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1   Introduction 
Obtaining sufficient cooling for the components of 
devices is a difficult challenge in modern industry. It 
is related to refrigerators, radiators, engines and 
modern electronics, etc.  
Usually its mathematical modeling is realized by 
one dimensional steady-state assumptions [1], [2], 
[8],[9]. In our previous papers [3] – [6] we have 
constructed two dimensional analytical approximate 
[3] – [5] and exact [6] solutions. In this paper we 
obtain approximate analytical three dimensional 
solution by the original method of conservative 
averaging and some its simplifications (special 
cases).      
 
 
2   Mathematical Formulation of 3-D 
Problem  
We will start with accurate three-dimensional 
formulation of steady-state problem for one element 
of periodical system with rectangular fin. This 
mathematical formulation is similar to those which 
are given in our papers [3]-[7] for 2-D case. 
 
2.1 Description of Temperature Field in the 

Wall 
We will use following dimensionless arguments 

and parameters [4]-[7]: 
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where - heat conductivity coefficient for the 

fin (wall), - heat exchange coefficient for the 
fin (wall), 2В – width (thickness) of the fin, L –
length of the fin , 
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∆ - thickness of the wall, W −  
width (length) of the wall, 2R – distance between 
two fins (fin spacing). 
The wall (base) is placed in the domain 

[ ] [ ]{ }0, , 0,1 , [0, ]x y z wδ∈ ∈ ∈ and we describe 

the dimensionless temperature field  in 
the wall with the equation: 
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We add needed boundary conditions as follow: 
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We assume the conjugations conditions on the 
surface between the wall and the fin as ideal thermal 
contact - there is no contact resistance: 
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2.2 Description of Temperature Field in the 

Fin 
  The rectangular fin of length l  occupies the 
domain [ ] [ ]{ }, , , [0, ]0,x l y z wδ δ∈ + ∈ ∈b and 

the temperature field   fulfills the 
equation 
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We have following boundary conditions for the fin: 
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Let’s mention, that almost all of the authors 
negligible the heat transfer trough flank 
surface z w= . We assume that this heat transfer is 
proportional to the temperature excess between the 
wall/fin and the surrounding medium and are given 
by second boundary condition (5) and condition 
(11). 
 
 
3   Approximate Solution of 3-D 
Problem  
We will use the original method of conservative 
averaging. 
 
3.1 Reduction of the 3-D Problem to the 2-D 

Problem  
Similarly as in our previous papers [4],[5] we will 
use our original method of conservative averaging 
and approximate the 3-D temperature field 

 for the fin in following form: ( , , )V x y z
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with unknown functions For 
this purpose we introduce the integral average value 
of function in the - direction:  
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This equality together with two boundary conditions 
(at 0z = and z w= ) allow us to exclude all 
unknown functions from the representation 
(13). The boundary condition (13) gives the 
equality: 

( , )ih x y

2 1( , ) ( , )h x y h x y= − . 
The substitution of representation (14) in (15) gives 
expression: 
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and representation (14) takes form: 
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Finally, by the use of the boundary condition (11) 
we can exclude from last expression and 
represent the 3-D solution for the fin in 
following form: 
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The second stage for the method of conservative 
averaging is the transforming of the differential 
equation (8) for the function to the 
differential equation for the function . To 
realize this goal we integrate the main differential 
equation (8) in the - direction: 
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Expressing from the boundary conditions (11) and 
(13) the first derivatives of the function  
at

( , , )V x y z
0z = and z w= trough the function we 

finally obtain following partial differential equation 
for two-dimensional temperature field in the 
fin:  
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Here 2 1 ( )w wµ β −= Ψ . 
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The same procedure for the wall gives the 
representation: 

0 0( , , ) ( , ) ( )V x y z U x y z= Ψ .                               (21) 
Here  again (similar with equality (15)) is 
the integral average value of function in 
the - direction: 

0 ( , )U x y

0 ( , , )V x y z
z

0 0
0

( , ) ( , , )
w

U x y V x y z dzσ= ∫ . 

Finally we obtain following partial differential 
equation for two-dimensional temperature field 

for the wall: 0 ( , )U x y
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3.2 Solution of the 2-D Problem 
From here again we can use the conservative 
averaging method for 2-D as in our previous papers 
[4],[5], but with one distinction: in previous 
subsection we have obtained Helmholtz equations 
(20),(22) instead of Laplace equation. However this 
difference doesn’t make additional difficulties for 
the utilization of the conservative averaging method. 
This is why we will briefly describe further steps  of 
solution of the equations (20),(22) together with 
boundary conditions (2)-(4),(9),(10),(12) and 
conjugations conditions (6),(7). 
We will approximate the 2-D temperature field 

 in the fin in the form similar to the 
representation (14): 

( , )U x y
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We introduce the second integral average value of 
function , but in the - direction now 
(see (15)): 
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Repeating all steps as in subsection 3.1 we finally 
obtain the solution for the fin in the form similar to 
approximation (17): 

( , ) ( ) ( )U x y u x y= Φ .                                      (24) 
Here the expression for the function is similar 
to expression (18) for the function : 
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It consequently follows from (17) and (24): 
( , , ) ( ) ( ) ( )V x y z u x y z= Φ Ψ .                             (26) 

Now we integrate the equation (20) in the -
direction (similar as in equation (19)) and use 
following boundary conditions (see the boundary 
condition (10) and second of boundary conditions 
(12)):  
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 Then we finally obtain that the function  is the 
solution of following ordinary differential equation: 
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We act almost equally for the wall and approximate 
the 2-D temperature field  for the wall in 0 ( , )U x y
x− direction: 
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Now we introduce the integral average value of 
function in direction: 0 ( , )U x y x
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Therefore we can rewrite the expression (28) for 

 in the form: 0 ( , )U x y
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By the use of boundary condition (3) for the upper 
part of the wall b<y<1 we get the connection 
between functions  and : 0 ( )g y 0 ( )u y

0 0 0( ) ( )g y b u y d= − 0 .                                     (32) 
In expression (32): 
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By integrating the differential equation (22) in the 
 direction and by using boundary conditions 

(2),(3) and second of the conditions (4) we receive 
the following equation: 
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The solution of the problem (33) is: 
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Here  is unknown constant again. 2C
For lower part  of the wall we use 
conditions (6),(7) and we finally get the following 
equation: 
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Here the parameters are ( is temporarily unknown 
constant again): 
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 To complete the solving of this 3-D problem by the 
method of conservative averaging we should 
determine the three unknown constants 

, 1, 2,iC i 3= from the equations (27),(34) and (35). 
For this purpose we formulate three natural 
requirements [4],[5]. The first of them is the 
continuity of temperatures in the certain point - 

,x y bδ= =  - in the fin and upper part of the wall. 
From equalities (27),(32) and (34) we receive: 
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As the next two requirements we assume the 
continuity of temperature and heat flux on the line 
0 ,x y bδ< < = between the upper and lower parts 
of the wall. We finally get from (34) and (35): 
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One can easy prove that this system of three linear 
algebraic equations has only one solution. Some 
numerical results and their analysis for 2-D solution 
were presented in paper [7]. 
 
3.3 Special Cases of the 3-D Solution 
We will have the first special case, if we assume the 
independence of 3-D solution according to third 
variable - argument . Then equality (15) reduces to 
trivial identity: 

z

( , , ) ( , )V x y z U x y≡ , similarly 

0 0( , , ) ( , )V x y z U x y= . 
Parameterµ reduces in this case to the expression 

2 1wµ β −= . 
The next special case we will have, if we assume 
the insulation of flank surface z w= . In this 
case we have 2 0µ = and 3-D solution reduces to 
our previous 2-D solution [4],[5]. 
 
3.4 Classical 1-D Solution as the Simple Case 

of the 3-D Solution 
The well known 1-D statement for the periodical 
system with rectangular fin from papers [8],[9] 
looks as follow:  
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The well known solution of problem (36)-(41) can 
be written in following form (see [8], [9]): 
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Here the four unknown constants can be easy 
determined from the four boundary and conjugations 
conditions (38)-(41). 
This solution can be easy obtained as special case of 
our 3-D solution by the integrating in the - 
direction, if we will make additionally two 
simplifications:  

y

1) we assume independence of both temperatures 
from two arguments - y and , i.e., we suppose, that 

and ;  
z

( , , ) ( ),V x y z U x≡ 0 0( , , ) ( )V x y z U x≡

2) we assume that parameter 2 0µ = . It means that 
we have made the assumption of insulation 
condition instead of the heat exchange with the 
surrounding medium on the surface z w= . 
We can easily propose a more advanced 
solution (in comparison with “classical” 
solution (42)) , if we presume the independence 
of 3-D solution with respect to second and third 
variables, however we will take in account heat 
exchange with surrounding medium according 
to boundary conditions (5) and (11) by the 
method of conservative averaging. Finally,  instead 
of solution (42) we receive the solution in the 
form of: 
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This new and simple solution has a form which 
permits to estimate easily the cases when it is 
possible to use the solution (42) instead of solution 
(43). These conditions are:  

(0) 1,b wδµ << << . 
 

 
 

4   Conclusion 
We have constructed the approximate three 
dimensional analytical solution for a periodical 
system with rectangular fin for the case when the 
wall and the fin consist of materials which have 
different thermal properties.  
We have shown that it is possible to get previously 
acquired two dimensional and “classical” one 
dimensional solution and some of its extendings 
from general approximate 3-D solution, which is 
obtained in this paper, after simplifying some of the 
assumptions.   
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