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Abstract: - For performing simulations of turbulent channel flow, it is of great importance that the balance be-
tween convective transport and dissipation remains undisturbed. We ensure this by using a symmetry-preserving
discretization of the Navier-Stokes equations. In such a discretization, crucial properties of differential operators
are mimicked by the corresponding difference operators. This makes a symmetry-preserving discretization stable
on any grid and lets it conserve mass, momentum and, in absence of diffusion, kinetic energy. Because we want
to reduce the computational effort as well, we make a symmetry-preserving discretization capable of dealing with
local grid refinement. The discretization was tested for Poiseuille flow at relatively low Reynolds numbers. The
results encourage us to use the method for a turbulent flow around a square cylinder atRe = 22000 in the future.
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1 Symmetry-preservation
Fluid motion is well described by the Navier-Stokes
equations, which constitute conservation laws for
mass and momentum. We discretize them with a
finite-volume discretization. The discretization is per-
formed in such a way that the difference operators do
have the same symmetry properties as the underlying
differential operators, This means that the convective
operator is represented by a skew-symmetric coeffi-
cient matrixC, so

C + C∗ = 0, (1)

and the diffusive operator by a symmetric, negative-
definite matrixD. Also, the discrete gradient matrix
G, describing the integration of the (pressure) gradi-
ent operator over the control volumesV , is related to
the discrete divergence matrixM , describing the in-
tegration of the divergence (of the velocity) over the
control volumesV , as

G = −M∗. (2)

This corresponds to the fundamental, analytical rela-
tion

∇ = −(∇·)∗. (3)

Such a symmetry-preserving discretization does not
only conserve mass and momentum, but also energy
(in absence of diffusion of course). Because, if we
write the Navier-Stokes equations in semi-discretized

form as

Muh = 0 (4)
d
dt

V uh = Cuh + Duh + M∗ph (5)

with uh the discrete velocity andph the discrete pres-
sure, the energy〈V uh, uh〉 evolves as

d
dt
〈V uh, uh〉 = 〈

d
dt

V uh, uh〉 + 〈V uh,
d
dt

uh〉

= 〈
d
dt

V uh, uh〉 + 〈uh,
d
dt

V uh〉

(1),(2)
= 〈(D + D∗)uh, uh〉

≤ 0. (6)

This also shows, just as it should be, the absence of
interference between the convection and the diffusion.
With that, we have reached our main reason for study-
ing this kind of discretizations. Because we want
to simulate turbulent flows, we want to avoid artifi-
cial dissipation interfering with the subtle balance be-
tween convective transport and physical dissipation.
Furthermore, (6) also shows the stability of the dis-
cretization on any grid.
One should realize that a symmetry-preserving dis-
cretization does not minimize the local truncation er-
ror; it performs well because of the favourable prop-
erties of the discrete operators (see also [6] and [7]).

2 Local grid refinement
We make the conservative discretizations suitable for
local grid refinement because of the reduction of com-
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Figure 1: The reduction of cells achieved by local grid
refinement. The stretched grid has 1344 cells. The
locally refined grid counts only 896 cells.

putational effort that can be achieved by local grid re-
finement. An example of this reduction is given in
Figure 1. As one can see, local grid refinement saves
on the amount of computational cells needed and thus
it saves on the amount of computational time needed
to perform a simulation.

In this paper, we will discuss the 2D-case. A
3D-discretization can be obtained from the 2D-case
straightforward as long as no refinement is created in
the third direction.

We start with a uniform grid. Stretching can be ap-
plied to refine along the boundaries of the computa-
tional domain. Thereafter, the local refinement is ob-
tained by uniformly splitting the cells within a des-
ignated rectangular area in the computational domain
into nine. So 3:1-refinement is created. Figures 1 and
2 show such situations. We choose 3:1-refinement
because then there is a velocity defined at all coarse
grid points. Perhaps we can benefit from this natural
refinement in the construction of our discretizations.
Depending on the resolution needed, the refinement
procedure can be repeated. The levels of refinement
are successively numbered starting with 0, which de-
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Figure 2: An example of a grid with local refine-
ment. The shown row and column numbers are used
for marking the position of the refined area.

notes the coarsest level. At every level, the cells are
numbered using an(i, j)-index notation. So, every
cell has three indices. An indicator “function” is used
for determining whether a cell or velocity is at the cur-
rent level.
By referring to the coarse row and column indices at
the refinement boundary all neighbours can be found
by simple calculations. We denote the minimum
and maximum refinement boundary indices in thei-
direction withminib andmaxib. Similarly, we have
minjb and maxjb in the j-direction. In Figure 2,
these boundary indices areminib = 5, maxib = 7,
minjb = 3 andmaxjb = 5. Then, for example, the
middle northern neighbour of cell(ci,minjb; 0) =
(6, 3; 0) is (fi, 1; 1) with fi given by

fi = (ci − minib − 1) ∗ 3 + 2 (7)

= (6 − 5 − 1) ∗ 3 + 2

= 2.

In more general situations, a quadtree numbering can
be used (e.g. see [1] and [5]).

3 Performing the discretization
Away from refinement boundaries, conservative dis-
cretizations can easily be constructed. At refinement
boundaries, we have to do some more work, because
here the discretization becomes irregular. But in both
cases the same way of reasoning is used. First the sum
of momentum fluxes is determined over the bound-
ary of the conservation cell of a velocity component.
For example, we determine the discrete version of
∫

S
uuT · n dS, which is the convective term in the

x-direction (uT = (u, v)T denotes the velocity with
u and v the velocity components in thex- and y-
direction respectively,S is the boundary of the con-
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Figure 3: The variables of cell(i, j).

servation cell andn represents the outward pointing
normal). In this term,u is the unknown and its co-
efficient uT · n will lead to (a part of) the convective
matrix. Thereafter, the mass fluxes in this sum are
chosen such that the central coefficient becomes zero,
for only then a skew-symmetric convective matrix will
be obtained. The discrete divergence (4) plays an im-
portant role in this last process.
That brings us to another problem that we should con-
sider: what is the divergence in the cells along a re-
finement boundary? Because of relation (2), an equiv-
alent question is: what is the pressure gradient over
the refinement boundary?
We want the discrete divergence to obey

Muh;const = 0 (8)

and the discrete gradient to obey

V −1Gph;lin = c (9)

in whichuh;const denotes a velocity fieldui,j = c with
c a constant andvi,j = 0, ph;lin represents a linear
pressure fieldpi,j = c1xi + c2yj + c3 (with c1,c2 and
c3 constants) andc is the appropriate constant vector
describing the inclination of the pressure plane. For
if equations (8) and (9) are not fulfilled, then our dis-
cretization is not even first order.
We start with defining the gradient matrix. Then the
divergence follows by (2). To construct the gradient
matrix, we have to define the “missing” pressures.
With respect to Figure 4 (see Figure 3 for the gen-
eral positioning of the variables),p2,4;1 andp2,6;1 are
missing an eastern neighbour for example. We can
not use linear interpolation to set up the gradient ma-
trix, because it gives a divergence that is in conflict
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Figure 4: A piece of a refinement boundary. The index
numbering has been adapted to the size of the piece.
Compare Figure 3 for the placement of the variables.
Ghost variables are shown in small print.

with equation (8). The problem can be solved by us-
ing a larger stencil for the approximations of the ghost
pressures. We do this by using

p2,2;0− = p2,2;0 −

hy5;1
(p2,3;0 − p2,1;0)

1
2
hy3;0

+ hy2;0
+ 1

2
hy1;0

, (10)

p2,2;0+ = p2,2;0 +

hy5;1
(p2,3;0 − p2,1;0)

1
2
hy3;0

+ hy2;0
+ 1

2
hy1;0

. (11)

We explain these extrapolations with help of Figure 5.
At first, we know they-positions and values ofp2,1;0,
p2,2;0, p2,3;0. Further, we know they-positions of the
missing pressuresp2,2;0− and p2,2;0+. The curve in
the figure represents the solution which we want to
approximate. In the first step, the slope of the line
betweenp2,1;0 andp2,3;0 is determined. This slope is
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Figure 5: The construction of the approximation of
the missing pressures.

p2,3;0−p2,1;0

yp2,3;0
−yp2,1;0

=
p2,3;0−p2,1;0

1
2
hy3;0

+hy2;0
+ 1

2
hy1;0

. It is used to ap-

proximate the tangential line throughp2,2;0. Finally,
the approximations forp2,2;0− andp2,2;0+ are found at
this line by making a step of size|yp2,2;0+

− yp2,2;0
| =

|yp2,2;0
− yp2,2;0−

| = hy5;1
in they-direction along this

line. Generally, the approximation of the tangential
line by this procedure is very poor, but it is in analogy
to the construction of the skew-symmetric discretiza-
tion, which has been proven to behave very well (see
[7]).
Having constructed the gradient matrixG and succes-
sively the divergence matrixM by applying (2), we
can continue our adaptation process by adapting the
convective matrixC. There are two cases:

• the refinement boundary is along the boundary of
a conservation cell;

• the refinement boundary crosses a conservation
cell.

At the beginning of this section, we sketched the way
to proceed in both cases. Now, we still need interpola-
tions to make up for the missing velocities. As for the
pressure, linear interpolation will not work. For then
the mass fluxes can not be chosen such that the central
convective coefficient becomes zero. So, we use more
points and take (with respect to Figure 4)

u2,2;0− = u2,2;0 −

hy5;1
(u2,3;0 − u2,1;0)

1
2
hy3;0

+ hy2;0
+ 1

2
hy1;0

, (12)

u2,2;0+ = u2,2;0 +

hy5;1
(u2,3;0 − u2,1;0)

1
2
hy3;0

+ hy2;0
+ 1

2
hy1;0

(13)
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Figure 6: Global view of thev-velocity forRe = 100
at an intermediate fine grid. The region of local grid
refinement is clearly visible.

and

v2,1;0+ =
1

2
(v2,1;0 + v2,2:0) −

1
2
hy5;1

(v2,3;0 − v2,0;0)

hy3;0
+ hy2;0

+ hy1;0

, (14)

v2,2;0− =
1

2
(v2,1;0 + v2,2:0) +

1
2
hy5;1

(v2,3;0 − v2,0;0)

hy3;0
+ hy2;0

+ hy1;0

. (15)

For the extrapolations (12)-(15), it is possible to de-
termine the coefficients of the convective matrixC in
such a way that it becomes skew-symmetric.
With this, we have reached a complete discretization.
However, we expect to see some problems at the re-
finement boundaries as in literature many investiga-
tors have observed reflections coming from refine-
ment boundaries (e.g. [2] and [4]).

4 Tests
The behaviour of the derived discretizations has
been tested for Poiseuille flow in a channel with
length×height 60 × 39. The Reynolds number was
based on the width of the channel and the uniform in-
flow velocity, creating main flow in thex-direction.
The computational grid was similar to the one de-
picted in Figure 2, with the refinement betweenx =
34 andx = 48 and betweeny = 14 andy = 25 as
one can see in Figures 6 and 7.
In the tests, the global results were all right. This
means that theu-velocity becomes parabolic, thev-
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Figure 7: Detail of thev-velocity of Figure 6 in top
view. It shows the region of local grid refinement and
its direct surroundings. Wiggles (with a magnitude of
about1.2 · 10−3) are clearly visible.

velocity tends to zero and the pressure becomes lin-
early decreasing withx. Figure 6 shows thev-velocity
atRe = 100 for example. As predicted, observations
of details revealed some wiggles in the solution head-
ing backwards, see Figure 7. However, those wiggles
were only originating at the corners of the refinement
and not at the straight edges as one might expect from
[4].
The development of these wiggles was studied for
several mesh sizes and Reynolds numbers. The wig-
gles were measured in thev-velocity, because they
were seen best there. Two positions of origination of
the wiggles were used as measure points; one was in
the coarse part just before the flow entered the refine-
ment and one was in the fine part just before the flow
left the refinement. At these positions, the strength of
the wiggles was measured by taking the mean wig-
gles size over four cells. So, the wiggle strength was
calculated as

∣

∣

∣

∣

1

8
(vi,j;m − vi−1,j;m) +

1

8
(−vi−1,j;m + vi−2,j;m) +

1

8
(vi−2,j;m − vi−3,j;m) +

1

8
(−vi−3,j;m + vi−4,j;m)

∣

∣

∣

∣

. (16)

Figure 8 shows the results of these measurements. In
this figure, we can observeO(h2) (and sometimes
evenO(h3)) convergence behaviour for all Reynolds
numbers exceptRe = 1. This exception is not re-
markable as forRe = 1 there were no wiggles in the
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Figure 8: The wiggle strength versus the mesh size for
several Reynolds numbers. Top: the wiggle strength
at the coarse grid measure point. Bottom: the wiggle
strength at the fine grid measure point.+: Re = 1; ◦:
Re = 10; �: Re = 30; ∗: Re = 100; ×: Re = 1000.

solution and merely the variation in the solution was
measured. It may also be noted that the convergence
behaviour becomes irregular for larger cell sizes be-
cause the Peclet number (based on the local velocity
and mesh size and the Reynolds number) becomes too
large, i.e. larger than 2 (estimations forRe = 1, 10,
30, 100 and1000 are that the coarse mesh width must
be smaller than75, 7.5, 2.5, 0.75 and0.075, respec-
tively).
From Figure 8, we conclude that the wiggles depend
on a numerical factor, the mesh width, as well as phys-
ical factors contained in the Reynolds number. So, the
wiggle strength can be described as

α(Re)h2 + O(h3). (17)

The unknown values of the physical contribution
function α are approximated by the coefficients of
the parabolas drawn to interpolate the data for each
Reynolds number. We get an impression of the physi-
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Figure 9: The coefficients of the parabolas interpolat-
ing the wiggle growth versus the Reynolds number.
The�’s are related to the fine grid measurement, the
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cal contribution function by plotting these coefficients
against the Reynolds number. This is done in Figure
9. We can clearly see the region with no wiggles for
low Reynolds numbers. For higher Reynolds num-
bers, the coefficients indicate that wiggles can grow.
In the right region, we see the effect of the Peclet num-
ber in the simulations becoming too large: the coeffi-
cient of the interpolating parabola could not be deter-
mined properly. Also, we observe a factor 3 in the
Reynolds number at which wiggles can start to grow
at the coarse and fine mesh (2 versus 6) and a 3:1 ra-
tio in the gradients of the lines in the middle region.
These last two observation might be related to the 3:1
refinement ratio as well.

5 Conclusions

In this paper, we have constructed a skew-symmetric
discretization of convection with local grid refine-
ment. To do this, we have adapted the discrete gradi-
ent and divergence. The discretization of the diffusion
in case of local grid refinement, which has not been
discussed in this paper, can be made using the same
velocities as the convective discretization, but this is
not necessary.
The constructed discretizations have been tested for
Poiseuille flow. They seem to perform well except at
the corners of the refinement, where wiggles are orig-
inating at higher Reynolds numbers. These wiggles
were shown to have at leastO(h2) convergence be-
haviour. Also, the dependence of these wiggles on the

Reynolds number has been investigated. It was found
that the higher the Reynolds number was, the larger
the wiggle amplitude became.
In the near future, we will try to apply this method in
a simulation of the flow around a rectangular cylin-
der atRe = 22000 (see [6]). Then we will answer
the questions whether we can be as accurate as with-
out local grid refinement and how much reduction of
computational effort we can achieve.
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