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Abstract: - In this paper the approximate transient three dimensional analytical solution for the element of 
periodical system with rectangular fin is obtained by the original method of conservative averaging. The 
solution has a form of three 1-D heat equations with source terms which are linearly dependent of temperature. 
All three equations are connected by some natural junction conditions.  
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1   Introduction 
A great number of different engineering branches 
are concerned with rapid heat energy transitions. In 
the construction of various types of efficient heat 
transfer equipment to the so-called prime surface are 
supplemented an additional surfaces, e.g., a 
rectangular fin. Such heat transfer equipment is 
related to refrigerators, radiators, engines and 
microelectronics, etc. The traditional mathematical 
description of heat flow between a source and a sink 
very often is bounded by the so-called Murray-
Gardner’s hypotheses [1], [2]. One of these 
hypotheses is an assumption that the heat flow at 
any point in the prime surface and in the fin remains 
constant with time.  
In this second part of our paper we will study the 
transient heat transfer in one element of 3-D system 
with rectangular fin. We transform the initial 3-D 
problem to the system of connected three one 
dimensional partial differential equations of 
parabolic type (heat equations with constant 
coefficients and linear sink term). For the solution of 
this system we propose the finite difference method. 
 
 
2   Mathematical Formulation of 3-D 
Problem  
We will start with three-dimensional formulation of 
transient problem for one element of periodical 
system with rectangular fin. Similar mathematical 
formulation for 2-D case was given in our paper [3]. 
The 2-D steady-state problem was considered in our 
paper [4]. 

 
2.1 Description of Temperature Field in the 

Wall 
We will use the same dimensionless arguments 

and parameters as in Part 1 of this paper with only 
one addition: is temperature 
conductivity coefficient for the fin (wall), where 

is specific heat capacity of the fin (wall).  
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The wall - one element of periodical system with 
rectangular fin - is placed in the 3-D domain 

[ ] [ ]{ }0, , 0,1 , [0, ]x y zδ∈ ∈ ∈ w and there the 

temperature field  is described with the 
heat equation: 
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We add to this main partial differential equation 
following boundary conditions: 
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We assume the classical conjugations conditions on 
the surface between the wall and the fin: 
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Finally we add the initial condition in form: 
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As one can see the difference between this 
formulation of the problem and the one, which is 
given in the first part of the paper is in the main 
differential equation (1) and in initial condition (8).  
 
2.2 Description of Temperature Field in the 

Fin 
  The rectangular fin occupied the domain 

[ ] [ ]{ }, , 0, , [0, ]x l y b z wδ δ∈ + ∈ ∈ and there the 

temperature field   fulfills the heat 
equation 
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We have following boundary conditions for the fin 
(they are identical with boundary conditions given in 
first part of this paper): 
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and initial condition 
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3   Approximate Transforming the 3-D 
Formulation to Transient 1-D Problem  
Again we will use our original method of 
conservative averaging. This approximate transition 
from 3-D statement to the 2-D formulation is very 
similar with the steady-state case. 
 
3.1 Reduction of the 3-D Problem to the 2-D 

Problem  
We will approximate the transient 3-D temperature 
field  for the fin in following form: ( , , , )V x y z t
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Here the three functions ( , , ),ih x y t 0,1, 2i = are 
unknown. Again we introduce the integral average 
value of function in the - direction:  ( , , , )V x y z t z

0
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The last equality together with two boundary 
conditions (at 0z = and z w= ) allow us to exclude 
all from the representation (16). Finally we 
can represent the 3-D solution for the 
fin in the form: 
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( , , , ) ( , , ) ( )V x y z t U x y t z= Ψ .                           (18) 
Here the function ( )zΨ has the expression: 
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Now we transform the differential equation (9) to 
the differential equation for the function : 
we integrate the equation (9) in the - direction. 
Finally we obtain following equation for the 2-D 
temperature field in the fin:  
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2 1 ( )w wµ β −= Ψ . 
The same procedure for the wall gives identical 
representation: 
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Here  again is the integral average value of 
function in the - direction: 
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The heat equation for two-dimensional temperature 
field for the wall takes the form identical 
to the equation (20) for the fin: 
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We need to add the averaged in the - direction 
initial conditions to the heat equations (20) and (23): 
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3.2  Reduction of the 2-D Problem to the 1-D 
Problem 

From here again we can use the conservative 
averaging method for 2-D problems with the 
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previous boundary conditions rewritten for the 2-D 
temperatures  and . This can be 
done in the way which is practically identical as in 
first part of this paper. We will approximate the 2-D 
temperature field  in the fin in the form: 
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The second integral average value of 
function  is defined as follow: ( , , , )V x y z t
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We repeat all the steps as in part 1 and we finally 
get: 
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Here the expression for the function is the 
same as in part 1: 
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Finally we have from (18) and (27) the approximate 
representation for the three dimensional temperature 
field in the fin: 

( , , , ) ( , ) ( ) ( )V x y z t u x t y z= Φ Ψ .                        
(29) 
Now we can integrate the differential equation (20) 
in the y -direction and use following boundary 
conditions (see the boundary condition (11) and 
second of boundary conditions (13)):  
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Then we obtain that the function  is the 
solution of following 1-D parabolic type partial 
differential equation: 
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This differential equation must be solved for 
( , )x lδ δ∈ +   together with the boundary condition  
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and with the initial condition 
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Both these conditions are the corollary from the 
conditions (8) and (15) after they are integrated 
(averaged) in - and - directions. y z
We act almost equally for the wall and approximate 
the 2-D temperature field  for the wall in 

- direction: 
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Now we introduce again the integral average value 
of function in - direction: 0 ( , , )U x y t x
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The equality (34) and boundary condition (2) allow 
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Here all the coefficients have the same expressions 
as in part 1: 
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By the use of boundary condition (3) for the upper 
part of the wall b<y<1 we get the connection 
between functions  and : 0 ( , )g y t 0 ( , )u y t

0 0 0( , ) ( , )g y t b u y t d0= − .                                (36) 
In expression (36): 
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(3) and second of the conditions (4) we receive the 
following equation: 
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For lower part  of the wall we use 
conditions (6), (7) and we finally get the following 
equation: 

0 y b< <

2
0

2
20

0 0 12

0
3 , .

( )

0

x

u uu y E u E xy
uD y bta

δ

λ

−

=

⎡ ⎤
⎢
⎢ ⎥⎣ ⎦

∂ ∂− +Φ + ∂∂
∂

+ = < <∂

% ⎥                     (39) 

Here 
0 2 2

2 20
3 2

1

( 1) 2, ,
( 1)

e D
e K e

β λλ µ
δ
−

= + =
−

%% 3
3 2 ,Dd

λ
= %  

0 2
0 0

0 1
1

( 2 1) ,e eE E
e K

β β
δ βδ
− −

= = . 

To differential equation (39) we must add averaged 
in - and -directions boundary condition (4) in 

form: 
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and initial condition (24), which is integrated in - 
direction: 
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This initial condition is suitable for both the 
differential equations (37) and (39). 
This problem for three partial differential equations 
(30), (37) and (39) with mentioned boundary and 
initial conditions we solve with the finite difference 
method, e.g. [5],[6]. But we haven’t conditions for 
the junction the solutions of the differential 
equations (37), (39) on the line . There is 
simple outcome: we assume the continuity of 
function (temperature) and heat flux in the 

corner point{

y b=

0 ( , )u y t

},x y bδ= = . For the junction of the 
fin and wall temperatures in this point 
{ },x y bδ= = we can use consequences from the 
equalities (6), (18), (21), (27) and (36):  

0 0 0( , ) ( ) ( , )u t b b u b t dδ Φ = − .                          (42) 
For the solution of these differential equations 
together with boundary, junction and initial 
conditions we use the classical weighted three point 
difference schemes of second order of accuracy 
according the space variables. To achieve the second 
order of accuracy for the approximation of boundary 
conditions we apply the method of using main 
differential equation on the boundary [6]. When we 
try to approximate in ordinary way the differential 
equation (39) we have untypical situation because 
this equation includes the terms with temperature 
and heat flux from the fin. This difficulty was solved 
in [3] by generalizing Gauss elimination method for 
three diagonal matrix. 

 
4   Conclusion 
We have reduced 3-D transient heat transfer 
mathematical model for one element of the 
periodical system with rectangular fin to 
approximate 1-D problem for three partial 
differential equations with constant coefficients. 
They are connected together with natural junction 
conditions. Generalization of classical finite 
difference schemes for their solution was proposed.  
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