �� + � � � �H + � � � �� )+

+( � � + �W�&� ) � � � � 	 � �H � � �
(66)

U  =
� � N 2 � � N � � N � �� L � N 2 �� U � L � U ��

W
+

� � NW 2 � NN � ��� � N��� W � � � WS� U �� U ��
W

+
� � WW� L � � N	�� L � � � U � L �� U ��

W �� H = 	 � ( � �� � �H + � �� + � � � �H + � � � �� )+
+( � � + �W�&� ) � � � � 	 � � �H � � �

(67)

V ( � ) =
� L �C L � 	 ( �KH U  � �  U H )�W� � � (68)

U � ( � ) =
� � �CK� � �  � L �C L� � ( � � + �W�&� ) +

	 ( �&� ( �KH U  � �  U H ))� � ( � � + �W�&� ) �
(69)

We are dealing with the behavior of U H'� U �K� U  � V
with �C�� � ( ��9 ).
We define

& H H =
� � N � � N 2 � � N � � � � WS� L � � N


W
+

� � � NN 2 � NL � � L � W

W

(70)

� H = 	 � ( � �� � �H + � �� + � � � �H + � � � �� )+
+( � � + �W�&� ) � � � � 	 � �H � � �
& H � =

� � N � � N 2 � � N � � � � WS� L � � WS� N

W +

+
� � � NN 2 � NL � � L � W


W � (71)

& H  =
� � N � � N 2 � � N � � � � WS� L � � WS� L


W +

+
� � � NN 2 � NL � � L � N


W � (72)

&  H =
� � N 2 � � N � � N � L � W �


W +

+
� � NW 2 � NN � ��� � N 2 � � WS� L � � � WS� L


W � (73)

&  � =
� � N 2 � � N � � N � � L � N � 2 � � NW 2 � NN � ��� � W3� N �


W+
� � WW� L � � � N � L �


W � (74)

&   =
� � N 2 � � N � � N � � N 2 � NL �


W +

+
� � NW 2 � NN � � � � � WS� L � 2 � � WS� L � � N � � � NL �


W � (75)

& ��H =
�  �KH� � ( � � + �W�&� ) +

	 ( �&� ( �KH &  H � �  & H H ))� � ( � � + �W�&� ) � (76)

& � � =
� � � �  �&�� � ( � � + �W�&� ) +

	 ( �&� ( �KH &  � � �  & H � ))� � ( � � + �W�&� ) � (77)

& �  =
� � �� � ( � � + �W�&� ) +

	 ( �&� ( �KH &   � �  & H  ))� � ( � � + �W�&� ) � (78)

� 7 =
� 7 � 	 ( �KH &  7 � �  & H 7 )�W� � � (79)

Lemma 3 Let & H 7 � & � 7 � &  7 �/� 7 be given by (70)-
(79) then the assumptions of Lemma 1 are satis-
fied
(a) by & H 7 &  7 � � = 0,
(b) ��� & H 7 �-��� &  7 � � = 0,
(c) ��� � 7 & H 7 �-��� � 7 &  7 �-��� � 7 & � 7 � � = 0,
(d) ��� � 7 � � = 0,
(e) & � 7 � � = 1 = 2,
(f) �&� & � 7 � � = 0,
(g) ��� & � 7 � � = 1 = 4.

Proof:

� &  7 ( � ) ��. 	5� � � � + � � �  + � � � �
	 � � � � � + � � � � + � � � � + � � �  � (80)

� ��� � 44436 & 
7

6
��� 444 .

� ��� � [ 	5� � �  + � � � � ]
	 � � � � � + � � � � +

� ���3� ( 	 K� � � � + � � � H  )
	 � � � � � + � � � H  �

(81)� �KH/�  � 444 ) N
* L��) � WW� L 444 .

A � W A � L ��� A � A N 2 A � A � 2 A � A L �� N A � A � 2 A � A �
+
A � W A N ��� A � A L 2 A � A � 2 A � A � � � A � A N A � A L 2 A � A � 2 A � A � ����'A � A � 2 A � A W��

+
A � W A A � L A ��� A � A � 2 A � A � � ��� N A � A N 2 A � A � 2 A � A � ����4A � A � 2 A � A W��

+
A � W A A � L A ��� A � A � 2 A � A � 2 A � A ��� ��� N A � A L 2 A � A � � N� � A � A W N 2 A � A N � �

(82)

Similarly for ) L * L��) � N � WS� L ,. . . ) L
* L��) � L � N � W , ) N

* L��) � W ) � N , ) N
* L��) � W ) � L , etc.applying (80)-(82) we get (a)-(c).

� & � 7 ��. � �KH?� 
 � �&�K� 
 � �  � 
� � � � + � �&�K� � � = 1 = 2 � (83)

� ��� U �O��. � ��� � � �KH�� 
 � �&�O� 
 � �  � 
� � � � + �J� �&�K� �T� = 1 = 4 � (84)

� �&� U �K�X. � �&�O� � �KH�� 
 � �&�O� 
 � �  � 
� � � � + � �&�O� � � = 0 � (85)

� ��� V �X. � A � W A  A � N A  A � L A  � � ��� � U � � ��� � � W * L�� � � L * W � ���A � N A �� = 0 �
(86)
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From Lemma 3 it follows
��� 6
�

6
	 �

��� M . N#2JCT2FM�� (87)

��� 6
� �
6
	 �

��� M .7@ 2JCT2FM�� � = 1 � 3 � (88)

2F� � 2FM .7@ 2JCT2FM�� � = 1 � 3 � (89)

� �I� H 5 M .7@ 2JCT2FM�� (90)

� �I� ��5 M .7@ 2JCT2FM�� (91)

� � �O� H 5 � Z� VKZ .7@ 2JCT2FM�� (92)

2F� �X2 N ZN VKZ .7@ 2JCT2FM�� (93)

This give us the proof of Theorem 2.

Remark: The extension to the exterior prob-
lem we can find in [N1], and the Navier-Stokes
equations with the Coriolis force was studied in
[N2].
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