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Abstract: We consider a variational principle suitable for tracking boundaries of gas bubbles in liquids and
its consequences. The principle is derived from a generalization of the Principle of Stationary Action applied
to a Riemannian manifold of volume preserving flow maps. The dual variational principle for the markers
tracking the free surfaces is induced by the Wasserstein-Kantorovich metric. This later variational principle
provides means to compute the dynamics of free, implicit, surfaces without explicitly solving for the fields and
quantities which define them. The presented theory suggests the following approximate evolution equation for
the characteristic function of the gas, written in the Lagrangian frame of reference,

ρG (∂ttχ(x, t) − λ∂tχ(x, t)) = div (χ(x, t) ((ρG − ρL)~g + α∇H(x, t))) ,

x ∈ S(∇χ), t > 0,

where S(∇χ) represents the set of points on the gas-liquid interfaces, and H denotes the mean curvature of
the interface. The constants α and λ denote the surface tension and Rayleigh’s friction dissipation constants,
respectively. The density of the liquid and gas are denoted ρL and ρG. The gravitational force is denoted ~g.
The regularized version of this equation is given, for some ǫ > 0, by

ρG (∂ttsǫ(x, t) − λ∂tsǫ(x, t))

= div
(

sǫ(x, t)
(

(ρG − ρL)~g + ∇
(

2α0

ǫ
DW (sǫ(x, t)) − 2α0ǫ∆ sǫ(x, t)

)))

, x ∈ Ω, t > 0,

DW (s) = s(1 − s)(1 − 2s), and α0 = 3α.

(1)
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1 Introduction

We offer an alternative to the transport equation
for tracking free surfaces in liquids. When care-
fully interpreted, the equation we present allows
to compute the evolution of the free boundaries
without simultaneously solving for the velocity
field or the pressure. The situation we strive to
handle is associated with tracking the boundaries
of a large number of possibly coalescing gas bub-
bles.

We consider a domain Ω ∈ R
2 containing two

fluids which are supposed to be immiscible and
incompressible, one of them being a gas. We as-
sume that the gas is formed of bubbles. The in-
compressibility of bubbles is a reasonable hypoth-
esis when the velocity of the bubble is small with
respect to the velocity of sound in the gas con-
tained in it. In this case, any local perturbation
of the pressure occurring in the gas is almost in-
stantaneously transmitted. This means that the
gas essentially reacts as an incompressible fluid.
We assume that the two fluids, submitted to grav-
itation and the action of surface tension, are sep-
arately governed by incompressible Euler equa-
tions. However, we add to this evolution system
a Rayleigh’s friction dissipative term, similar to
the dissipative term of classical mechanics, [19],
which is proportional to the velocity field. In
other words, compared to the standard form of
the Navier-Stokes equation, we assume that the
spectrum corresponding to the Laplacian of the
velocity is narrow, and that it can be “well” rep-
resented by a single number −λ, where λ > 0.
This assumption has been introduced in [15].

It is known, [2], that the Euler equations are
governed by the Least Action Principle on the
configuration space of incompressible, one-to-one
and onto flow maps. This means that the flow
maps given by the Euler equations are geodesic
curves on this space with respect to the L2-
Riemannian metric, [5], defined by the kinetic
energy. It seems that no such principle is avail-
able for the dissipative flows. Since we need, as a
starting point, a variational principle, we modify
PSA. The modification consists in the introduc-
tion of the weighting factor eλ(t−t0) in the defi-
nition of the Action. We show that the dissipa-
tive flows (with the Rayleigh’s friction dissipative
term) are indeed governed by such a generaliza-
tion of the Least Action Principle.

Our approach is based on a sequence of vari-
ational problems. The different steps are as fol-
lows.

1. A variational principle for the flow maps gov-
erned by the Euler equations with the added dis-
sipative friction term.

2. Semi-discretization in time of the Lagrangian
yielding a variational problem for the update of
the flow maps. The scheme provides naturally
the variational formulation of the implicit Euler
time stepping scheme applied to the evolution
system. The corresponding “dual” variational
formulation is based on the Wasserstein metric
for the semidiscretized characteristic function,
the Indicatrix (that we occasionally call “marker
function”).

3. The Γ−regularization of the variational formula-
tion for the Indicatrix. The implicit time step-
ping scheme for the regularized Indicatrix is ob-
tained by approximating the Gâteaux derivative
of the regularized variational problem.

4. Taking an appropriate limit as △t → 0+ to ob-
tain a time continuous equation.

5. Taking the Γ-limit as ǫ → 0+ to remove the reg-
ularization.

Obtaining a variational principle for the un-
derlying evolution equations is a crucial step. It
allows us to reduce the update in time of the flow
maps to a variational problem instead of solv-
ing a semidiscretized form of the evolution sys-
tem. This idea is introduced and explored by
F. Otto in [11], [18], [8]. In [18], an approach
similar to the outlined program has been used,
though with averaging as a focal point, to model
evolution of the Hele-Shaw flows. The impor-
tance of the semidiscretization of the variational
principle for the flow maps is in that it intro-
duces a metric on the space of the characteristic
functions, i.e., a topology, that turns out to be
the Wasserstein-Kantorovich distance. Another
important ingredient of the variational approach
is how to obtain a smooth approximation to the
Indicatrix, which has values only 0 or 1. The
Lagrangian describing the system belongs to the
class of Mumford-Shah functionals. This classi-
fication leads to the Γ−regularization of the La-
grangian, which relaxes the nonconvex 0/1 iden-
tification of the compounds, as well as it pro-
vides a coarse grained model of the coalescence.
This communication is based on extension of [10],
which does not include a finite element discretiza-
tion we propose for the unusual forth-order prob-
lem presented here, [4], and which does not in-
clude numerical simulations, [9].
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2 Dissipative Flow Maps

Let the Eulerian Indicatrix function χ ∈
BV (Ω, {0, 1}) represent the characteristic func-
tion of the domain ΩG occupied by the gas. We
set χ(~x, t) = 1 for ~x ∈ ΩG and χ(~x, t) = 0 other-
wise. The Indicatrix χ tells us if, at some time t,
the point ~x represents a liquid or gas. In terms
of the Lagrangian description, we can achieve
similar identification by considering a flow map
~X(~x, t) which provides the location at a time t
of the particle which was at the point ~x at time

t = t0. We assume that for each time t, ~X(·, t) is
a one-to-one and onto map Ω 7→ Ω. Since we con-
sider incompressible fluids, we further require any
~X to be volume preserving. We assume that the
flow maps are separately smooth both in ΩG and
in ΩL = Ω\ΩG for any t > 0. The Lagrangian
of our system includes the kinetic, potential, and
surface energies. Since both densities are con-
stant, we have

ρ0(x)
def
= ρ(~x, 0) = ρ( ~X(x, t), t).

We assume that the density ρ is given by

ρ( ~X(~x, t), t)

= ρGχ( ~X(~x, t), t) + ρL(1 − χ( ~X(~x, t), t)),

where ρG, ρL are the density of the gas and liq-
uid, respectively. We consider a gas-liquid system
with the Lagrangian of a Mumford-Shah type,
[16], given by

E( ~X, t)
def
= 1

2

∫

Ω

ρ0(x)

(

d

dt
~X(x, t)

)2

dx + E( ~X, t),

where

E( ~X, t)
def
=

∫

Ω

ρ0(~x)~g · ~X(~x, t) dx + α ‖∇χ(·, t)‖ (Ω) ,

χ
(

~X(~x, t), t
)

= χ(~x, 0).

The surface energy, α ‖∇χ(·, t)‖ (Ω), i.e., the to-
tal variation of ∇χ, represents the perimeters of
the subdomains occupied by the gas multiplied
by a surface tension coefficient α which is a pos-
itive measured quantity. The vector ~g represents
the gravitation force field.

We apply a generalization of the Principle of
Stationary Action, PSA, [12], to the above La-
grangian in order to ensure that the underlying
dynamics are indeed given by the Euler equations
with the added dissipative term, and to show that

the pressure drop across the gas-liquid interfaces
satisfies the Laplace-Young equation. We omit
details here. To account for the dissipative ef-
fects, we define the action as

A( ~X, t1, t2)
def
=

∫ t2

t1

eλ(t−t0)E( ~X, t) dt,

where λ > 0 represents the Rayleigh’s friction
dissipation coefficient, and t0 ≥ 0 is a given initial
time. Then

~X 7→ A( ~X, t1, t2)

represents a functional on the configuration space
M. We require the action to be stable on the

flow maps ~X(., t) ∈ M with respect to varia-
tions which are compatible with the incompress-
ibility and the immiscibility constraints. There-

fore we consider a family of maps ~Xτ preserving

the Lebesgue measure such that ~X|τ=0 = ~X. We
set

~Y =
d

dτ
~Xτ

τ=0
.

Hence, ~Y ∈ T ~X(.,t)M. We implement the Princi-

ple of Stationary Action by requiring the Gâteaux
derivative of the action to vanish on variations
~Y ∈ T ~X(.,t)M satisfying ~Y (., t1) = ~Y (., t2) = 0,

i.e., the weakly dissipative Navier-Stokes equa-
tions are given by

dA( ~X, t1, t2, ~Y ) = 0, for all ~Y (., t) ∈ T ~X(.,t)M.

3 Monge-Ampère Transport

Let τk = k ∆ τ , and let ~Xk(.)
def
= ~X(., k ∆ τ). In

accordance with the (G)PSA, we assume that for

given maps ~̃X0, ~Xn the maps ~Xk, k = 1, . . . , n−
1, n ≥ 1, are obtained by the variational principle

{

~Xk

}n

k=1

def
= Arginf

~Y 1,...,~Y n∈M

Lk, where (2)

Lk
def
=

n
∑

k=1

1

2

∫

Ω

ρ0 (x)
∣

∣

∣

~Y k − ~Y k−1

∣

∣

∣

2

(λtk + 1)
2

dx

+
n

∑

k=1

(∆ tk)
2
E(~Y k).

In other words, the Lagrangian flow maps ~Xk

are a time discrete solutions of the Navier-Stokes
equations. Our purpose is to show that we can
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reformulate the above variational principle as a
Monge-Ampère transport problem that leads to
a variational principle for the Indicatrix using the
Wasserstein metric. As the first step in this di-
rection, we have

Theorem 1 Let us assume that Ω is bounded
with piece-wise smooth boundary. Let us assume
that χ0 and χn ∈ K are given, where K is a
subset of BV (Ω, {0, 1})-markers that can be ob-
tained from a given fixed initial χ0 by a vol-
ume preserving map. Then there exist minimiz-
ers χ1, ..., χn−1 ∈ K of the following variational
problem

inf
K

n
∑

k=1

DW

(

χ̃k, χ̃k−1
)2

+ (△tk)
2
EE(χ̃k), (3)

where

DW

(

χk, χk−1
)2 def

=

1

2
ρG distW

(

χk, χk−1
)2

+ 1

2
ρL distW

(

1 − χk, 1 − χk−1
)2

EE(χ)
def
=

∫

Ω

ρ(x)~g · ~x dx + α ‖∇χ‖ (Ω).

The symbol distW denotes the Wasserstein met-
ric, [18], [11], [3].

Proof. For the proof see [10], Theorem 4.7. ¥

Next we mention that the variational problem (3)
is in fact a dual to the variational problem (2).
Namely, we have

Theorem 2 Let us assume that Ω is bounded
with piece-wise smooth boundary. Let us assume

that maps ~X0, ~Xn ∈ M are given. Then there

exists a unique minimizer
{

~Xk
}n−1

k=1
∈ S(Ω)n,

where S(Ω) is the set of measure preserving maps,
of the variational problem (2) that satisfies

∫

Ω
f(x)χk (x) dx =

∫

Ω
χ0(x)f( ~Xk(x))dx,

for k = 1, ..., n − 1 and for all f ∈ C0(Ω),

and where {χk}n−1
k=1 is the unique minimizer of

(3).

Proof. For the proof see [10], Theorem 4.16. ¥

Theorem 2 implies that we can obtain time up-
dates for the evolution of the phase markers χk by
approximating (!) the Gâteaux derivative of the
Wasserstein metric. We note that the flow maps
~Xk are still contained in (3) due to the optimality
of the transport of the markers.

3.1 G-derivative of the W-metric

Let sk be the Γ−regularization of the markers
obtained by the Cahn-Hillard approach, [6], [13],
[14], [1]. We have

Lemma 3 Let ~Xτ ∈ M be a family of optimal
maps bringing sk onto sτ given by

~Xτ (x) = ~Xk,k+1(x) + τ (∇f ◦ h) (x), where

f ∈ W 2,2
(

Ω, R1
)

is arbitrary but with invertible

gradient, h = (∇f)−1◦ ~Z◦ ~Xk,k+1, and ~Z ∈ TIdM
is given. Then, up to the order of O(

∥

∥D2f
∥

∥),

d

dτ

1

2
distW (sk, sτ )2

τ=0

≈

∫

Ω

f(x)
(

sk+1(x) − 2sk(x) + sk−1(x)
)

dx

+

∫

Ω

f(x)
(

sk(x) − sk−1(x)
)

dx

−

∫

Ω

(h(x) − x) · ∇f(h(x))sk(x) dx

+

∫

Ω

(

~Xk,k+1 − x

)

((∇f ◦ h) (x) −∇f(h(x))) sk dx.

Proof. For the proof see [10], Lemma 5.1. ¥

With Lemma 3 at hand, after performing the re-
maining Gâteaux derivatives, and after rescaling
back the time coordinate, we obtain an implicit
time-discrete scheme for the regularized marker s
obeying the equation (1). Details concerning the
derivation of this equation can be found again in
[10].

In the remainder of the communication, we
address the space discretization of (1), which is
a unusual fourth order problem, and we discuss
some numerical results.

4 An approximation of markers

Well-known nonconforming finite element ap-
proximation of solutions to, say, the plate prob-
lems, such as Adini-Clogh-Melosh finite element
and alikes, [7], proved in our particular setting
counterproductive: initially sharp transition re-
gion (due to the Cahn-Hillard approximation of
the phase boundary) soon dissipates, which pro-
duces adverse side-effects on the transient dy-
namics. The reason turns out to be the affect of
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the viscosity term. We circumvent this problem
by introducing non-conforming approximations
on both the second-order (i.e., with respect to
the Laplace operator), and fourth-order (i.e., bi-
harmonic) levels. Namely, assuming Ω ⊂ R

2, we
propose two different finite elements {Q,Σ, Pi},
i = 1, 2, Q = (−1, 1)2, and where

P1
def
= Span{1, x, y, xy, x2, y2, x2y, xy2},

P2
def
= Span{1, x, y, xy, x2y, xy2, x2y2, x2 − y2},

Σ
def
=

Span

{

p(ai),

∫

Fi

∇p(s) · ~n(s) dS | i = 1, . . . , 4

}

.

Here, ai denote the vertices of Q, Fi denote the
sides of ∂Q, p ∈ Pi, i = 1, 2, and dS denotes the
invariant infinitesimal surface element. The un-
derpinning analysis for these elements including
convergence, error estimates and stability can be
found in [4]. We note that the polynomial space
P2 is not affine: P2 is not invariant under non-
SO(2) maps in view of the term x2 − y2.

5 A numerical simulation

We use the equation (1) to compute motion and
subsequent coalescence of two gas bubbles. Si-
multaneously, we “compare” the numerical re-
sults with the novel approach for tracking bubbles
in viscous fluid governed by the Navier-Stokes
equations developed in [17]. We add to our dy-
namical system the following initial and bound-
ary conditions

s(x, 0) = s0(x), x ∈ Ω,

∂ts(x, 0) = −~v(x, 0) · ∇s0(x), x ∈ Ω,

∇s(x, t) · n = 0, on ∂Ω,

s(x, t) = 0, on ∂Ω.

(4)

We take ~v(., 0) = 0, the regularized marker s0

describes two bubbles positioned to coalesce in
view of their unequal sizes due to the buoyant
upward oriented force, c. f., Figure 1.

Rough comparison of the approaches is shown
on the pictures below. The dark thick contour
shows membrane of the regularized marker com-
puted with (1), while the underlying numerical
results were communicated to the author by M.
Romerio, [17]. The results are both qualitatively
and quantitatively different. Nevertheless they

do show some similarities. There is a number
of reasons for the differences: slightly different
field model for the velocity, different treatment
of the coalescence (Γ−regularization versus arti-
ficial creation of a new bubble based on a prox-
imity condition used in [17]), different numerics,
etc. We want to emphasize that the equation (1)
is only a first order approximation due to a com-
plicated form of the Gâteaux derivative of the
Wasserstein metric. We only approximate this
formula. One of the similarities we can agree
upon is that both models can handle coalescence
in one way or another including post-coalescence
dynamics. Which of the two models (and of
course of the ones we did not use for the com-
parison) is more true to the reality remains to be
seen.

Figure 1: Pre-coalescence in a vertical channel.

Figure 2: The moments of coalescence. Note the
differences between the two models. The signifi-
cant property of (1) is in a diffeomorphic shape
transition due to the regularizing effects of the
surface energy.
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Figure 3: Post-coalescence dynamics. Note the
slowdown predicted by the dynamical system (1).
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cations á l’hydrodynamique des fluides parfaites,
Annales de l’insitut Fourier 16 (1966), 319–361.

[3] J.-D. Benamou and Y. Brenier, A numerical
method for the optimal time-continuous mass
transport problem and related problems, first ed.,
Contemporary Mathematics: Monge-Ampére
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