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Abstract- This paper presents a new algorithm for the use of Artificial Neural Network (ANN) to estimate 
transient parameters of transformer HV winding model, known as detailed model, from frequency response 
measurements.The ANN with different structures has been discussed in this paper. It is shown that Multi-
Layers perception network with Levenberg-Markuardt training algorithm has the best performance. The 
training and test pattern of this ANN are generated by the sampling of the frequency response of a 2-part 
detailed model. To reduce the amount of needed training data for ANN, sensitivity of frequency response of 
detailed model to its transient parameters has been used. The results show that the well-trained ANN can 
precisely estimate the transient parameters of detailed model. 
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I. INTRODUCTION 
 

To study the fast and very fast transient 
phenomena in transformer HV winding, 
manufacturers provide computer programs 
which convert physical geometry and material 
characteristics into a lumped RLC network, 
known as detailed model [1] [2]. The 
parameters of this model are determined based 
on numerical field analysis method, analytical 
methods or charge simulation method. The 
ability of the detailed model to faithfully 
reproduce the transient characteristics of the 
transformer depends on accurate values of 
model parameters. In the design stage it is 
necessary to evaluate the designed transformer. 
The impulse voltage test is a known solution for 
this problem. An uneven voltage distribution 
along the winding can be anticipated using this 
test but this method is a destructive test [3] [4]. 

The transformer behavior can be 
characterized in the frequency domain by its 
frequency response too. The voltage and current 
can either be measured by frequency domain 
sweeps (Frequency Response Analysis, FRA) 
or by time domain measurements that are 

subjected to the Fourier transform. FRA, which 
is a nondestructive test, has been used to detect 
small displacements in transformer HV winding 
[5].  

This nondestructive test and artificial neural 
network (ANN) have been used in this paper to 
estimate the winding transient parameters. After 
parameter estimation of transformer winding it 
is possible to compare the results with the 
design parameters. A deviation between these 
two sets of parameters indicates a design 
problem which is detected before applying a 
destructive impulse voltage on transformer 
winding. 

The ability of ANN technique to map 
complex and highly non-linear input/output 
patterns provides an attractive solution to 
different transformers problems; e.g. 
transformer core characteristics prediction [6] 
transformer internal faults modeling [7]. Many 
papers have been published on the subject of 
transient parameters estimation, which are 
based on time [8, 9] and frequency [10, 11] 
domain measurements. This paper presents the 
application of ANN for estimation of transient 
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parameters of transformer HV winding from 
frequency response measurement data. 
 

II. TRANSFORMER HV WINDING 
DETAILED MODEL 

 
A lumped linear model of a transformer 
winding described in [1] is used as a based 
model. The Coil-by-Coil representation of the 
winding in Fig.1 shows this network. The base 
element of the model is a double coil. Each of 
the two coil (double coil) are represented by a 
self inductance ( iiL , ), a shunt resistance ( iR ), a 
series capacitance ( iK ), and a ground 
capacitance (Ce ). The mutual inductance with 
the other double coils ( jiL , ) are considered but 
not shown in Fig. 1. The Coil-by-Coil Model of 
the winding in Laplace domain can be presented 
as follows: 

][.][][ )()()( sss UYI =  (1)
 
where, 
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with ][Γ , ][G  and ][C  as inverse nodal 
inductance, nodal conductance and nodal 
capacitance matrixes, respectively. ][ )(sI  and 

][ )(sU  are nodal current and voltage vectors. 
Assuming an exciting source connected to node 
n , the only non zero element of ][ )(sI , is the 
element of the last row. Considering this point 
and solving for voltage vector of (1) we get: 
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where for simplicity jα  stands for nj UU /  and 

)(sinZ  is the input impedance of the winding. 
This equation for nj =  represents )(sinZ , the 
terminal model of the winding. 

 
Fig. 1. detailed model 

 
III. INPUT AND OUTPUT MATRIXES 

OF ANN 
 

The ability of ANN to map input/output 
patterns provides an effective solution to 
transient parameter estimation of detailed model 
shown in Fig.1. In our case the outputs of ANN 
are the parameters of the detailed model and the 
inputs include the sampled data from frequency 
response of HV winding, i.e., input impedance 
of winding, )( fZin . 

In order to cover the typical range of interest, 
the possible range of parameter variations must 
be considered. Table (1) presents this range for 
the detailed model. 
 

Table 1. The range of parameters variations 
 

Max. Value Min. value Parameter 
100 nF 0.1 nF iK  

0.01 nF 0.001 nF Ce  
10 mH 0.1 mH iL  

100 kΩ  1 kΩ  iR  

 
Considering this wide range of variations, 

unlimited frequency responses (curves) can be 
generated by the simulation of the detailed 
model. It is important to have enough data to 
yield sufficient training and test sets to train and 
evaluate the performance of neural networks 
effectively, but to reduce the amount of needed 
training data the following points must be 
considered: 

•  )( fZin  is more sensitive to iL  , iR  and 

iK  .As a result the variation steps of 
these parameters must be small and for 
the rest of parameters it must be large 

• The possible range of variations must be 
covered, 
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• The number of simulated frequency 
responses must be limited which reduces 
the size of the ANN, 

• The training and test sets must be 
different and 

• Physical and experimental results, such 
as iK >>Ce  or ijM > ikM  if kiji −<−  
must be used, too. 

The pattern space is essentially the domain 
which is defined by the sampling of data from 

)( fZ in  curves. A full-length input vector can 
theoretically produce more selective frequency 
response characteristics, but a shorted (or 
reduced) input vector, which reduces the size of 
ANN, is practically required. This reduced 
input vector must include the following 
important data: 

• Resonance frequencies, 
• Bandwidth of each resonance, 
• Minimums of )( fZin , 
• )( fZ in  at fmin and fmax and 
• The information of the mid-points which 

is located between two neighboring 
maximum and minimum points. 

For a detailed model with n nodes, r points 
must be selected from each )( fZin  curve. 
Considering the above mentioned points, r can 
be calculated with the following equation: 

16 += nr  (4)
Each point of )( fZin  has the frequency (f) 

and amplitude (Z) information. As a result each 
pattern (P) has 2r rows. The general form of i-
th pattern, Pi, is as follows: 

[ ] ki
T
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Where k is the number of frequency responses 
(patterns) which is required for training. Now 
the input matrix of P can be defined as follows: 

[ ] KRKPPPP *21 .....=  (6)
 

To present the output matrix, first of all the 
following parameters vectors must be defined 
for a detailed model with n nodes. 
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The pattern Pi can be generated by using the 
parameters given in ii

e
ii RCKL ,,,  and iM . 

Now the output matrix can expressed by the 
following equation: 
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To increase the speed of data processing, the 

following equation has used for normalizing the 
inputs before training of the ANN. Thus, the 
values of parameters for all the samples fall in 
the range of [-1, 1]. 

12
minmax

min −
−

−
×=

yy
yyyNor  (13)

As a result instead of P and T now the 
matrixes Pnormalized and Tnormalized must be 
respectively used. 
 

IV. ANN BASED PARAMETER 
ESTIMATION 

A. Training 
 

The ANN must be trained for the parameter 
estimation of the detailed model. This training 
procedure must be repeated for each type of 
transformer winding (or P matrix) and the 
results (or T matrix) are valid only for that type 
of winding. As a case study and for reasons of 
presentation simplicity, a 2-part detailed model, 
shown in Fig.2, is studied in this paper. 

 
Fig. 2. 2-part detailed model 
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The input impedance amplitude of this 2-part 
detailed model is shown in the Fig.3 (solid 
curve). Considering the approach explained in 
part III of the paper, the sampled data from this 
curve have been selected. These points are 
shown in Fig. 3 by circles. The dashed curve in 
this figure presents on approximation for the 
original curve. In this case r is equal to 13, P 
has a dimension of 26*k and the output vector is 
given by the following equation: 
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11
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1
2

1
1

1
2

1
1

1
2

1
11 ×=  

(14) 
 

As it can be seen the dimension of the vector 
T1 is 9*1 and therefore the ANN should have 9 
neurons in the last layer. 

 
Fig. 3. frequency response of 2-part detailed model 

 
B. ANN Structure 
 

The MLP (Multi-Layer Perceptron) neural 
networks with the training algorithm of BP 
(Back Propagation) have been successfully used 
for classification, Recognition, internal 
representation, encoding, identification and 
control of systems. The results of researches 
verify the capability of this method in these 
fields [12]. Considering this point and the 
structure of the input data, BBP (Batching Back 
Propagation) algorithm has been used for 
training. The selection of the best ANN 
structure (with a minimum learning error) is 
open issues and has to consequently be 
determined by experimentation involving 
training and testing various MLP network 
configurations. 

Table 2 presents the BP algorithms and their 
descriptions which have been considered in this 
paper. 

 
Table 2. BP algorithms 

 

Description Function 
Basic gradient descent. Slow response, 

Can be used in incremental mode 
training. 

GD (traingd) 

Gradient descent with momentum. 
Generally faster than GD. Can be used 

in incremental mode training. 

GDM 
(traingdm) 

Adaptive Learning rate (variable 
learning rate). Faster training than GD, 

but can only be used in batch mode 
training. 

CDA 
(traingda) 

GDX 
(traingdx) 

Levenberg-Marquardt algorithm. 
Fastest training algorithm For networks 

of moderate size. Has memory 
reduction feature 

For use when the training set is Large. 

LM (trainlm) 

 
The suggested structure of ANN for the 
parameter estimation of the 2-part detailed 
model has been shown in Fig. 4. This structure 
has had minimum learning errors among 
different configurations and has following 
features: 
 

 
Fig.4. suggested ANN structure 

 
• It has 3 layers, 
• Exciting function of inner layer is a 

tansig (tangent sigmoid) type, 
• The last layer type is purelin (linear) and 
• The first layer has 18 neurons and the 

inner and the last layers have 10 and 9 
neurons, respectively. 

Fig. 5 shows the learning process of the 
suggested ANN using LM algorithm. 

As it can be seen, after 4250 epochs there are 
no changes in training error and the final error 
is about 2.5 percent, which shows an acceptable 
performance. 
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Fig. 5. learning process; LM algorithm. 

 
The performances of BP algorithms have 

been compared based on the training errors. The 
comparison results are listed in Table 3. It is 
obvious that the selection of LM training 
function is the best selection. 
 

Table 3. comparison of BP algorithms 
 

Training Error 

% 
Epoch 

Training 

function 

2.5 5000 LM 

16.6 5000 GDX 

16.3 5000 GDA 

20.8 5000 

16.8 50000 

14.8 200000 

GDM 

23.6 5000 

14.5 300000 
GD 

 
C. Testing 

 
Two sets of test parameters are listed in 

Table 4. These parameters have been used to 
generate 2 frequency responses for 2-part 
detailed model. 

The suggested ANN has been tested by these 
curves to evaluate the performance and ability 
of the parameter estimation algorithm. The 
results of parameters estimation are listed in the 
same table too. The comparison of tested and 
estimated parameters verifies the effectiveness 
of the proposed ANN. 

 
 

Table 4. Input and estimated parameters 
 

Error % Estimated 
parameters 

Test 
data Parameter No. 

2.5  7.175e-3 7e-3 L1(H)  1  
3.2  9.68e-3 10e-3 L2(H) 2 
3.4  28.98e-9 30e-9 K1(F) 3 
2.8  71.96e-9 70e-9 K2(F) 4 
2.7  29.19e3  30e3 R1(ohm) 5 
1.6  49.20e3 50e3 R2(ohm) 6 
5.1  3.796e-12 4e-12 Ce1(F) 7 
4.6  4.184e-12 4e-12 Ce2(F) 8 
2.3  2.93e-5  3e-5 M(H) 9 
2.1  2.937e-3 3e-3 L1(H) 1 
3.5  5.175e-3 5e-3 L2(H) 2 
3.1  20.62e-9 20e-9 K1(F) 3 
2.2  51.10e-9  50e-9  K2(F) 4 
2.3  20.46e3 20e3 R1(ohm) 5 
2.1  30.63e3 30e3 R2(ohm) 6 
4.9  5.706e-12  6e-12  Ce1(F) 7 
5.6  7.392e-12 7e-12 Ce2(F) 8 
2.5  6.15e-5 6e-5 M(H) 9 

 
V. CONCLUSION 

 
A new algorithm for the use of ANN to estimate 
the transient parameters of transformer HV 
winding from frequency response 
measurements has been presented in this paper. 
The frequency response method is a non-
destructive measuring method. Therefore after 
parameter estimation it is possible to compare 
the results with design parameters and a 
deviation between these two sets of parameters 
indicates a design problem which is detected 
before applying a destructive impulse voltage 
on transformer winding. 

This idea can be used for the transformers 
installed in substations, too. The estimated 
parameters and as built/design parameters can 
be different because of mechanical 
displacements in transformer windings. 
As a case study a 2-part detailed model has 
been studied in this paper. From the comparison 
of the tested and estimated results, it is 
concluded that the proposed NN using LM 
training algorithm can provide an accurate 
estimation for the transient parameters of 
transformer HV winding. 
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