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1 Introduction fluid which is at rest at infinity, and the forcing term

In a three-dimensional exterior domdihin R?, the f=f(x)is g|.ven.-

classical Oseen problem [9] describes the velocity vec- L€t us begin with some comment and relevant pro-
toru and the associated presspiiey a linearized ver- ~ ¢ess of analysis of the problem (1)- (4). The govern-
sion of the incompressible Navier-Stokes equations adnd fluid motion is essentially linear, but we are con-
a perturbation ofv., the velocity at infinity; ve is cerned with an exterior domafi, and the convective
generally assumed to be constant in a fixed direction,0Peratorsf d; and(w x x) - V, cannot be treated as
say the first axisyo = |voo| €1. In the next we de- perturbations of lower order of the Laplacian, this is
note|v| by %, and we will write the Oseen operator Well known.

k d1v. On the other hand it is known that for vari- A common approach to study the asymptotic prop-
ous flows past a rotating obstacle, the Oseen operatoerties of the solutions to the Dirichlet problem of the
appears in the forrta - V) v with some concrete non-  classical steady Oseen flow is to use convolutions with
constant coefficient functions, e.g.= w x x, where Oseen fundamental tensor and its first and second
w is an angular velocity. So, we investigate the fol- gradients for the velocity (or with the fundamental
lowing problem, so-called stationary rotating Oseen solution of Laplace equation for the pressurd)?
model, estimates in anisotropically weighted Sobolev spaces
can be derived, see [6]. The fundamental solution to

—vAu+ kdiu+ (w x x) - Vu (1) rotating Oseen problem in the time dependent case is
_ e known, see [10], but, unfortunately, the respective sta-
) wxu + Vp=1in £ tionary kernel is not seem to be of Calderon-Zygmund
divu=0 in © (2)  type. The Littlewood-Paley theory offer another ap-
u=0 onanN (3) proach for an_?-analysis: Thus[.¢ estimates in non-
weighted spaces were derived for the rotating Stokes
u—0 as|x|— o0 (4)

problem by T. Hishida [4], and for the rotating Os-
where v and k£ are some positive constants, = een problem inR? by R. Farwig [2]. Looking for

(A, 0,0) is a constant vector. The vector func- estimates in anisotropically weighted spaces, this ap-
tion u = u (x) describes an infinite incompressible proach generates increased technical difficulties. So,
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let us prefer a variational approach.

The same variational viewpoint has been already
applied in [7] by S. Kracmar and P. Penel to solve the
following generic scalar model of equation (1) with a
given non-constant vector functiaf

—vAu+koiu+a-Vu=f inQ (5)
together with boundary conditions= 0 on 9f2 and
u— 0 as|z| — oo.

Introducing the chosen weight functions, to reflect

the decay properties near the infinity, yields

ng (x;6,) = (140r)" (1 +es)”,

for x = [x1, 29, 23] €R3, £, >0, o, BER,

2

32

r=x|=(@}+2i+x , s=s(x)=r—umx,
where § and e are useful to rescale separately the
isotropic and anisotropic parts.

Discussing the range of the exponentsand (5,
the corresponding weighted spade’s(R?; w) give
the appropriate framework to test the solutions of both
problems (5) and (1) —(4). Letusrecall th;gtbelongs

to the Muckenhoupt clas$,; of weights inR3 if —1 <
B<land-3 < a+ 3 < 3.

In this paper we extend the results of [7] to the
stationary rotating Oseen model (1), (2) and (4) on the
whole spac®?; we are concerned with = 2.

Our main result is

Theorem 1 (Ezistence and uniqueness)
Let0<B<1,0<a<y -3, fel?
y1 will be specified in Lemma 6.
Then there ezists a unique weak solution {u, p}
of the problem (1), (2), (4) in the whole space R3,
such thatu € Vo5, p € Li,,@—v Vp e ngrl,ﬁ and

+1,87

2 2 2
||u”2,a_1,5 + HquQ,aﬂ + ||p|‘27a,5_1

2 2
HIVPlzat1,5 < C Ifll2011,6-

2 Notations and Function Spaces
Let us outline our notations:

Bg = {z € R’ |z| < R},

BRE={zeR’ |z| > R}.
Let, forl < ¢ < oo,

D™ (Q) = {u € LL (Q): Due L1(Q) || < m}

: TR ,
with [ul,, , = <Z|l|:m Jo | Dlul ) as a semi-
norm. It is known thatD™4 (Q2) is a Banach space
(and if ¢ = 2 a Hilbert space), provided we identify
two functionsu, ue wheneverju; — ugqu =0,

e. ui, uo differs (at most) on a polynomial function
of the degreen — 1.

Let (L2 (R3; w))® be the set of measurable vector

functionsf onR? such that

1/2
Hf||2 R3:w — </ \f|2wdx> < Q.
SRS RS

3
We willuse L? ; instead of (L2 (R?’; ng))
and |||, instead of |-[|,ps, - Because

—1
(ng) is locally integrable, then, by Hélder’'s in-

equality, it follows thafl.2 ; C (Lj,, (R3))’. It thus
makes sense to talk about weak derivatives of func-

tions in Lig- Let us define the weighted Sobolev
spaceH! (R3; UE ngll) as the set of functiona ¢
L2, 5 With the weak derivative§;u € L7, ;. The
norm ofu € H' <R3; Ugffangf) is given by

2 2 2
”“”HI(RBWZME) = [[ull,a05, + IVllz0, , -

As usual,H' (Rg; 172‘5,77211) will be the closure of
(Cs°)? in H <R3; ngg,ngll). For simplicity, we
shall use the following abbreviations:

51 - 31 L oa—1

H,; insteadof H (]RS, ng_l,ng>

V. instead of H' (]R3; ngfl,ng)
In fact we shall only use these last two Hilbert spaces
fora > 0,8 >0 a+3 < 3, andH" without

indices when it is the usual Sobolev space on bounded
domain, e.g.Bx.

3 Some Auxiliary Results

The weighted estimates of the solution to the sta-
tionary classical Oseen problem were firstly obtained
by R. Finn [3] in 1959, and then improved by R. Far-
wig [2] in 1992. See [7] for other comments and
references.

The case of equation (1) with the rotation effect
is worth thinking over: Let us assume for a moment
that pressure is known. In solving the problem (1)
(4) with respect tax by means of a pure variational
approach, we shall deal with the following equation:
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1// |Vu]2wdx+1// (Vw-V)u-udx

R3 R3

1/ lul? [k01w + div (w[w x x])]dx  (6)
2 Jps

:/ f-uwdx — Vp-uwdx
R3 R3

as we get integrating formally the product of (1) and
It is

uw With w an appropriate weight function.
not difficult to observe that forw = 73 we have

div (w
be estimated from below by

;/|Vu|2wdx (7)
R3

/y 2 ( W“" k81w> dx

and it can be proved the existence spf > 0 such

[w x x]) = 0. The left hand side in (6) can

Lemma 3 (Friedrichs-Poincaré type inequality)
Let o« >0, 3 >0, a+06 <3, k>1. Letd
and € be arbitrary positive constants, such that
(6 —a)(2e —0) > 0. Then for all u EIEI;B

/R3 u? ngfjll dx
2
< (a5+26€2)/ Vul? 3 dx
2
*)* de JBRo

where Ry > ‘f — = (Kil). Moreover, if 6 = 2¢
then

Iy 150 < (;;5 ) IVulyes. ()

For the proof see [8]. The same inequality holds in
}OI;’Q(Q) for an exterior domai. Its scalar variant
was given and proved in [7].

2
that—u% — kdyw > 0 forw = nj ands > s, To prove uniqueness we will need also a classi-
(see [7, Appendix A] ). Moreover, because this term is cal result, the following auxiliary result about weakly
known explicitly, we have the possibility to evaluate it harmonic functions ifD'¢ (R") :
from below by a “small” negative quantity in the form
—C(a, 3,6, €)m5- | without any constraintia(-), see
Lemma 2 hereafter.

Another useful preliminary remark is that of a gen-
eralized Friedrichs-Poincaré type inequalityFi}, ,
This leads to the Lemma 3 which is the first main
technical result of this paper. The obtained inequality Then there is a constant C' such that v(zx) = C
allows us to compensate by the viscous Dirichlet in- a.e. in R".
tegral the “small” negative contribution coming from
the second integral of (7). Therefore the existence of a

weak solution to problem (1), (2), and (4)W, g can . . .
be proven essentially by the Lax-Milgram theorem. 4 Existence of Weak Solution in Rr?
For technical reasons, we now assuine g < 1,

Let us define a functiod, (s, r; v) by the rela-

Lemma 4 Let n > 2 and let v € D9 (R™) with
1 < q < oo such that

v Aopdr=0
Rn

for all ¢ € C5° (R").

tion: 0 < o <y - 4, where the parametes will be the
}V ol? same as in Lemma 6. Léte L2, g We want to
"la sketch the proof of existence in Theorem 1.
Fop (s, v) mg- r=—v —koing (8) P

3 Stepl. Ifthere exist distributions., p satisfying (1),
(2) then pressurg satisfies the equation

Ap =divf

We now summarize the main auxiliary results:

Lemma 2 (From [7]) Let 0 < a < (5, k > 1,

O<5§i-§-%}a and 6,v,k > 0. Then

(10)

because

1 div((wxx)-Vu—wxu) =(wxx)-Vdivu= 0
Faﬂ(s,r;y)—(l—>~k-(5-6-(ﬂ—a)-s
K (and of course diVAu + k£ 01u) = 0). Let& be the

) fundamental solution of the Laplace equation, i.e.

11
E=——-.
A r

> —aék(l—k%ad

for all ¥ >0 and s €[0,2r].
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Assuming firstlyf e (C5°)* we havep = &£ « div f
and Vp = V& x divf, and sop = V& x f and
Vp = V€ « f.

It is well known that both formulas can be extended

for f € L2, g with 0 < o < 3 < 1, the last

convolutionVp = V2€ x f due to the fact tha¥/2&

is a singular kernel of the Calderon-Zygmund type

and thatn;*! belongs to the Muckenhoupt class of
weightsA,: see [1, Thm. 3.2, Thm 5.5] and [6, Thm.

4.4, Thm 5.4], where the theorems are formulated for

the pressure parP of the fundamental solution of
the classical Oseen problem, Bo= V& andVP =
V2E.

Forf ¢ L2, ;wegetp € L2 5, and Vp €
L2, 1,5 and there are constantg, Co > 0 such that
the following estimates are satisfied:

2
) 7/8_1 -

2 2
IVPl30118 < Co Ell20415

Step2. We prove the existence of a weak solution
up eH! (Br) to the following problem orBg:

—v-Au+k-0iu+ (wxx)-Vu
—wxu=f—Vp in B
u=0 onodBg

the right hand sidé — Vp being known mLa+l
Let us introduce a continuous bilinear fofp ( )
on H' (Bg)x H' (Bg) with 3, € (0, 1]:

Q1 (u,v) V/Vu-v(v.ngo).dx

+k/81u- (v-ngo) -dx
Br

+ /(w x x)-Vu (vngo) -dx
Br

Using notation (8), we have:

14
Q) = 5 [ v ax

1 2 -1
+§ / v Fo g, (8,5 v) g, dx
Br

From Lemma 2 witha =
theorem we get:

0 and the Lax-Milgram

B < 1. Then, for all £ €

Lemma 5 Let O
k. €0 There

2
Li 5, (Br), - v o Moo = nﬁo €0°
exists up €H'(BR), the umque solution of

<
1
2

Q1 (ugr,v) = / (f — Vp) 'vngo dx (13)

Br

for all v eH'(Bg) .

Step3. Our next aim is to get uniform estimates of
ur in V, 3 askR — +oo. Lety; be the unique real
solution of the algebraic equatioy3+8y?+5y—1 =

0. Itis easy to verify that; € (0,1). The control of
o/ fis necessary for the compatibility of all conditions
ona, 8,9, ¢, k, see[7].

Lemma 6 Let 0 < 0 < 1,0 < a < y1 -5,
f - Vp € LaHB Then, as R — 400, the
weak solutions ug of (18) given by Lemma 5 are
uniformly bounded in V. There is a constant
C > 0, which does not depend on R such that

/ﬁ%-ngl-der/WﬁRng-dx (14)
R3 R3

gc/<\f|2+|vp|2) o+l g

for all R greater than some Ry > 0, ug being
extension by zero of ug on R®\ Bg.

For the proof see [8]. The same ideas were used in the
proof of [7, Lemma 3.4]. First, we need an uniform
estimate of the expression

/ﬁ%-ng_l‘dx—i— / ]VﬁR\z‘ng'dx

Bp, Bg,
for some sufficiently large and fixe®; > 0. Sec-
ondly, using the Friedrichs-Poincaré type inequality
from Lemma 3, we get (14).

Step4. Let {R,}, .y be a sequence of real num-
bers converging te-co. Letug, be the weak solu-
tion of (11), (12) onBg,. Extendingug, by zero
on R® \ Bg, to a functiond, € V,3 we get a
bounded sequenciiy, },, in V, 5. Thus, there is a
subsequencgiiy,, }, with a weak limitu in V.
Obviously, {u, p} is a weak solution of (1) and we
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have
2 2
||u||2,o¢—1,,3 + Hvu||2,a,ﬁ
. ~ _ ~ 2
< h];gneglf /uikng 1dx+/\Vunk ng dx
R3

3

IN

Ca [ (16 +Vpl2) - -

IN

]R3
Ca [ It x,
]Rii

hence the estimate from Theorem 1 is satisfied. To

complete the proof, it remains to check thasolves
also the equation

divu =0 a.e. inR3,

which we do in the last section because a similar idea

of proof states the uniquenesswf

5 Solenoidality and Uniqueness
of the Weak Solution

Let us mention that from the properties of the gra-

dient of u follows divu € L2 ;, and thatu € Hj,
becausd - Vp € Liﬂrm. So, applying weakly the
operator div on equation (1), we get

—v A (divu) + k0; (divu)
+ (w x x) - V (divu)
=divf — Ap=0.

(15)

Lemma 7 Let u be the weak limit obtained in
Vs and p obtained in Li,ﬁ—l' Then:

(1) divu € Vj g and the norm of divu in the space
Vo, g 18 zero;

(it) if £ =0, p = 0 and the norm of u in Vj g is
zero.

z > 1, and|®’| < 3, we takedp () = @ (%),then
we have|V®y (z)| < 3- 4 and|0,®g| < 3 & for
zeQ & <|z| <R

Let {R;}, be an increasing sequence of radiiin
with the limit +-o00, and let us denote; = ~ - g,
So,{v;}, is a sequence of functions either with limit

v = divu in the spacd.? ;, or with limit vy = win
the spacdi’.

Using the test functions; - @, - (1 +es)® €l
(ie. divu-@3 -(1+es)’,0ru-8% -(14¢s)” H')
in (16) we get:

Z//V%V(V-CI)%%]_-?]g)-dx
R3
+k/81’y-’y-¢>%%j-ng-dx
R3

2 .0 _
+/(w><x)~V'y-’y-<I)Rj-nﬁ‘dx0.
R3

Integrating by parts, we get after some rearrangements

L\ v 2 0
<1—/€)2/W’Yj’ 1) - dx
R3

1 1 _

R3

< c / 72‘U§1'd$a
B

R;/2

Rj

hence

/|V7|2'n2-dx+/72-775i1'S'dx§07
R3 R3

To prove this lemma, at first we observe that with and the solenoidality af is proved. Replacing by u

f = 0 we necessarily havAp = 0 in R?, then using
Lemma 4, we get thap = 0. Therefore the same
(scalar or vectorial) equation

—v Ay +kdy +(wxx)-Vy =0 (16)

can be used to describe R?eithery = divu or
Y= u

Let us define a convenient cut-off functiahy :
If & = ®(2) € C5°((0,+00)) is a non-increasing
function such that(z) = 1 for = < 3, ®(z) = 0 for

inthe lastinequality, we get = 0 and the uniqueness
in Vo,g > Va,ﬂ-

6 Concluding Remarks: Extension to
Exterior Domain

For simplicity we have yet limited our study to the
whole space. The obtained results can be extended
also for the exterior domai, see [8]. First, let us
mention that using the known
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Lemma 8 (Borchers and Sohr) Let g € Republic and of the University in Toulon. The re-
Wé“”’(G). Then there exists ug € WS“”’(G) search was supported by grant No. I1AA100190505
such that divug =g. from the Academy of Sciences of the Czech Re-
public, by grant No. 201050005 from the Grant

one can generalize Theorem 1 to the case when (2) iszgency of the Czech Republic, by the project No.

replaced by MSM 6840770010 of the Ministry of Education of
divu =g in R3. (17) the Czech Republic, and by the Academy of Sciences

_ _ ; of the Czech Republic, Institutional Research Plan

\é\(/)eurr]\(tjeeegd%nnlqyaitr?'e case = 0,p = 2andGis a No. AV0Z10190503.

For the extension of Theorem 1 to the case of an
exterior domain we use the localization procedure, see
[5]. By use of cut-off function’ we decompose the References: . .
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Using now modified Theorem 1 for the problem (1),
(17), (4) and Lemma 9 we get the result for exterior
domains.
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