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Abstract: This paper is concerned with problems of mean square stability of  discrete and continuous time linear 
systems parameters of which are dependent on finite-state Markov processes which are directly observed. For 
this problem new sufficient conditions are obtained. These conditions are simpler to check than the known ones.  
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1. Introduction 
Systems subject to abrupt changes or with uncertain 
dynamics can be naturally modelled as jump linear 
systems. Because of their applications in fields such 
as tracking, fault-tolerant control [9], flexible 
manufacturing processes [11], power systems [10], 
such systems have drawn extensive attention. 
Consider discrete-time linear system with 
Markovian jumps, modelled by  

                ( )x k A r k x k( ) ( ) ( )= ,                  (1) 

where ( )kr  is a Markov chain taking values in a 

finite set S { }= 1 2, ,... , s , characterised by 

constant probability matrix ( )
SjiijpP

∈
=

,
, where  

( )p r k j r k iij = + = =Pr ( ) ( )1  

and initial distribution [ ]π =
∈

p j j S
, 

p r jj = =Pr( ( ) ).0  A j( ) , j S∈  are matrices of 

size n n× . Solution of (1) with initial condition 
x x Rn( )0 0= ∈  is denoted by x k x( , , )0 π . Denote 
by X Y⊗  Kronecker product of matrices X and Y, 
and by I m  identity matrix of size m. Set of all 

eigenvalues of a square matrix Z is denoted ( )σ Z . 
In the case of symmetric matrix Z we assume that 
the elements λ λ1 ( ),... , ( )Z Zn of ( )σ Z  are 
numbered such that  λ λ1 ( ) ... ( )Z Zn≥ ≥ .  By X '  
we denote transposition of matrix X. 

Different concepts of stability of system (1) have 
been investigated in many papers, see [1]-[5]. In 
this paper we consider one of them namely mean 
square stability. Formal definition is given below. 
Definition ([1], [2]) The system (1) is called mean 
square stable, if for all initial conditions x Rn

0 ∈  
and all initial distributions π , we have  

                 lim ( , , )
k

E x k x
→∞

=0

2
0π . 

Condition for mean square stability in terms of 
solutions of certain type of coupled Lyapunov 
equation has been given in [2]. Other conditions for 
this type of stability has been proved in [5] and they 
are presented now.  
Theorem 1 [5]  System (1) is mean square stable if 
and only if  
                 ( ){ }max :λ λ σ∈ <F 1,                  (2) 

where ( ) [ ]F P I diag A A
n i i i s

= ⊗ ⊗
=

'
,...,2 1

. 

In this paper we simplify the condition (2) to obtain 
a sufficient condition for mean square stability 
which is less numerically involved.  

 
2. Main result 
This theorem completely solves the problem of 
second moment stability. However, condition (2) 
requires calculation of eigenvalues of the matrix 
which is of very high dimension ( sn2 by sn2 ). 
Therefore one may be interested in sufficient 
conditions which are given in terms of matrices of 
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lower sizes. The next theorem gives such a 
condition. 
Theorem 2 The discrete time jump linear system 
(1)  is stable if  

( )λ λ1 1
2

1
1( ' ) 'PP A Ai i

i

s

<
=

∑ .                  (3) 

In the proof we need the following two lemmas.  
Lemma 1 [6] Let X, Y, Z be square n by n 
matrices with X’=X, Y’ =Y. Then the following 
inequalities hold 

λ λ λ1 1 1( ) ( ) ( )X Y X Y+ ≤ + ,              (4) 
 

( ){ } ( )max : '
,..,i n

Z ZZ
=

∈ ≤
1 1λ λ σ λ .            (5) 

Lemma  2 [7] If A  and B  are square matrices 

and p x y c x ykl
k l

k l

p

( , )
,

=
=

∑
0

 is a complex polynomial 

of two variables, then  

( ){ }σ σ σc A B p x y x A y Bkl
k l

k l

p

⊗








 = ∈ ∈

=
∑
,

, : ( ), ( )
0

. 

Proof of the Theorem 2 From the properties of 
Kronecker product we have  

( ) ( ) ( )( )A A A A A A A Ai i i i i i i i' ' '⊗ = ⊗ ⊗ . 
This together with definition of F implies 

( ) ( )( )FF PP A A A Ai i i i
i

s

' ( ' ) ' '= ⊗ ⊗








=
∑

1

. 

By Lemma 2 we have 

( )σ FF ' = ( ) ( )( )λ λk l i i i i
i

s

PP A A A A( ' ) ' ' :⊗










 =

∑
1

 

}k n l n= =1 1 2,.., , , ... , .    (6) 

Applying (4) gives 

( ) ( )( )λ1
1

A A A Ai i i i
i

s

' '⊗






≤
=
∑  

( ) ( )( )λ1
1

A A A Ai i i i
i

s

' '⊗
=
∑ .    (7) 

 Using again Lemma 2 we get 

( ) ( )( ) ( )λ λ1 1
2A A A A A Ai i i i i i' ' '⊗ = .        (8) 

Combining (6), (7) and (8) we can bound ( )λ1 FF '  as 
follows 

( ) ( ) ( )λ λ λ1 1 1
2

1

FF PP A Ai i
i

s

' ' '≤
=

∑ .              (9) 

Now from (5) and (9) we obtain  
( ){ }max :λ λ σ∈ ≤F ( )λ1 FF ' ≤  

( ) ( )λ λ1 1
2

1

PP A Ai i
i

s

' '
=

∑  

and the proof follows from Theorem 1.  

 
3. Numerical example 
Consider system (1) with: 

P =

















0 2 0 3 0 5
0 3 0 3 0 4
01 05 0 4

. . .

. . .
. . .

,  

A1

0
0

=










α
β

, A2

0
0 0

=










α
, A3

0 0
0

=








β

 

and suppose that α β≥ > 0 . We are interested in 
values α , and β  for which system is mean square 
stable. The use of Theorem 1 requires analysis of 
eigenvalues of 12 by 12 matrix. This approach is 
very involved. To apply Theorem 2 we calculate 

( )λ1 10833PP' .≈ , λ α1 1 1
2( ' )A A = ,    

λ α1 2 2
2( ')A A = , λ β1 3 3

2( ' )A A = . 
According to (3) we know that the system is stable 
if  

α β2 22 0 9188+ < . . 
To obtain this result we had only to calculate 
eigenvalues of matrices 2 by 2 ( 3 times) and 3 by 3 
(once). 
 
4. Continuous time case 
In this section we very briefly discuss the 
continuous time systems of the form  

( ) ( )&( ) ( )x t A r t x t= ,               (10) 
where  r t( )  is a Markov process taking values in a 

finite set S { }= 1 2, ,... , s , with infinitesimal 

generator [ ]Q qij i j S
=

∈,
, and initial distribution 

[ ]π =
∈

p j j S
, p r jj = =Pr( ( ) ).0  A j( ) , j S∈  

are matrices of size n n× . Solution of (1) with 
initial condition x x Rn( )0 0= ∈  is denoted by 
x k x( , , )0 π . This system is called stable if for all 

initial conditions x Rn
0 ∈  and all initial distributions 

π , we have  

                 lim ( , , )
t

E x t x
→∞

=0

2
0π . 

Condition for mean square stability has been given 
in [8]. It is presented below.  
Theorem 3 [8]  System (10) is mean square stable 
if and only if  

( ){ }max Re :λ λ σ∈ <Fc 0 ,            (11) 

where 
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( ) [ ]F P I diag I A A Ic n n i i n i s
= ⊗ + ⊗ + ⊗

=
'

,...,2 1
. 

Using a very similar technique as in the proof of 
Theorem 2 we may show that (11) holds if  

( ) ( )max ' '
,...,i s i iA A Q Q

=
+ + + <

1 1 12 0λ λ         (12) 

or if  
max Re ( )λi G < 0,                   (13) 

where  

[ ]G diag Q Qi i s
= + +

=
2

1
α

, ... ,
'  

and 
( ){ }α λ λ λ σ λ σi k lA A k l S= + ∈ ∈ ∈max Re : ( ), ( ), ,1 2 1 2

. 

According to Theorem 3 conditions (12) and (13) 
are sufficient conditions for mean square stability of 
(10). The advantages of them over (11) are the 
same as in the discrete time case. 
 
5. Conclusions 
In this paper new sufficient condition for mean 
square stability of discrete and continuous time jump 
linear system are presented. These conditions are 
less numerically involved than the known necessary 
and sufficient conditions.  
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