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t: - In this paper the Navier-Stokes and continuity equations are solved numerically using a DNS
ent model. The finite element (Galerkin) method is used for a 2D turbulent flow over a wall-mounted
le at different Reynolds numbers. The flow characteristics of five different, relatively low Reynolds
rs are studied. The time-mean averaged calculated flow characteristics, such as streamlines, velocity
nents, wall pressure coefficient, turbulent intensities, Reynolds shear stress and fiction coefficient are
ted and discussed. The instantaneous fluctuations of the stream-wise and cross-wise velocities are
 for different Reynolds numbers. The results are discussed with works of other researchers.  

ords: Numerical simulation of Navier-Stokes equations, finite element method, two-dimensional
ent flow, wall-mounted obstacle. 
troduction 
his paper concerns a numerical simulation of 
ulent, two-dimensional flow over a wall-

ted rectangular obstacle. The fluid is 
pressible and Newtonian with constant 
y. The Navier-Stokes, (N-S), and continuity 
ons are solved numerically using the 
kin, finite element method. There are many 
igations studying flow over a wall-mounted 
le or a backward-facing step  numerically [1, 
4, 6, 7, 8, 10, 11, 12 and others] and 

imentally [1, 2, 12, and others]. Many 
ation models have been applied to N-S 
ons, such as finite volume [3, 7], model of 
ity [6], k-ε model [1], direct numerical 
ation (DNS) [4, 5, 8, 9, 10, 11], and others. 
 are also many numerical methods used to 
N-S equations, as, altering-direction-implicit 
 method [6], second order central 
encing method [7], second order of QUICK 
SIMPLEC  method [3], finite difference 
d [1, 2, 8] and finite element method [4, 9, 
].  

he present work studies a 2D incompressible 
of relatively low  Reynolds numbers,  from  
up, to 2200. The Reynolds numbers, (Re)h, 
lculated with respect to the obstacle’s height 

 the     inlet     free    stream     velocity.   Five  

 
 

different Reynolds numbers are used. The idea of 
this work was to study the flow characteristics 
according to Reynolds number. The model of 
Direct Numerical Simulation, (DNS), is chosen 
because it can calculate small and large vortices 
due to the small size of time step, ∆t, and grid 
spacing ∆x and ∆y. As it has been said, the 
Galerkin .numerical method is used. 

 
2. Governing Equations  

The flow has been simulated in a wind tunnel 
and is nominated to be 2D and turbulent over a 
rectangular mounted-obstacle. There is also no 
gravity or other external power influences upon the 
flow. The flow domain is shown in Fig. 1. 

The Navier-Stokes and continuity equations, 
for the described flow, in non-dimensional form 
are, 

VpVV
t
V rrrrrr
r

2

Re
1)( ∇+∇−=∇+

∂
∂ ν                (1) 

0=∇V
rr

                                                         (2) 
The boundary conditions upstream of the 

entrance of the computational domain are a uniform 
free stream. The no-slip boundary conditions are 
imposed along the walls of the wind tunnel and the 
obstacle. The outlet boundary condition is a free 
boundary  condition which lets the fluid   leave  the 
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Figure 1.  Computational domain of nominally two 
dimensional flow over a mounted obstacle. 
 
computational domain freely without any 
distortions, [4, 9]. The initial condition is given by 
solving the 2D N-S equations at t=0 and (Re)h=1, 
for (Re)h=1304. For the next flow of (Re)h=1500 
the time mean-averaged solution of (Re)h=1304 is 
used. The same way is used to calculate the initial 
condition of the other flows. That is, the flows of 
(Re)h=1800, 2000 and 2200 have as initial 
conditions the time mean-averaged solutions of 
(Re)h=1500, 1800 and 2000, respectively. 
 
 
2.1 Finite  Element Formulation  -  Spatial 

and Time Advancements 
To solve the governing equations (1) and (2), 

the finite element method has been used. The 
pressure is formulated by a linear basic function, 
while the velocity by a quadric. The unknown 
velocities and pressure are expanded in Galerkin 
basic functions. Equations (1) and (2) are weighted 
integrally with the basic functions. Finally, 
applying the divergence theory, the following 
weight residuals are received, 

∀ψ∇= ∫
∀

dVR ii
c

rr
                                                (3) 

∀Φ+−∇−∇+
∂
∂

= ∫∀ dTpIVV
t
VR ii

M )]
Re
1([

rrrr
r

       (4) 

Where V is the vector of velocity, I is the identity 
matrix, 

r

TVVT )(
rr

∇+∇=  is the stress tensor of 

the Newtonian fluid with ∀∇=∇ dTV   ,2
r

is the 
infinitely small volume of calculating domain and 
Ψi, Φi are the linear and quadratic basic functions in 
equations (3) and (4) respectively. 

The non linear system of equations (3) and (4) 
is solved numerically with the Newton-Raphson 
method. The flow domain is tessellated in 14645 
finite elements with 59299 nodes and 133603 
unknowns. The time-step is fixed at ∆t=0.01 h/Uo. 
At each space-point 15.000 instant samples are 
computed at a total time T=150. Each time- step 
needs three runs to converge. The biggest error   of 
Newton-Raphson    method   is  10-6   for  velocities   
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Figures 2 a,b,c,d,e. Computed time-mean averaged 
streamlines at different Reynolds numbers. 
 
and  5x10-4 for pressure calculations. Each run uses 
2 CPU,   minutes. 
 
 
3.  Results and Discussion 

The calculated time-mean averaged streamlines 
for five different Reynolds numbers ((Re)h = 1304, 
1500, 1800, 2000 and 2200) are shown in Fig. 2. It 
can be observed that the shape of the re-circulated 
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flow upstream of the obstacle increases as the 
Reynolds number increases but the shape of the 
recirculation zone is decreasing. That means that 
the separation distance is increasing while the 
reattaching distance is decreasing as the Reynolds 
number is increasing. Armaly et al. [2] in their 
experimental results and numerical predictions 
show that the reattachment distance downstream of 
a backward-facing step is decreasing for 
1200<Re<6600. The present work is in the range of 
these Reynolds numbers. The colour indication 
refers to the value of the time-mean averaged 
stream-wise velocity in the computational domain. 
It can be seen that increase of the Reynolds 
number, the region, where the maximum velocity 
occurs over the obstacle, is increasing. 

Figures 3a,b and 4a,b show time-mean 
averaged stream-wise and cross-wise velocity 
profiles for different Reynolds numbers 
respectively. The stream-wise velocity profiles are 
identical upstream, (not shown), and on the top of 
the obstacle, (Fig. 3a), but there are differences 
downstream of it in the recirculation region and 
further on, which are visible when Fig. 3b is 
enlarged. The cross-wise velocity distributions 
upstream of the obstacle for (Re)h=1304 does not 
follow the same pattern as the other four (Re)h. On 
the top and downstream of the obstacle, Figs 4a,b, 
the velocity distributions are similar as far as the 
Reynolds numbers are concerned, except of the 
value of the maximum (or the minimum) close to 
the wall. 

Figures 5 show the instantaneous stream-wise, 
Figs 5a,b,c, and cross-wise, Figs 5d,e,f, velocity 
fluctuations. These velocity fluctuations concern 
three positions along x* axis, one upstream of the 
obstacle and close to separation at a height twice as 
high as the height of the obstacle, (x*=12 and y*=2), 
and two downstream of reattachment, (x*=30 and 
40 (or x=15h and 25h)) and as high as the center of 
the tunnel, (y*=5). The flow is turbulent far 
downstream of the obstacle and up to the middle of 
the tunnel height, as it is shown in Figs 5b,c,e,f.  It 
should be noticed, that there are strong inlet effects 
in the stream-wise velocity fluctuations in all three 
positions for the Reynolds number equal to 1304, 
while these effects are not strong in the other four 
Reynolds numbers. In the cross-wise velocity 
fluctuations the strong inlet effects are shown only 
at the position x*=12. This effect is caused by the 
initial condition. Another inlet effect which   needs 
a dimensionless, computational   time equal to 
about, t*=60, for (Re)h =1304 is also shown, while 
for the other four  flows the  time is  equal to  about  
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Figures 3 a,b. Time-mean averaged stream-wise  
velocity profiles for different Reynolds numbers, 
(a) on the top, (b) downstream of the obstacle. 
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0, to get a turbulent signal. This inlet effect is 
 to inlet boundary condition. This time is 
ller than the time discussed by Le et al. [8].  
Figures   6a,b  and   7a,b respectively,  show 
ectively,  predicted stream-wise and cross-wise, 
ulent intensities for different Reynolds numbers 
 positions. The stream-wise turbulent intensities 
Re)h=1304 at the positions upstream of the 
acle have shown differences to all the other 
nolds numbers, (not shown). These differences 
small in the cross-wise turbulent intensities. 
 differences shown in the stream-wise velocity 
tuations and the turbulent intensities are due to 
initial condition of the flow of (Re)h= 1304. 
 initial condition is based on a flow with a 
h smaller Reynolds number than the others, as 
 referred in section 2. The influence of the 
al condition to the flow and the difference 
een the Reynolds numbers is a subject that 
ld be investigated. The same comments as 

0
2
4
6
8 x*=16 x*=18 x*=20

     _
    v*

    0.0       0.3                     -0.3         0.0           -0.2   0.0

)



before are applied to the distributions of the 
Reynolds stresses at different positions and 
Reynolds numbers, Figs 8a,b. 

There are also differences of the maximum 
intensity values close to the wall, on the top and 
downstream of the obstacle in the recirculation 
region, for both intensities.  

 

 

 
Figures 5 a,b,c,d,e,f. Instantaneous stream-wise 
and cross-wise velocity fluctuations for different 
Reynolds numbers.  

 
Figures 9a,b,c show predicted distribution of  

the  pressure coefficient,  (a) on  the  top and (b) 
downstream of the obstacle, for different Reynolds 
numbers. Figures 9a,b show that the pressure 
coefficient is increasing with the increase of the 
Reynolds number. Figure 9c shows the distribution 
of  calculated pressure  distribution  by Le et al.  [8]  
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Figures 6 a,b. Predicted stream-wise turbulent 
intensities for different Reynolds numbers. Legend 
as Figs 3a,b. 
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Figures 7 a,b. Predicted cross-wise turbulent 
intensities for different Reynolds numbers. Legend 
as Figs 3a,b. 
 
with the experimental results by Jovic and Driver 
[8, (1994)] downstream of a step-wall, (Re)h=5100. 
Qualitative comparison between Figs 9b and 9c 
shows many similarities.  

The skin–friction coefficient is given 
by *

2 22
w

o

w
f

U
C τ

ρ
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== , while the non-dimensional wall 
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x
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y
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w ∂

∂
+

∂
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=τ  Figures 10 

a,b show the computed skin-friction coefficient on 
the top  and downstream of the obstacle. It is shown 
that the skin-friction coefficient has a minimum 
value at the upper edge of the obstacle, (Fig. 10a). 
Figure 10b shows a similar, as Fig 10a, distribution 
of skin-friction coefficient for different (Re)h, 
downstream of the obstacle. Qualitative 
comparison  of  skin-friction coefficient computed 
by Le et al [8] and measured by Jovic and Driver 
[8, (1994)] (downstream of a step) with the present 
work (downstream of an obstacle) are shown 
between Figs 10b and 10c. The similarities are 
obvious though there are differences in the values 
of the distribution. It is supposed, that the 

Proceedings of the 3rd IASME/WSEAS Int. Conf. on FLUID DYNAMICS & AERODYNAMICS, Corfu, Greece, August 20-22, 2005 (pp251-256)



difference of the values is owed to the way of 
calculation of the wall shear-stress.  
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Figures 8 a,b,c. Predicted Reynolds stresses at 
different positions and Reynolds numbers.  
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Figures 9 a,b,c. Wall pressure coefficient. (a),(b) 
Present work, (c) Le et al [8] and Jovic and Driver 
[8 (1994)], downstream of the step. Fig.9c, to be 
compared to the present work, Fig. 9b. 
 
 
 4. Conclusion 
The paper studies a nominated 2D, turbulent flow 
over a wall-mounted rectangular obstacle. The fluid 

is incompressible and Newtonian with constant 
density. No gravity or other external power 
influences the flow. The Direct Numerical 
Simulation Model is used to solve the Navier-
Stokes equations with the Galerkin method. Five 
different Reynolds numbers are used from 
1304<(Re)h<2200. A uniform free stream flow is 
imposed upon the entrance of the tunnel, the no-slip 
boundary conditions are applied along the walls of 
the tunnel and the obstacle and the free boundary 
condition is applied at the exit of the   tunnel.  As  
initial  condition,  a  laminar  flow  solution at  t = 0 
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Figures 10 a,b,c. Computational   distribution of 
skin-friction coefficient. Present work (obstacle),  
(a),(b). Legend as Figs 9a,b. Qualitative 
comparison of (b) with Le et al [8] and  Jovic and 
Driver  [8 (1994)] (step), (c).  

 
and (Re)h=1 is used for the flow of (Re)h=1304. In 
the next flow of (Re)h=1500, the time mean-
averaged solution of (Re)h=1304 is used as initial 
condition. The initial conditions of the other flows 
of (Re)h=1800, 2000 and 2200 have also as initial 
conditions the time mean-averaged solutions of 
(Re)h=1500, 1800 and 2000 respectively. 

The calculated time-mean averaged streamlines 
show that the length of the recirculated flow 
upstream and downstream of the obstacle changes 
with the Reynolds number. The length of 
separation increases with the increase of (Re)h, 
while the length of reattachment decreases. The 
above mentioned statement about the reattachment 
length is verified by Armaly et al. [2] in their 
experimental and computational work. The time-
mean averaged stream-wise velocity profiles are 
identical upstream and on the top of the obstacle 
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but the profiles downstream of it show differences. 
The cross-wise velocity profiles are similar for all 
flows except of the flow of (Re)h=1304. 
Differences are also shown in the maximum (or 
minimum) values of the velocity close to the wall. 

The instantaneous stream-wise and cross-wise 
velocity fluctuations show that the flow is turbulent 
far downstream of the obstacle and up to the middle 
of the tunnel height. Two strong inlet effects, in the 
stream-wise velocity fluctuations are present. The 
first is shown in the flow of (Re)h=1304 and has to 
do with the initial condition. The other inlet  effect  
is shown to all other flows and has to do with the 
inlet boundary condition. It seems that a 
computational time of about t*=40 or 60 is  needed 
to get a turbulent signal. 

The predicted stream-wise and crosswise 
turbulent intensities show differences between 
(Re)h=1304 and all the other Reynolds numbers 
upstream of the obstacle. It is supposed that this is 
due to the initial condition of the flow (Re)h=1304. 
This “initial condition” effect is not seen in the 
stream-wise velocity profiles, it is slightly visible in 
the crosswise velocity profiles upstream of the 
obstacle but it is clearly seen in the velocity 
fluctuations. Differences, between the (Re)h=1304 
and all the other Reynolds numbers show the 
predicted Reynolds stresses, too. It is believed that 
they are also due to the “initial condition” effect 
mentioned above. The pressure coefficient on the 
top and downstream of the obstacle is increasing 
with the increase of Reynolds number. Predicted 
distributions of the pressure coefficient downstream 
of the obstacle compared qualitatively to the 
predicted pressure coefficient by Le et al. [8] and 
the measured one by Jovic and Driver [8, (1994)] 
downstream of a step-wall, show many similarities.  

The distribution of skin-friction coefficient for 
different (Re)h, on the top and downstream of the 
obstacle are similar. The values, of the computed 
skin-friction coefficient on the above mentioned 
positions, seem to be affected by the way of 
calculation of the wall shear-stress. Qualitative 
comparison of the calculated skin-friction 
coefficient, by Le et al. [8], as well as the measured 
one, by Jovic and Driver [8, (1994)] downstream of 
a step to the flow of the present work, shows 
similarities. 
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