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ABSTRACT
The aim of data and task parallel scheduling for dense
linear algebra kernels is to minimize the processing time
of an application composed by several linear algebra ker-
nels. The scheduling strategy presented here combines the
task parallelism used when scheduling independent tasks
and the data parallelism used for linear algebra kernels.
This problem has been studied for scheduling indepen-
dent tasks on homogeneous machines. Here it is proposed
a methodology for heterogeneous clusters and it is shown
that significant improvements can be achieved with this
strategy.
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1 Introduction

The aim of the work herein presented is to improve the
performance of heterogeneous clusters in the processing
of applications composed by linear algebra kernels. The
optimization of the processing time of a given parallel
application is achieved by obtaining an optimal schedul-
ing for the tasks that form the algorithm. Static schedul-

ing methods use Directed Acyclic Graphs (DAGs) to de-
scribe parallel algorithms, where the tasks to process
and the precedence among them are represented by an
acyclic graph. The scheduling consists on the distrib-
ution of the DAG nodes among the machine nodes, so
that themakespanis minimum, this is the total length
of the schedule. Finding a scheduling that minimizes the
processing time of the parallel algorithm is a NP-complete
problem [12]. Therefore, since the optimal scheduling is
not feasible to obtain, many researchers have presented
heuristic algorithms [1, 15, 21, 25]. These algorithms ex-
ploit the task parallel paradigm, this is one task to one
processor.

The parallel implementation of dense linear algebra
kernels in a distributed memory computer (cluster) con-
sists in rewriting state of the art sequential algorithms in
order to extract their intrinsic parallelism [10], by using
the data parallel model. These kernels are highly con-
strained, having a predefined pattern of computation and
communication, limiting the advantages of a DAG repre-
sentation and the scheduling methods. Another approach
more efficient for linear algebra kernels is to apply data
parallelism by determining beforehand which data ele-
ment goes to each processor. Several studies present solu-
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tions for homogeneous as well as heterogeneous clusters
[3, 6, 8].

The approach presented in this paper mixes both so-
lutions referred to above, this is, task parallel and data
parallel scheduling. The DAG represents an algorithm
to be scheduled as a task parallel paradigm where each
task can be a dense linear algebra kernel. Each task can
be itself scheduled as a data parallel paradigm. This ap-
proach is also called as scheduling malleable tasks, this is
scheduling tasks that can be executed on any number of
processors with its execution time being a function of the
number of processors alloted to it [18, 26, 14, 16].

The remaining of the paper is organized as follows:
section 2 revises related work in scheduling DAGs, sec-
tion 3 presents the methodology used in this paper, section
4 presents results and section 5 conclusions.

2 Scheduling strategies

The mixed scheduling strategy, combination of task and
data parallel scheduling, appears to be a promising way
to achieve better performance with dense linear algebra
tasks. In order to obtain a methodology for the mixed
scheduling it is required to explore the many heuristics
developed for scheduling DAGs and the scheduling strate-
gies used for the data parallelism paradigm on heteroge-
neous clusters.

2.1 Task scheduling

Task scheduling methods represent a parallel program by
a DAG [20] such as the one of Figure 1. The nodes rep-
resent tasks to compute and the edges establish the prece-
dence among tasks. In these graphs there is no cycles so
that the path is always directed.

In the DAG of Figure 1 there are4 paths of processing,
starting from the tasks of the first level to the last one.
The longest path, corresponding to the most computation
complexity, determines the total processing time of the
algorithm and is called thecritical path.

To obtain a scheduling for the parallel algorithm it is re-
quired to define the computational costCj of each DAG
taskTj (j = {1, ...,m}, wherem is the number of tasks),
and their communication requirements, for each proces-
sor of the machinePi (i = {1, ..., P}, whereP is the
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Figure 1: Direct Acyclic Graph

number of processors). The aim of the scheduling method
is to minimize the total computational time which is a NP-
complete problem [12]. Therefore, many researchers have
presented heuristic algorithms to find a sub-optimal solu-
tion.

In the general case the cluster is built by machines of
distinct processing capacities, i.e. heterogeneous clusters,
where the homogeneous cluster is a particular case. The
heuristics referred to below were proposed for homoge-
neous systems.

Task scheduling heuristics are based on thecritical path
(CP) analysis, and try to obtain a scheduling so that tasks
on the CP determine the shortest possible execution de-
lay for the whole program [21]. Another approach that
take in consideration other DAG characteristics, called
List Scheduling, creates a list of schedulable DAG nodes
according to some priority assigned to each node. Then,
until all nodes are scheduled, selects the node with high-
est priority and assign it to the processor that is most
appropriated to process it. In [21] two list scheduling
algorithms are presented: the Heavy Node First (HNF),
that is based on a local analysis of each DAG level, and
the Weighted Length (WL), that achieves better results
and considers a global view of the DAG taking into ac-
count the relationship among nodes at different levels. In
[23] several contention aware list scheduling heuristics
are compared.

For heterogeneous systems there is also a considerable
collection of heuristics that have been proposed. Some
of them are referred next. In [17] a heuristic called Best
Imaginary Level (BIL) is presented, which consists in
defining the priority of each task in each DAG level. The
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tasks are them sorted by decreasing priority and executed
by this order. In [24] two heuristics are presented, the
Heterogeneous Earliest Finish Time (HEFT) and the Crit-
ical Path on a Processor (CPOP) which are very similar.
Both determine the tasks computational priority at each
DAG level but use different criteria to select the processor
to each task. In [22] the heuristic Generalized Dynamic
Level (GDL) is presented. Boudet in [7] compares the
heuristics referred to above.

In [9] static scheduling heuristics for independent tasks
on heterogeneous clusters are described and compared.
They have no precedence restrictions. From the heuristics
that were compared the most successful ones are Max-
Min, Min-Min and Genetic Algorithm.

In our study, the first algorithm to be defined imple-
ments only task parallelism. As a first approach, the HNF
algorithm is used to process the DAG and the max-min
heuristic is used to schedule on heterogeneous clusters.
Although HNF is not the best algorithm it gives better
results then the Critical Path analysis and is the sim-
plest to implement. The algorithm is described as follows:

Algorithm1. First, use HNF algorithm to obtain on
each DAG level the list of independent tasks ordered by
priority; in this case, the priority is given by the compu-
tational complexity. Second, for each set of independent
tasks use max-min heuristic to obtain a schedule for the
heterogeneous cluster.

2.2 Scheduling with data parallelism

The schedule in a data parallel implementation of a linear
algebra kernel consists in determining the data elements
to assign to each processor in the cluster. In a homoge-
neous cluster the block cyclic distribution is used [10, 11]
and guarantees that the computational complexity is uni-
formly distributed among the processors. Therefore, the
load balancing can be achieved, minimizing the process-
ing time of the linear algebra kernel.

On heterogeneous clusters the parallel implementation
of a linear algebra algorithm presents additional difficul-
ties when compared to other classes of algorithms. Due
to the fact that the computational load for data matrix
columns increases along the matrix [3], a fine tuned load
assignment and distribution is required. In [3, 6, 8] two

static scheduling algorithms are proposed in order to min-
imize the processing time. These algorithms estimate the
processing time of the linear algebra kernels based on the
following computational model.

2.2.1 Computational model

The computational platform is a distributed memory ma-
chine composed byP processors of possibly different
processing capacities (heterogeneous cluster), connected
by a switched Ethernet. The computational model that
supports the estimation of the processing time, for each
task, is based on the processing capacitySi of processor
i (i ∈ [0, P − 1]) measured inMflop/s, the network
latencyTL and bandwidthω measure inMbit/s. The
TCP/IP protocol divide the messages into packets, being
required to considerk latency times for a message divided
into k packets. The total computation time is obtained
by summing the time spent communicatingTC and the
time spent in parallel operationsTP . The time required to
transmit a message ofb elements isTC = kTL + bω−1.
The time required to compute the pure parallel part of the
code, without any sequential part or synchronization time,
on P processors isTP = f(n)/

∑P

i=1
Si. The numera-

tor f(n) is the cost function of the algorithm measured in
floating point operations. As an example, for a matrix-
matrix multiplication of(n, n) matrices,f(n) = 2n3.

The second algorithm to be defined implements only
data parallelism. It is assumed that the application is
represented by a DAG and it is regular, this is there exists
dependencies among tasks and the execution time can
be estimated at compile time or before starting processing.

Algorithm2. First, order the processors by decreasing
processing capacitySi. For all tasks, use the computa-
tional model to estimate the processing time when using
from 1 toP processors. Choose the number of processors
that give the minimum processing time for the task (the
fastest ones). Second, use the HNF algorithm to deter-
mine the order by which the tasks are executed.

2.3 Data and task parallelism

The idea of combining task and data parallelism is based
on the fact that individual tasks of an application may not
use the computational power available on a distributed
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memory multicomputer, because with data parallelism
the performance improvement does not increase signifi-
cantly when more processors are used. Better results are
achieved if the number of processors used on each data
parallel task are controlled and if the tasks are concur-
rently executed. In [19] this methodology is studied as a
compiler optimization. In [2] it is compared four systems
that explore the use of task and data parallelism.

As referred to above this approach is also called as
scheduling malleable tasks. The existing work is for ho-
mogeneous computers and is based on a two phase solu-
tion. First, selection of an allotment for each task and sec-
ond, solve the resulting non-malleable scheduling prob-
lem, which is similar to a 2-d strip packing problem.
A non-malleable task is such that it requires a specific
number of processors for a specific units of time. In
[26] it is presented an efficient low cost scheduling of in-
dependent malleable tasks on homogeneous clusters, di-
vided in the two phases referred to above. In the second
phase it is used a simple list algorithm. It is assumed
that the time for executing a task is a non-increasing
function of the processors used. In [18] it is proposed
two polynomial-time approximation algorithms for inde-
pendent non-malleable and malleable tasks with linear
speedup and individual deadlines. The aim is to maxi-
mize the total work performed by the tasks which com-
plete their executions before deadlines. In [14] it is pro-
posed an asymptotic fully polynomial time approximation
scheme for scheduling a set ofn independent malleable
tasks on an arbitrary numberm of identical processors.
In [5] it is proposed a polynomial algorithm for schedul-
ing preemptive parallel tasks for the case of processor
availability only in restricted intervals of time. In [16]
it is presented an approximation algorithm for scheduling
dependent malleable tasks restricted to the structure of a
tree. The problem is formulated as a constrained allot-
ment problem, and solved using a dynamic programming
algorithm for the case of trees. In this case the two phases
are merged into one.

The problem studied in this paper differs from the
work referred to above mainly in two aspects. First, the
processing time does not decrease always as the number
of processors increases and second, the target cluster is
heterogeneous. Section 3 presents this scheduling algo-
rithm.

3 Scheduling parallel tasks

On the heterogeneous cluster, contrary to the homo-
geneous case, assigning one processor to a task may
influence the processing time of another that will execute
simultaneously, because the remaining processors may
have less capacity. If the computational model is used to
compute the set of processors for each task as in Algo-
rithm2, it would produce unrealistic scheduling because
it is selecting the fastest ones for all tasks. The approach
proposed here (Algorithm3) estimates the processing
capacity that minimizes the execution of each task,
called best processing capacity (BPC), independently
of the processors required to achieve that capacity. It is
important to note that less or more capacity thanBPC
may result in an increase of the task processing time.

Algorithm3. First, for all tasks, estimate the (BPC).
Second, use the HNF algorithm to determine the order by
which the tasks are executed.

The best processing capacity (BPCj) of task j indi-
cates the processing capacity to use in order to minimize
its processing time on the heterogeneous cluster. The aim
is not to specify the processors to use but the capacity re-
quired by each task. Since the processors to be used are
not known a priori, the computation is based on an aver-
age processor capacity (SM ), so that anear optimalesti-
mation is obtained. The following equations defineSM .

ST =

P∑

i=1

Si (1)

SM =
ST

P
(2)

On equation 1 and 2,ST is the total processing capacity
andP the number of processors available on the hetero-
geneous cluster. The machine is now considered homo-
geneous withP processors ofSM capacity. For each task
j, the estimated processing time is computed, when us-
ing from 1 to P processors, based on the computational
complexity f(n) of the task. For each machine added,
the processing capacity increases bySM Mflops and
the number of machines used by 1. This influences the
estimation of the processing time by reducing the par-
allel execution time and by increasing the communica-
tions required to process the task. If the minimum is
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found forp processors, then the best processing capacity
isp∗SMMflops. This estimation is not so accurate as the
one made by Algorithm2 but it gives an estimation closed
to the capacity required for the task so that it is useless to
use more capacity. If the standard deviation of processor
capacity is high it may be required a second step, this is,
a reevaluation ofSM with a number of processors around
p, the last solution.

The scheduling problem is now reduced to the schedul-
ing of independent tasks, that require a specific processing
capacity, and restricted to the maximum processing ca-
pacity available on the machine (ST ). This is a 2-d pack-
ing problem [13].

The packing heuristic used is similar to the BLF (Bot-
tom Line Fill) with a particular modification; it is allowed
to overload the machine if only 10% of the task is above
ST . The practical effect is an increase on the task process-
ing time. The BLF algorithm with this modification is: a)
select the heaviest task and put it at the bottom line; b) if
more than 10% of the task is overST , then select the next
heaviest task; c) go back to a) until all tasks are placed.

Note that if one single task requires more than
ST Mflops, it would be scheduled to execute alone in
the machine. In this case Algorithm3 is reduced to Al-
gorithm2.

Figure 2 shows an example of independent tasks to be
scheduled. The block height represents theBPC com-
puted for the task (Mflops) and the block length repre-
sents the processing time of the task whenBPC is used.

Figure 2: Example of tasks to schedule

For each task, the processors are selected until the sum
of their capacities is approximated to theBPC capac-
ity required. Figure 3 illustrates the assignment of the
scheduling algorithm for the 6 independent tasks of Fig-

ure 2. Only two tasks are executed in the first stage, and
one of them overloads the machine. Since the overload is
below a threshold (considered here to be 10%) the option
was to use less capacity thanBPC and therefore extend
the processing time. After that the machine is never used
at full load because the starting time of tasks were post-
poned.

Figure 3: Scheduling example

It is important to note that the groups of processors
used may change between DAG levels (sets of indepen-
dent tasks). The scheduler keeps a record of the instant
each processor will be free due to computations from for-
mer levels, so that it can see the machine as a whole and
select the capacity that will minimize the processing time
for the actual DAG level.

4 Results

This section presents results of the comparison of the
scheduling methods described above for a heterogeneous
machine composed by 40 processors, connected by a
100Mbit Ethernet. Figure 4 shows the processors capac-
ities. The results where obtained by simulating in Mat-
lab the cluster behavior and by estimating the processing
time of the dense linear algebra kernels as exposed in [4],
which uses the computational model present above. The
compared methods were:

• Task scheduling, described by Algorithm1;

• Process one task at a time on the cluster in a data
parallel implementation, described by Algorithm2;

• Combination of task and data parallelism, described
by Algorithm3.
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The results presented are referred to the DAG of Fig-
ure 5 that is a common one on the computer vision field.
The input for each path are matrices that can be of dif-
ferent sizes. The DAG nodes are linear algebra kernels,
namely LU factorization (T1, T4), tridiagonal reduction
(T2, T5) and QR reduction (T3, T6). The last task com-
putes the correlation between the results of the two inde-
pendent paths.

Figure 4: Processing capacity of the heterogeneous com-
puter nodes

Figure 5: DAG for the matching algorithm

The test cases were matrices of different dimensions,
from few hundreds to thousands of elements, and different
combinations in the same problem in order to observe the
scheduler behavior.

Figure 6 shows results for matrices of small size. For
those matrix dimensions the processing times are small
but it can be seen the significant difference between Algo-
rithm1 and the other two. This is, the exclusively task par-
allel scheduling is the worst, as expected, since each task

Figure 6: Comparison of algorithms 1, 2 and 3

is computed by only one processor. Increasing the matrix
dimension this difference is amplified, therefore to keep
the graphs readable it was decided to not include results
for Algorithm1 for higher dimension problems. Figure
7 shows results comparing Algorithm2 and Algorithm3
when the input matrices are greater than25002 elements.
It can be seen that Algorithm3 achieves always better re-
sults than Algorithm2.

Figure 7: Comparison of algorithms 2 and 3

To measure the improvement achieved by Algorithm3
anImprovement index is defined according to equation
3. Figure 8 shows the improvement in percentage. A de-
tailed analysis of the results leads to the conclusion that
the improvement is bigger when the two input matrices
are of similar size.

Improvement =
TAlgorithm2 − TAlgorithm3

TAlgorithm2

(3)
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When there is a significant difference between the two
matrices, the biggest determines the total processing time
and the improvement is mainly due to the smaller ma-
trix. The processing time of the smaller matrix is less
significant to the total processing time and therefore the
improvement is also less significant.

When they are of similar size, the improvement is of the
same scale as the matrix that imposes the total processing
time, and therefore the improvement is more significant.

Figure 8: Improvement achieved withAlgorithm3

From Figure 8 it can be seen that the improvement
achieved for the DAG of Figure 5 is always above 9.5%
and goes as high as 22.8%. This shows that the scheduling
obtained with Algorithm3 achieves better performances
on heterogeneous clusters. The amount of improvement
achieved depends on the machine size and on how well
the independent tasks can maximize the machine capacity
as shown before in Figure 3.

In order to test the methodology for DAGs with other
configurations, some tests were carried out for the DAGs
of Figure 9. Results for DAG1, presented in Figure 10,
were taken for a machine with 45 processors andSM =
805Mflop. The cases tested refer to tasks whose ma-
trices sizes were [1000,2000], [1000,1000], [1000,1500],
[3000,4000], [3000,5000] for case 1, 2, 3, 4 and 5 respec-
tively. The improvements achieved were 33.8%, 51.3%,
41.8%, 11.0% and 1.7% respectively. Again, the improve-
ments were significant for all cases except case 5. For the
latter the machine capacity is too low in order to allow
task parallelism, resulting in a schedule equivalent to Al-
gorithm2.

Results for DAG2, presented in Figure 11, were taken
for a machine with 50 processors andSM = 700Mflop.
The cases tested refer to tasks whose matrices sizes were
[3000,4000], [3000,3000], [2500,5000] and [4000,5000]
for case 1, 2, 3, 4 and 5 respectively. The improvements
achieved were 19.9%, 21.4%, 16.8%, 16.2% and 10.3%
respectively. Again, the improvement was positive in all
cases.

Figure 9: DAGs to test the scheduling methodology

Figure 10: Results for DAG1

5 Conclusions

In this paper, two static scheduling strategies were com-
pared, namely data parallelism and a mixed task and data
parallelism (malleable tasks), proposed here for heteroge-
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Figure 11: Results for DAG2

neous clusters. The DAGs considered are composed by
dense linear algebra kernels.

From the simulation results obtained for a heteroge-
neous cluster it can be concluded that the mixed strat-
egy that combines task and data parallelism achieves bet-
ter performance in the execution of the DAGs considered,
mainly due to a better resource utilization. The amount of
capacity, inMflops, that minimizes the processing time
of each task is computed. Then, the algorithm allocates
capacity for all tasks, instead of processors, restricted by
the maximum capacity available. Depending on the re-
quirements of each task and the capacity available, the
resulting schedule can achieve high improvements if it
can execute more than one task simultaneously, using data
parallelism. In the worst case, the result is the execution
of only one task at a time, using data parallelism.

The mixed strategy proposed does not require a sta-
tic subdivision of processors. The groups of processors
into which the machine in divided in each DAG level can
change from one level to the other, thus allowing a better
use of the machine and consequently achieving improve-
ments in processing time.
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