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ABSTRACT ing methods use Directed Acyclic Graphs (DAGS) to de-
The aim of data and task parallel scheduling for denseribe parallel algorithms, where the tasks to process
linear algebra kernels is to minimize the processing timmad the precedence among them are represented by an
of an application composed by several linear algebra kacyclic graph. The scheduling consists on the distrib-
nels. The scheduling strategy presented here combineatfien of the DAG nodes among the machine nodes, so
task parallelism used when scheduling independent tatiat themakesparis minimum, this is the total length
and the data parallelism used for linear algebra kernad§the schedule. Finding a scheduling that minimizes the
This problem has been studied for scheduling indepgrrecessing time of the parallel algorithm is a NP-complete
dent tasks on homogeneous machines. Here it is propogeablem [12]. Therefore, since the optimal scheduling is
a methodology for heterogeneous clusters and it is shomot feasible to obtain, many researchers have presented
that significant improvements can be achieved with tHiguristic algorithms [1, 15, 21, 25]. These algorithms ex-
strategy. ploit the task parallel paradigm, this is one task to one

processor.
KEYWORDS

static scheduling, parallel tasks, heterogeneous clusters.The parallel implementation of dense linear algebra
kernels in a distributed memory computer (cluster) con-
sists in rewriting state of the art sequential algorithms in
1 Introduction order to extract their intrinsic parallelism [10], by using
the data parallel model. These kernels are highly con-
The aim of the work herein presented is to improve ttstrained, having a predefined pattern of computation and
performance of heterogeneous clusters in the processingimunication, limiting the advantages of a DAG repre-
of applications composed by linear algebra kernels. Thentation and the scheduling methods. Another approach
optimization of the processing time of a given parall@hore efficient for linear algebra kernels is to apply data
application is achieved by obtaining an optimal schedydarallelism by determining beforehand which data ele-
ing for the tasks that form the algorithm. Static scheduhent goes to each processor. Several studies present solu-
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tions for homogeneous as well as heterogeneous clusters
[3, 6, 8].

The approach presented in this paper mixes both so-
lutions referred to above, this is, task parallel and data
parallel scheduling. The DAG represents an algorithm
to be scheduled as a task parallel paradigm where each
task can be a dense linear algebra kernel. Each task can
be itself scheduled as a data parallel paradigm. This ap-
proach is also called as scheduling malleable tasks, this is e °
scheduling tasks that can be executed on any number of
processors with its execution time being a function of the
number of processors alloted to it [18, 26, 14, 16].

The remaining of the paper is organized as follows:
section 2 revises related work in scheduling DAGs, sec- . .
tion 3 presents the methodology used in this paper, sectit] bgr .Of processors). The am of thg schedglmg method
4 presents results and section 5 conclusions. IS to minimize the total computational time which is a NP-

complete problem [12]. Therefore, many researchers have
presented heuristic algorithms to find a sub-optimal solu-
2 Scheduling strategies ton.

In the general case the cluster is built by machines of

The mixed scheduling strategy, combination of task agéstinct processing capacities, i.e. heterogeneouseck)st
data parallel scheduling, appears to be a promising wakere the homogeneous cluster is a particular case. The
to achieve better performance with dense linear algethetristics referred to below were proposed for homoge-
tasks. In order to obtain a methodology for the mixgdeous systems.
scheduling it is required to explore the many heuristics Task scheduling heuristics are based orctiteeal path
developed for scheduling DAGs and the scheduling stra(EP) analysis, and try to obtain a scheduling so that tasks
gies used for the data parallelism paradigm on heteroge-the CP determine the shortest possible execution de-

Figure 1: Direct Acyclic Graph

neous clusters. lay for the whole program [21]. Another approach that
take in consideration other DAG characteristics, called
21 Task scheduling List Scheduling, creates a list of schedulable DAG nodes

according to some priority assigned to each node. Then,
Task scheduling methods represent a parallel programusyil all nodes are scheduled, selects the node with high-
a DAG [20] such as the one of Figure 1. The nodes regst priority and assign it to the processor that is most
resent tasks to compute and the edges establish the prapgropriated to process it. In [21] two list scheduling
dence among tasks. In these graphs there is no cycleglgorithms are presented: the Heavy Node First (HNF),
that the path is always directed. that is based on a local analysis of each DAG level, and

In the DAG of Figure 1 there arépaths of processing,the Weighted Length (WL), that achieves better results
starting from the tasks of the first level to the last on&nd considers a global view of the DAG taking into ac-
The longest path, corresponding to the most computat@e@unt the relationship among nodes at different levels. In
complexity, determines the total processing time of t§23] several contention aware list scheduling heuristics
algorithm and is called theritical path. are compared.

To obtain a scheduling for the parallel algorithmitis re- For heterogeneous systems there is also a considerable
quired to define the computational ca@st of each DAG collection of heuristics that have been proposed. Some
taskT} (j = {1, ..., m}, wherem is the number of tasks),of them are referred next. In [17] a heuristic called Best
and their communication requirements, for each procésyaginary Level (BIL) is presented, which consists in
sor of the machine®; (i = {1,..., P}, whereP is the defining the priority of each task in each DAG level. The
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tasks are them sorted by decreasing priority and execuséatic scheduling algorithms are proposed in order to min-
by this order. In [24] two heuristics are presented, tlmize the processing time. These algorithms estimate the
Heterogeneous Earliest Finish Time (HEFT) and the Crjirocessing time of the linear algebra kernels based on the
ical Path on a Processor (CPOP) which are very simil&ollowing computational model.
Both determine the tasks computational priority at each
DAG level but use different critgrig to select.the Processeh 1 Computational model
to each task. In [22] the heuristic Generalized Dynamic
Level (GDL) is presented. Boudet in [7] compares thEhe computational platform is a distributed memory ma-
heuristics referred to above. chine composed by’ processors of possibly different
In [9] static scheduling heuristics for independent tasRsocessing capacities (heterogeneous cluster), corthecte
on heterogeneous clusters are described and compdp¥ca switched Ethernet. The computational model that
They have no precedence restrictions. From the heurisgtgports the estimation of the processing time, for each
that were compared the most successful ones are Mgk, is based on the processing capasitpf processor
Min, Min-Min and Genetic Algorithm. i (i € [0,P — 1]) measured inM flop/s, the network
In our study, the first algorithm to be defined impldatency7;, and bandwidthv measure inMbit/s. The
ments only task parallelism. As a first approach, the HNFCP/IP protocol divide the messages into packets, being
algorithm is used to process the DAG and the max-mi@quired to consider latency times for a message divided
heuristic is used to schedule on heterogeneous clusté#® & packets. The total computation time is obtained
Although HNF is not the best algorithm it gives bettddy summing the time spent communicatiiig and the
results then the Critical Path analysis and is the siifime spentin parallel operatiofi$-. The time required to
plest to implement. The algorithm is described as followansmit a message éfelements i = k77, + bw ™.
The time required to compute the pure parallel part of the
Algorithm1. First, use HNF algorithm to obtain oncode, without any sequential part or synchronization time,
each DAG level the list of independent tasks ordered by P processors i§p = f(n)/ >, S;. The numera-
priority; in this case, the priority is given by the computor f(n) is the cost function of the algorithm measured in
tational complexity. Second, for each set of independdl@ating point operations. As an example, for a matrix-
tasks use max-min heuristic to obtain a schedule for ttrix multiplication of(n, n) matrices,f(n) = 2n®.
heterogeneous cluster. The second algorithm to be defined implements only
data parallelism. It is assumed that the application is
represented by a DAG and it is regular, this is there exists
22 Scheduling with data parallelism gepen.dencies among ta_sks and the exegution time_can
e estimated at compile time or before starting processing.
The schedule in a data parallel implementation of a linear
algebra kernel consists in determining the data elemeAigiorithm2. First, order the processors by decreasing
to assign to each processor in the cluster. In a homogescessing capacity;. For all tasks, use the computa-
neous cluster the block cyclic distribution is used [10, 11ipnal model to estimate the processing time when using
and guarantees that the computational complexity is ufiiem 1 to P processors. Choose the number of processors
formly distributed among the processors. Therefore, tit give the minimum processing time for the task (the
load balancing can be achieved, minimizing the proceastest ones). Second, use the HNF algorithm to deter-
ing time of the linear algebra kernel. mine the order by which the tasks are executed.
On heterogeneous clusters the parallel implementation
qf a linear algebra algorithm presents additior!al difficuts Data and task parallelism
ties when compared to other classes of algorithms. Due
to the fact that the computational load for data matrixhe idea of combining task and data parallelism is based
columns increases along the matrix [3], a fine tuned load the fact that individual tasks of an application may not
assignment and distribution is required. In [3, 6, 8] twase the computational power available on a distributed
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memory multicomputer, because with data parallelisn  Scheduling parallel tasks

the performance improvement does not increase signifi-

cantly when more processors are used. Better results@fe the heterogeneous cluster, contrary to the homo-

achieved if the number of processors used on each d#@8€ous case, assigning one processor to a task may

parallel task are controlled and if the tasks are conciltfluence the processing time of another that will execute

rently executed. In [19] this methodology is studied assémultaneously, because the remaining processors may

compiler optimization. In [2] it is compared four systemBave less capacity. If the computational model is used to

that explore the use of task and data parallelism. compute the set of processors for each task as in Algo-
rithm2, it would produce unrealistic scheduling because

As referred to above this approach is also called gsq selecting the fastest ones for all tasks. The approach
scheduling malleable tasks..The existing work is for hB’roposed here (Algorithm3) estimates the processing
mogeneous computers and is based on a two phase sllgacity that minimizes the execution of each task,
tion. First, selection of an allotment for each task and se¢yjjoq pest processing capaciti PC), independently
ond, solve the resulting non-malleable scheduling profr he processors required to achieve that capacity. It is

lem, which is similar '_‘O a 2-d St“P pack_ing prOble”_‘important to note that less or more capacity tHaRC
A non-malleable task is such that it requires a Specific, resyit in an increase of the task processing time.
number of processors for a specific units of time. In

[26] it is presented an efficient low cost scheduling of irklgorithms. First, for all tasks, estimate theB@C).

dependent malleable tasks on homogeneous clusterssgléond, use the HNF algorithm to determine the order by

vided in the two phases referred to above. In the secqpflich the tasks are executed

phase it i; used a simpl.e list algorithm. It is. assun"!edThe best processing capacitgPC;) of task j indi-

]Ehat the t'fmﬁ for executing a task is a non-increasingyes the processing capacity to use in order to minimize
unction of the processors used. In [18] it is proposed ,,cessing time on the heterogeneous cluster. The aim
two polynomial-time approximation algorithms for indejg oy 15 specify the processors to use but the capacity re-
pendent non-malleable and malleable tasks with lin&gfireq by each task. Since the processors to be used are
speedup and individual deadlines. The aim IS to maxfat known a priori, the computation is based on an aver-
mize the total work performed by the tasks which coné—ge processor capacit§ (;), so that anear optimalesti-

plete their executions before deadlines. In [14] it is Prsation is obtained. The following equations deffig.
posed an asymptotic fully polynomial time approximation

scheme for scheduling a set ofindependent malleable P

tasks on an arbitrary numbet of identical processors. St = Z Si Q)
In [5] it is proposed a polynomial algorithm for schedul- i=1

ing preemptive parallel tasks for the case of processor _ Sr

availability only in restricted intervals of time. In [16] Su=—+ (2)

it is presented an approximation algorithm for scheduli . . . .
. n equation 1 and 297 is the total processing capacity
dependent malleable tasks restricted to the structure of a .
at d P the number of processors available on the hetero-

tree. The problem is formulated as a constrained allg N .
. . .geneous cluster. The machine is now considered homo-
ment problem, and solved using a dynamic programmi

algorithm for the case of trees. In this case the two phageg%n eous \(WﬂP processors OSM capacny. For each task
. 7, the estimated processing time is computed, when us-
are merged into one.

ing from 1 to P processors, based on the computational
The problem studied in this paper differs from theomplexity f(n) of the task. For each machine added,
work referred to above mainly in two aspects. First, thhe processing capacity increases ®y; M flops and
processing time does not decrease always as the nuntbernumber of machines used by 1. This influences the
of processors increases and second, the target clustessitmation of the processing time by reducing the par-
heterogeneous. Section 3 presents this scheduling algitel execution time and by increasing the communica-
rithm. tions required to process the task. If the minimum is
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found forp processors, then the best processing capaaitg 2. Only two tasks are executed in the first stage, and
ispxS M flops. This estimation is not so accurate as thene of them overloads the machine. Since the overload is
one made by Algorithm2 but it gives an estimation closdetlow a threshold (considered here to be 10%) the option
to the capacity required for the task so that it is uselessaas to use less capacity th&hPC and therefore extend
use more capacity. If the standard deviation of processioe processing time. After that the machine is never used
capacity is high it may be required a second step, thisas,full load because the starting time of tasks were post-
a reevaluation oF ,; with a number of processors aroungoned.
p, the last solution.
The scheduling problem is now reduced to the schedul-
ing of independent tasks, that require a specific processing
capacity, and restricted to the maximum processing ca-
pacity available on the maching£). This is a 2-d pack-
ing problem [13].
The packing heuristic used is similar to the BLF (Bot-
tom Line Fill) with a particular modification; it is allowed
to overload the machine if only 10% of the task is above
St. The practical effect is an increase on the task process-
ing time. The BLF algorithm with this modification is: a) Figure 3: Scheduling example
select the heaviest task and put it at the bottom line; b) if
more than 10% of the task is ov8f-, then select the next It is important to note that the groups of processors
heaviest task; C) go back to a) until all tasks are placedused may Change between DAG levels (Sets of indepen_
Note that if one single task requires more thagent tasks). The scheduler keeps a record of the instant
St M flops, it would be scheduled to execute alone igach processor will be free due to computations from for-
the machine. In this case Algorithm3 is reduced to Afner levels, so that it can see the machine as a whole and
gorithm2. select the capacity that will minimize the processing time
Figure 2 shows an example of independent tasks tofgethe actual DAG level.
scheduled. The block height represents theC' com-
puted for the taskX/ flops) and the block length repre-
sents the processing time of the task wi2RC is used. 4 Results

time

This section presents results of the comparison of the
scheduling methods described above for a heterogeneous
machine composed by 40 processors, connected by a
100M bit Ethernet. Figure 4 shows the processors capac-

ities. The results where obtained by simulating in Mat-
% lab the cluster behavior and by estimating the processing

(Mflops)

BEC

time of the dense linear algebra kernels as exposed in [4],

R — which uses the computational model present above. The
Processing
fime compared methods were:

Figure 2: Example of tasks to schedule e Task scheduling, described by Algorithm1;

) e Process one task at a time on the cluster in a data
For.each tasfk., thg processors are selected until the sum parallel implementation, described by Algorithm2:
of their capacities is approximated to tli&PC capac-
ity required. Figure 3 illustrates the assignment of thee Combination of task and data parallelism, described
scheduling algorithm for the 6 independent tasks of Fig- by Algorithm3.
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The results presented are referred to the DAG of Fif| %4
ure 5 that is a common one on the computer vision fiel|  *7
The input for each path are matrices that can be of d 22
ferent sizes. The DAG nodes are linear algebra kerne| g __ |
namely LU factorization 1y, T4), tridiagonal reduction

20 4
(T, T5) and QR reduction(s, 7). The last task com- 15

putes the correlation between the results of the two ind 10 - H_@ H_@
endent paths. 5
P P 0l B ﬂ_@ . ’_’—@ . . .

BAlgarithm1 O Algarithm2 @ Algarithm3 =]

Processing time - (s}

6 - 300/200  300/400  400/400  500/400 500400 7504500
mProcessars Matrices Dimension
g4 — —
H
§ 44 Figure 6: Comparison of algorithms 1, 2 and 3
£,
Q
é 2 4 is computed by only one processor. Increasing the matrix
z | dimension this difference is amplified, therefore to keep
H H H H H H H H H the graphs readable it was decided to not include results
D HO0 1000 330 300 S50 300 TS0 630 650 530 500 450 400 350 300 230 200 {100 for Algorlthml for hlgher dlmenSIOn prOblemS- Flgure
Processors capacity - (W flop/s) 7 shows results comparing Algorithm2 and Algorithm3

when the input matrices are greater t2400% elements.

Figure 4: Processing capacity of the heterogeneous cdh$an be seen that Algorithm3 achieves always better re-
puter nodes sults than Algorithm2.
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Figure 7: Comparison of algorithms 2 and 3
Figure 5: DAG for the matching algorithm J P :

The test cases were matrices of different dimensions,T0 measure th? |mprpvem§nt ach|eveq by AIgontth
Improvement index is defined according to equation

from few hundreds to thousands of elements, and differ . i )
Figure 8 shows the improvement in percentage. A de-

combinations in the same problem in order to observe thi . .
P taeﬁed analysis of the results leads to the conclusion that

scheduler behavior. . tis bi hen the two input matri
Figure 6 shows results for matrices of small size. FH}E IoTEirrcr)\\i/Iern;Qe IS bigger when the two input matrices

those matrix dimensions the processing times are snil
but it can be seen the significant difference between Algo-

rithm1 and the other two. This is, the exclusively task par- T argorithm2 — TAtgorithms
allel scheduling is the worst, as expected, since each task!Provement =

®)

TAlgom'thm,Q



Proceedings of the 5th WSEAS Int. Conf. on DISTANCE LEARNING AND WEB ENGINEERING, Corfu, Greece, August 23-25, 2005 (pp215-223)

When there is a significant difference between the twoResults for DAG2, presented in Figure 11, were taken
matrices, the biggest determines the total processing tifaea machine with 50 processors afig; = 700M flop.
and the improvement is mainly due to the smaller mahe cases tested refer to tasks whose matrices sizes were
trix. The processing time of the smaller matrix is le§8000,4000], [3000,3000], [2500,5000] and [4000,5000]
significant to the total processing time and therefore thar case 1, 2, 3, 4 and 5 respectively. The improvements
improvement is also less significant. achieved were 19.9%, 21.4%, 16.8%, 16.2% and 10.3%

When they are of similar size, the improvement is of tfgSpectively. Again, the improvement was positive in all

same scale as the matrix that imposes the total proces$ifees:

time, and therefore the improvement is more significant.
®\,.

| (7))
| (7)
Y YYI Y Voo

& (72

Matriz Dimension

o o 8 n
#® & R R

Improvement

w
B

DAG1 DAG?2

Figure 8: Improvement achieved witkigorithms3 Figure 9: DAGs to test the scheduling methodology

From Figure 8 it can be seen that the improvement
achieved for the DAG of Figure 5 is always above 9.5¢ 1400
and goes as high as 22.8%. This shows that the schedu! 1200 |

obtained with Algorithm3 achieves better performance 1000

on heterogeneous clusters. The amount of improvemt aan |

achieved depends on the machine size and on how w ﬂ
- - :

time (s)

600
the independent tasks can maximize the machine capas
as shown before in Figure 3.

In order to test the methodology for DAGs with othe

400 o

200 A

configurations, some tests were carried out for the DAC case 1 tase 2 tase 3 tase 4 case 5
of Figure 9. Results for DAG1, presented in Figure 1( Problem size

were taken for a machine with 45 processors apg =

805M flop. The cases tested refer to tasks whose ma- Figure 10: Results for DAG1

trices sizes were [1000,2000], [1000,1000], [1000,1500],

[3000,4000], [3000,5000] for case 1, 2, 3, 4 and 5 respec-

tively. The improvements achieved were 33.8%, 51.3%,

41.8%, 11.0% and 1.7% respectively. Again, theimprov® Conclusions

ments were significant for all cases except case 5. For the

latter the machine capacity is too low in order to allown this paper, two static scheduling strategies were com-
task parallelism, resulting in a schedule equivalent to Adared, namely data parallelism and a mixed task and data
gorithm2. parallelism (malleable tasks), proposed here for heteroge
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1400 [2] H. Bal and M. Haines. Approaches for integrat-
anp | [ASEri2 0 Agortnd | ing task and data parallelismMEEE Concurrency
1000 4 6(3):74—84, 1998.

Z ooy [3] J. Barbosa, J. Tavares, and A. Padilha. A group
g s block distribution strategy for a heterogeneous ma-
400 | chine. In M. H. Hamza, edito\pplied Informat-

200 | ics, pages 378—-383. IASTED, ACTA Press, Febru-

o . ary 2002.
case 1 rase 2 rase 3 case 4 case s . .
Problem size [4] J. Barbosa, J. Tavares, and A. J. Padilha. Linear al-
gebra algorithms in a heterogeneous cluster of per-
Figure 11: Results for DAG2 sonal computers. IRroceedings of 9th Heteroge-

neous Computing Workshopages 147-159. IEEE
CS Press, May 2000.
neous clusters. The DAGs considered are composed

dense linear algebra kemels Péj J. Blazewicz, P. Dell’lOlmo, M. Drozdowski, and

E the simulati its obtained f het P. Maczka. Scheduling multiprocessor tasks on par-
rom the simuiation results obtained for a Neteroge- — processors with limited availabilityguropean

neous cluster_it can be concluded that _the mix_ed strat- journal of Operational Research(149):377—389,
egy that combines task and data parallelism achieves bet- 2003.

ter performance in the execution of the DAGs considered,

mainly due to a better resource utilization. The amount db6] V. Boudet, F. Rastello, and Y. Robert. A proposal for
capacity, inM flops, that minimizes the processing time a heterogeneous cluster ScaLAPACK(dense linear
of each task is computed. Then, the algorithm allocates solvers). InProceedings of PDPTACSREA Press,
capacity for all tasks, instead of processors, restricted b 1999.

the maximum capacity available. Depending on the re- i o
quirements of each task and the capacity available, tHé] V- Boudetand Y. Robert. Scheduling heuristics for
resulting schedule can achieve high improvements if it Netérogeneous processors. In Arabnia HR, editor,
can execute more than one task simultaneously, using data Proceedings of the International Conference on Par-
parallelism. In the worst case, the result is the execution a/leland Distributed Processing Techniques end Ap-
of only one task at a time, using data parallelism. plications (PDPTA 2001)pages 2109-2115, June

The mixed strategy proposed does not require a sta- 2001.
tic subdivision of processors. The groups of processolg] pierre Boulet, Jack Dongarra, Fabrice Rastello,
into which the machine in divided in each DAG level can  yyes Robert, and Frédéric Vivien. Algorithmic is-
change from one level to the other, thus allowing a better  syes on heterogeneous computing platforResal-

use of the machine and consequently achieving improve- || Processing Letter$9(2):197—213, 1999.
ments in processing time.
[9] T. Braun, H. Siegel, N. Beck, L. Bdl6ni, M. Mah-

eswaran, A. Reuther, J. Robertson, M. Theys, and
B. Yao. A comparison of eleven static heuristics for
mapping a class of independent tasks onto heteroge-
neous distributed computing systentarallel and
Distributed Computing61:810-837, 2001.
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