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Abstract: - In this study, natural convection in a 2D-annular closed-loop thermosyphon filled with water is numerically 
investigated. The loop is heated at a constant flux over the bottom half and cooled at a constant temperature over the 
top half. It is numerically demonstrated that the complexity of the dynamic properties experimentally encountered in 
loops is also found here: steady flow with and without recirculating regions, periodic motion and Lorenz-like chaotic 
flow. The present numerical experiment also corroborates the fact that forced flow correlations are assumed to be 
applicable for natural circulation flow. The dimensionless group, Grm(Dh/L), proposed by Vijayan and Austregesilo 
[13] for the mass flow rate gives very good results in the case of annular loop even for various Prandtl numbers. 
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1   Introduction 
Natural circulation loops are systems in which the flow 
is driven by buoyancy forces created by heating and 
cooling of a fluid inside a torus placed in a vertical plane 
so that pumping is not required. This device is a type of 
thermosyphon, a non-mechanical heat pump used for 
cooling purposes in industrial processes, including solar 
water heaters, geothermal processes, gas turbine blade 
cooling, and as part of the emergency core cooling 
system in nuclear reactors. Because of their practical 
importance, thermosyphons have been the subject of a 
large number of theoretical and experimental studies. A 
review of the wide applications of natural circulation 
loops in engineering systems has been given by Zvirin 
[15]. These also attract attention because of the variety 
of fluid motions and the complexity of the dynamic 
properties encountered, in spite of the simplicity of their 
geometry. The research pioneered by Keller [8], 
Welander [14] and Malkus [10] has been reviewed by 
Greif [6]. The presence of a reverse flow region was first 
qualitatively reported by Creveling et al. [3] who also 
first observed the Lorenz-like chaotic flow in their 
experiments (see also [5, 11]). 
Previous studies of toroidal loops have utilized a one-
dimensional approach by averaging the governing 
equations over the pipe cross-section, which required a 
priori specifications of the friction and the heat transfer 
coefficients. Conventional forced flow correlations for 
fully developed flow are usually assumed to be 
applicable to natural circulation flow in 1D analyses. It 
is also assumed that the velocity is solely in the axial 
direction and that the effects of the pipe curvature and 
axial conduction are negligible. Integrating the 
momentum equation around the loop reduces this  

equation to an overall balance between buoyancy and 
friction.  
To our knowledge, no direct unsteady 2D numerical 
simulations exist in the literature and only one numerical 
experiment on steady 3D flow in a toroidal loop can be 
found (Lavine et al., [9]).  
The purpose of the present study is to investigate by 
direct numerical integration of the governing equations, 
the steady and unsteady motions in a thermosyphon of 
simple well-defined geometry, a 2D-annular loop. 
 
 
2   Analysis and numerical resolution 
Consider a 2D-annular loop of laminar fluid heated over 
one-half its area at a uniform heat flux (q”) and cooled 
over the remaining half at a constant temperature (Tc) as 
shown in Fig. 1. The inner (respectively outer) cylinder 
radius is 
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. The classical governing (Navier-Stokes plus 
energy) equations for incompressible fluid with the 
Boussinesq approximation used in cylindrical 
coordinates, are not written here due to lack of space but 
can be found in Desrayaud et al. [4]. The way in which 
the equations are non-dimensionalized are the following 
for the dimension, time, velocity and temperature:  
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The thermo-physical characteristics of the fluid are its 
thermal diffusivity α, its kinematic viscosity ν and its 
thermal conductivity κ. β is the coefficient of thermal 
expansion and the non-dimensional radial and axial 
velocity are u and v. 
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The non-dimensional boundary conditions are the 
following, the angular coordinate θ being measured from 
the downward vertical (Fig. 1):  
Heating section at -π/2 ≤ θ ≤ π/2,  r = 0 and 1 

u = v = 0  
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Cooling section at π/2 ≤ θ ≤ 3π/2,  r = 0 and 1 
u = v = 0  Θ = 0  (2b) 

2π-periodicity in the θ direction 0 < r < 1, 
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  (2c) 
The motionless and isothermal solution used as the 
initial guess for computations is given by,  

for τ = 0 at 0 ≤ r ≤ 1 and 0 ≤ θ ≤ 2π, u = v = 0 Θ = 0 (3) 
The non-dimensional parameters that govern the flow 
are the Rayleigh number Ra build on a (or Ra2a build on 
the hydraulic diameter, Dh = 2a), the Prandtl number Pr 
and the radius ratio R which are defined by 
Ra = g β a3 ΔT/αν (= Ra2a/8)    Pr = ν/α     
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The control volume procedure is utilized to discretize on 
a staggered, uniform cylindrical grid the non-linear 
system of governing equations and boundary conditions 
with the second order centered scheme for the 
convective terms. The SIMPLER algorithm is employed 
to solve the coupling between continuity and momentum 
equations through pressure. All the conservation 
equations were cast in transient form with a semi-
implicit scheme for temporal integration (ADI method). 
A uniform grid with 30x320 control volumes in the r and 
θ directions was used to obtain all the results presented 
in this paper. This computational code was also used by 
Cadiou et al. [1] and validated on several cases. 
The Fanning friction factor fF on the inner and outer 
walls is calculated as 
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V
* being the dimensional cross-sectional average 

velocity.  
For forced laminar flow in a planewall channel, the 
Fanning friction factor can be analytically calculated and 
is equal to 24/Re2a, the Reynolds number being based on 

the hydraulic diameter 2a and equal to 

! 

Re
2a

=
"V 

*2
2a

µ
 

 
 
3   Results 
Results shown here are for radius ratio, R = 2.0 but 
calculations were also carried out for other radius ratios 
R = 1.08, 1.2, 1.4, 1.6, 1.8 and the trend presented can be 
extended to these. The working fluid was water with 
Prandtl number, Pr = 5, in all cases. Over 100 runs have 

been carried out for steady flows and 50 for unsteady 
flows. 
 
 
3.1 Steady flow 
 
At very low values of the Rayleigh number (Ra = 1 for 
example), the global motion all around the loop is almost 
inexistent and two very large re-circulations of weak 
motion occur (not shown here). Due to the symmetry of 
the heating and cooling sections to the vertical axis, the 
flow can be clockwise or counter-clockwise by chance. 
The stratified temperature which is symmetrically 
distributed in both halves of the annulus ([0,-π] and 
[0, π] Fig. 2) reveals the importance of the axial 
conduction, the convection playing only a minor role in 
the heat transfer. Hence, heat being mainly transferred 
by conduction from the lower hot part to the upper cold 
part, this regime can be appropriately qualified as 
pseudo-conductive. It should be noted that a purely 
conductive solution was never found (i.e., with no fluid 
motion). Two convective solutions of very weak motion 
branch off symmetrically from the state of rest (i.e., 
Ra = 0) undergoing a pitchfork bifurcation [4]. 
For moderate values of the Rayleigh number, a quasi-
one-dimensional flow exists along the loop and the flow 
is steady without undergoing any oscillatory process. 
With increase in Ra, the fluid flow undergoes a short 
time oscillation before becoming stable. The 
temperature, stream function and axial velocity fields for 
Ra = 10 000 and R = 2.0 are shown in Fig. 3, the fluid 
moving around the loop in a counter-clockwise 
direction. A zone of very strong temperature increase is 
clearly visible at the entrance of the heater along the 
outer wall (Fig. 3a, arrow (1)). On the other hand, this 
phenomenon does not exist at the cooler entrance due to 
the imposed temperature at the walls (Fig. 3a, arrow (2)). 
The streamlines that were concentric for low values of 
the Rayleigh number are now slightly deformed at the 
entrance region of the exchangers, the streamlines being 
more distorted at the heater (Fig. 3b). At Ra = 13 500 
(Fig. 4), it should be noted that, in addition to the 
circulatory main flow, two cells in the second and in the 
fourth quadrant can be seen. These two recirculating 
regions occur near the outer wall of the entrance of the 
heat exchangers (Fig. 4b,c), the bigger vortex always 
being at the heater while the one at the cooler is very 
weak. As a consequence, the zone of the strong 
temperature increase that extended largely downstream 
along the outer walls is now reduced (Fig. 4a, arrow (1)). 
These cellular structures appear at values of the Rayleigh 
number close to 13 800 which represents the upper limit 
of the steady motion.  
The dimensionless temperatures at the inner and outer 
wall are shown in Fig. 5a only along the heater, the 
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cooler being at an imposed temperature. The temperature 
of the outer wall is always largely greater than the 
temperature of the inner wall. This is due to the 
boundary condition, imposed heat flux at the heater, 
combined with the curvature. Since the surface of the 
outer wall is R times greater than the surface of the inner 
wall, the total heat flux transferred to the convective 
fluid flow is also R times greater and there results a 
higher level of temperature at the outer wall. At 
Ra = 10 000, the average temperature of the outer wall is 

! 

"h = 0.535 while it is only 0.387 at the inner wall. The 
temperature increase at the outer wall is clearly seen at 
Ra = 10 000 (Fig. 5a) followed by a plateau. This can 
explains why the fluid is able to proceed upstream along 
the outer wall at the entrance of the heat exchanger. At 
Ra = 13 500, inverse temperature stratification occurs 
(Fig. 5a) that causes this very large recirculation at the 
entrance of the heater (Fig. 4b). 
The sum of the local inner and outer wall friction factor 
is given in Fig. 5b as a function of θ. The two peaks of 
the friction factor curves correspond to the exit of the 
exchangers while at the entrance fF Re2a drops 
significantly. Surprisingly, this trend is smaller at the 
heater entrance than at the cooler entrance where fF Re2a 
becomes negative (Ra = 13 500). This is due to the small 
recirculation at the outer wall of the cooler entrance 
(with low axial velocity and consequently low friction). 
At the inner wall, near θ = π/2, the motion slows down 
and a detachment is close to occurring (but does not 
occur, see Figs. 3c and 4c, arrow (3)).  
 
 
3.2 Periodically oscillatory flow 
 
Some authors have shown analytically and confirmed 
experimentally that steady flow is not achievable in a 
closed loop thermosyphon for a certain range of heat 
inputs. In the present study, for Rayleigh numbers 
greater than 13 800, the flow first begins to oscillate 
periodically with a constant amplitude of very small 
magnitude. The system is attracted to a limit cycle 
clearly illustrated in Fig. 6 (Ra = 13 830).  The phase 
portrait of [Θ(0.5,0), Θ(0.5,π/2)] is for every time step 
during the time interval [0,10] representing almost 60 
cycles with 830 iterations per cycle. During the periodic 
motion, the two cells oscillate on the spot, their strength 
(and size) varying slightly. The limit cycle clearly 
indicates that the motion is periodic with one frequency, 
f = 5.76 ± 0.10. 
For smaller radius ratios, the Rayleigh numbers at which 
recirculating regions and oscillatory flow phenomena 
occur increase. For instance, oscillatory flow occurs at 
approximately Ra = 23 500 (respectively, 120 000) for 
R =1.6 (resp., 1.2). 

 
 
3.3 Reverse flow and Lorenz-like attractor 
 
For Rayleigh numbers greater than 15 000, unstable flow 
occurs and the flow rate oscillates with increasing 
amplitude until it eventually reverses direction, 
whereupon oscillations initiate in a new flow direction. 
Figure 7a presents the time history of the stream function 
at the middle of the cooler (0.5, π). This variable clearly 
indicates the changes of flow direction with its change of 
sign. Compared to Fig. 4, the positions of the two cells 
are irregularly shifted to the first and third quadrant of 
the loop. Several experiments on the thermal convection 
in a closed loop have been made and some of their 
results show Lorenz-like behavior [2, 3, 11] as in the 
present numerical experiment, Fig. 7b showing the 
recognizable shape of the Lorenz attractor. This phase 
portrait has been built with only one time series 
(horizontal axis), that of the stream function given in 
Fig. 7a and using a time step lag of Δτ = 0.03 for the 
other one (vertical axis).  
 
 
3.4 Reynolds correlation 
 
Recently, Vijayan [12, 13] demonstrated, that for the 
steady state behavior of natural circulation loop, it is 
only necessary to simulate a single non-dimensional 
parameter which is non-loop specific, namely, 
Grm (Dh/L). They carried out experiments in three 
rectangular, natural circulation loops of different pipe 
diameters. They succeeded in developing scaling laws 
for single-phase natural circulation loops based on these 
experiments, and using a simple 1D analysis as did 
Zvirin [15]. Surprisingly, when accounting for local 
pressure losses, their results showed that secondary 
flows and the fact that flow is undeveloped are of small 
importance, as evidenced by a comparison of their 
generalized correlation against data of uniform and non-
uniform diameter loops [12]. Moreover, in the 
calculation of the overall loss coefficient, they used the 
conventional forced flow correlation for friction factor 
and took into account the loss coefficients if they were 
significant. The generalized correlation is in good 
agreement with the experimental data of Huang and 
Zelaya [7] who were the only ones to account for the 
local pressure losses. The numerical friction factor has 
been calculated using eq. (5) and gives results which are 
very closed to the analytical value. Over more than 100 
runs, it has been numerically found that 
fF Re2a = 23.15 ± 0.84 while the analytical value is 24. It 
can be concluded that the friction factor is neither greatly 
affected by recirculation nor by curvature effect and that 
conventional forced flow correlation can be used for 

Proceedings of the 3rd IASME/WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING AND ENVIRONMENT, Corfu, Greece, August 20-22, 2005 (pp122-127)



natural circulation loop. The present conclusion is due to 
the absence of pressure losses due to the presence of 
bends and flow area changes in the annular loop. 
Figure 8 shows the steady state mass flow rate from 
various uniform gap widths of an annular loop as a 
function of the non-dimensional group Grm (Dh/L). Grm 
is the modified Grashof number introduced by Vijayan 
and Austregesilo [13] and Dh is the hydraulic diameter. 
The non-dimensional group is defined using the present 
symbols by: 
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Using the theoretical correlation of the Fanning friction 
factor for fully developed forced flow in a plane wall 

channel for laminar flow, 

! 

fF =
p

Re2a
b

=
24

Re2a
, the proposed 

correlation of Vijayan [12] can thus be expressed as 

! 

Re2a =
8

p

" 

# 
$ 
% 

& 
' 

1
3(b( )

Grm
Dh

L

" 

# 
$ 

% 

& 
' 

1
3(b( )

= 0.144
Ra2a

Pr2
R +1

R (1

" 

# 
$ 

% 

& 
' 

0.5

(7) 

The numerical data are adequately represented by the 
theoretical correlation (Fig. 8) except at very low values, 
for which small deviations can be seen, the regime being 
pseudo-conductive.  
The Reynolds correlation has also been validated vs the 
Prandtl number dependence. To do this, some extra 
computations have been performed for three different 
values of the Prandtl number, 1, 20, 50 and for one given 
radius ratio, R = 1.60. The accuracy is very good. Other 
results at R = 2.00 can be found in [4]. 
 
 
4   Conclusion 
The behavior of a natural circulation loop that is heated 
uniformly over the lower half and cooled by maintaining 
a constant wall temperature over the upper half has been 
investigated.  
The same kind of oscillatory and reverse flow motions 
that have been experimentally found in toroidal loops 
has been numerically observed. All these findings have 
been demonstrated numerically by brute force 
integration of the complete Navier-Stokes equations.  
It has been also demonstrated that in laminar regions 
theoretical correlation eq. (7) gives good results in 
establishing the validity of the dimensionless group 
proposed by Vijayan [12, 13]. 
 
 
Acknowledgments 
The authors acknowledge the help of R. Spampinato 
with some of the computational work. The support by 
the French National Institute for Advances in Scientific 
Computations (IDRIS-Computer Center) project no. 03 
1265 is gratefully acknowledged.  
 

 
References: 
[1] Cadiou P., Desrayaud G. & Lauriat G., Natural 

convection in a narrow horizontal annulus: the effects 
of thermal and hydrodynamic instabilities, ASME J. 
Heat transfer, Vol. 120, 1998, pp. 1019-1026. 

[2] Cammarata G., Desrayaud G. Fichera A. & Pagano 
A., An ordinary differential model for rectangular 
natural circulation loops, - 12th International Heat 
Transfer Conference (Grenoble, France), Vol. 2, 
2002, pp. 273-278. 

[3] Creveling H.F., De Paz J.F., Baladi J.Y. & 
Schoenhals R.J., Stability characteristics of a single 
phase free convection loop, J. Fluid Mech., Vol. 67, 
part 1, 1975, pp. 65-84. 

[4] Desrayaud G., Fichera A. & Marcoux M., Numerical 
investigation of natural circulation in a 2D-annular 
closed-loop, Int. J. Heat Fluid Flow, 2005, in press 

[5] Fichera A. & Pagano A., Modeling and control of 
rectangular natural circulation loops, Int. J. Heat 
Mass transfer, Vol. 46, 2003, pp. 2425-2444. 

[6] Greif R., Natural circulation loops, ASME J. Heat 
transfer, Vol. 110, 1988, pp. 1243-1258. 

[7] Huang, B.J. and Zelaya, R. Heat transfer behaviour 
of a rectangular thermosyphon, ASME J. Heat 
transfer, Vol. 110, 1988, pp. 487-493. 

[8] Keller J., Periodic oscillations in a model of thermal 
convection, J. Fluid Mech., Vol. 26, part 1, 1966, 
pp. 599-606. 

[9] Lavine S., Greif R., Humphrey J.A., A three-
dimensional analysis of natural convection in a 
toroidal loop - The effect of Grashof number, Int. J. 
Heat Mass Transfer, Vol. 30, 1987, pp.251-261. 

[10] Malkus, W.R.V., Non-periodic convection at high 
and low Prandtl number, Mem. Soc. R. Sci. Liege 
4kk, 1972, pp. 125-128. 

[11] Misale, M., Frogheri, M., Ruffino, P. and D’Auria, 
F. Steady state and stability behavior of a single-
phase natural circulation loop, - 11th Int. Heat 
Transfer Conference (Kyongju, Korea), Vol. 3, 1998, 
pp. 385-390. 

[12] Vijayan, P.K. Experimental observations on the 
general trends of the steady state and stability 
behaviour of single-phase natural circulation loops, 
Nucl. Engng. Design, Vol. 215, 2002, pp. 139-152. 

[13] Vijayan, P.K. and Austregesilo, H., Scaling laws 
for single-phase natural circulation loops, Nucl. 
Engng. Design, Vol. 152, 1994, pp. 331-347. 

[14] Welander P., On the oscillatory instability of a 
differentially heated fluid loop, J. Fluid Mech., 
Vol. 29, part 1, 1967, pp. 17-30. 

[15] Zvirin, Y., A review of natural circulation loops in 
Pressurized Water Reactors and other systems, Nucl. 
Engng. Design, Vol. 67, 1981, pp. 203-225. 

 

Proceedings of the 3rd IASME/WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING AND ENVIRONMENT, Corfu, Greece, August 20-22, 2005 (pp122-127)



! = "

g

q = 1

 

Frame 001 ! 13 Jun 2005 !

 
Figure 1: 2D- annular geometry Figure 2: Temperature field, Ra = 1, R = 2.0, Pr = 5 

 
 

   

a) Isotherms b) Stream function c)Axial velocity 

Figure 3: Steady motion, Ra = 10 000, R = 2.0, Pr = 5 
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Figure 4: Steady motion, Ra = 13 500, R = 2.0, Pr = 5 

 

(1) 

(3) 

  Tc 

(1) 

(3) 

(1) 

(2) 

q’’ 

Proceedings of the 3rd IASME/WSEAS Int. Conf. on HEAT TRANSFER, THERMAL ENGINEERING AND ENVIRONMENT, Corfu, Greece, August 20-22, 2005 (pp122-127)



 
a) Inner and outer wall 

temperature at the heater 

 
 

b) Local friction factor 

 
 
 

Limit cycle 

Figure 5: Steady motion, R = 2.0 Figure 6: Ra = 13 830, R = 2.0 
 

 

  
a) Time history b) Lorenz attractor 
Figure 7: Reverse flow and Lorenz-like attractor, Ra = 15 000, R = 2.0, Pr = 5 

 
 

 
Figure 8: Evolution of the Reynolds number for various radius ratios 
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