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Abstract: - A new formulation of bi-objective optimization for the general capacitor placement and sizing problem is 

presented. The objectives include energy loss reduction, investment cost minimization, and maximum voltage deviation 

improvement. The operating and expansion constraints of the system are considered for practical needed. Also, both 

fixed and switched types of capacitors are included. A particle swarm optimization aided interactive best-compromise 

method for solving general bi-objective optimization problems is then proposed. It can provide a flexible solution as 

dictated by the decision makers of the utilities. To demonstrate the effectiveness of the proposed method, comparative 

study is conducted on an actual feeder with rather encouraging results. 
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1. Introduction 
Capacitors have been widely employed in radial 

distribution systems for reactive power compensation to 

achieve energy loss reduction and voltage regulation. The 

benefits greatly depend on how the capacitors are 

installed in the system. This kind of problem is termed the 

general capacitor placement and sizing problem. It 

consists of determining the locations, types (fixed or 

switched) and sizes of capacitors to be installed in the 

system such that the economic profits and quality 

conditions of the system are improved considering the 

load, operating, and expansion constraints. 

Most previous studies [1-9] formulated the problem 

with a single objective. Generally, cost is employed as the 

objective function and the other possible objectives, such 

as voltage deviation and system capacity, are treated as 

constraints. However, the competition between utilities is 

more extremely after the deregulation of power system. 

Power quality plays an important role for the loyalty of 

customers. It is necessary for utilities to take not only the 

economy but also the quality into consideration. 

Therefore, a new bi-objective formulation combined with 

particle swarm optimization (PSO) for the above problems 

is presented. In bi-objective problems, the objectives are 

usually non-commensurable and conflict with each other. 

Hence, any improvement of one objective may be reached 

only by the reduction of another. The interactive best-

compromise (IBC) method proposed in this paper is a 

powerful tool, which can provide a flexible best-

compromise solution for capacitor placement and sizing 

problem by following the intention of decision makers 

(DMs). Two important objectives are included, one is the 

economic operation, and the other is the maximum 

voltage deviation of the system. The load, operating and 

expansion constraints of the system are considered. Also, 

the fixed and switched types of capacitors are included for 

increased realism. 
 

2. Problem Description and Formulation 
In this section, a new bi-objective formulation of the 

capacitor placement and sizing problem is proposed. It 

aims to simultaneously optimize each objective, while 

satisfying the equality and inequality constraints given 

below: 

 

2.1 Operating Constraints 

The voltage magnitude at each bus of each load period 

has to lie in a permissible range. The current on each 

branch must stay within its capacity limits for security 

reasons. Also, the number of capacitors mounted on the 

buses should be below the total number of installed 

capacitors. These constraints are expressed as follows. 
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where: 

 k

iV  : voltage magnitude at bus i of period k, 

 max

iV  : maximum allowable voltage of bus i, 

 min

iV  : minimum allowable voltage of bus i, 

 max

iI  : maximum allowable current of feeder section i, 
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bN  : number of buses, 

 
pN  : number of different load periods for yearly load 

duration curve, 

 
lN  : number of branches, 

 k

icN ,
 : number of capacitor banks mounted on bus i of period 

k, 

 
ifN ,
 : number of fixed type capacitors installed at bus i, 

 
isN ,
 : number of switched type capacitors installed at bus i. 

 

2.2 Expansion Constraints 

The number of capacitors installed at each bus should 

be limited due to some practical concerns. For example, it 

is impossible to install more capacitors if there is not 

enough space in the buses. These constraints are stated 

below. 
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where: 

 max

,icN  : upper limit of installed capacitors at bus i. 

 

2.3 Objective Functions 

The objective functions considered in the study are: 

 1) Economic Objective Function: The economic 

objective function employed is: 
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where: 

 )(SE  : annual cost of system under S configuration, 

 
eC  : energy cost per kWh, 

 
iIC ,
 : installation cost at bus i, 

 
fC  : fixed type capacitor cost per bank, 

 
sC  : switched type capacitor cost per bank, 

 
iT  : time duration of the ith load period, 

 k

lossP  : total power loss of load period k, 

 Y  : average lifetime of capacitors, 

 (.)u  : unit step function. 

In the right hand side of (5), the first term represents the 

annual cost of capacitor placement, with two components: 

fixed installment cost and purchase cost. Generally, fixed 

type capacitors serve as the base compensation and they 

are cheaper than switched type capacitors that are used for 

additional compensation in different load periods. The 

second term represents the total annual cost of energy loss, 

where the energy loss is obtained by summing up the 

power losses for each load period multiplied by the 

duration of the load period. In fact, capacitors are grouped 

into banks of standard discrete capacities. Therefore, 

capacitor sizes are represented as discrete variables to 

meet the real situation.  
 

 2) Quality Objective Function: This objective is 

concerned with the voltage deviation of the system. 

Voltage deviation at bus i of period k is defined as: 
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where: 

 ideal

iV  : ideal specific voltage at bus i. 

 

Voltage deviation is important for both the utilities and 

customers. The more voltage deviation a system has, the 

shorter the lifetime and the less efficient the operation of 

any equipment mounted onto the system. Moreover, 

voltage collapse may arise due to the voltage deviation of 

some fixed power equipment such as synchronous 

machines. Hence, voltage deviation in a system represents 

the quality of the power that the utilities supply to their 

customers. Electricity quality and economic conditions of 

its supply are somewhat non-commensurable. To avoid 

customers' dissatisfaction and to maintain the stability of 

systems, it is beneficial to tackle the voltage deviation 

problem as an objective function instead of a constraint. 

In this paper, we attempt to minimize the maximum term 

of the voltage deviation of all buses and periods as shown 

below: 
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2.4 Overall Problem 

In compact notation, the general capacitor placement 

and sizing problem can be formulated as a non-

differentiable bi-objective problem with constraints 

optimization as below. 
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3. The IBC Method 
In (8), if Q S( )  is multiplied by a weight W  and added to 

E S( )  as a single objective function, a problem will arise: 

the weight value W  is very difficult to determine because 

both E S( )  and Q S( )  are important for utilities and also 

vary in units. A better way to work with bi-objective 

problems is to provide a flexible best-compromise 

solution between the objective functions automatically. 

The IBC method presented here is based on this concept 

and derivative in the following steps. 
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3.1 Step 1 

In (8), ignore the objective function Q S( )  and solve the 

single objective optimization problem expressed below by 

a PSO that will be described in the next section. 

)(  min SE  

s.t. 

 )4(  ~  )1( .Eqs  (9) 

The solution of (9) is S E , that is: 
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Due to its conflicting character, this single objective 

optimization problem can provide the best solution of 

E S( ) , denoted Eideal , but worst solution of Q S( ) , denoted 
Qnonideal . The subscript ideal denotes the desired goal value 

and nonideal denotes the worst value. A similar step 

process for another objective function Q S( )  is shown 

below. 

)(  min SQ + 

s.t. 

 )4(  ~  )1( .Eqs  (10) 

The solution of (10) is SQ  and the values Qideal  and 
Enonideal  are found. Note that S E  and SQ  represent the two 

extreme solutions. 
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3.2 Step 2 

The new single objective optimization problem is 

solved as below. 
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Again, the PSO is employed and the solution of (11) is 

S i : 
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The "decision region" is defined as the area between 

ideal and nonideal values of both E  and Q . The ( Eideal , 
Qideal ) is the inaccessible best solution for the system. It 

can be treated as the goal during the search. Also, ( Enonideal , 
Qnonideal ) is the hypothetical worst solution of the search 

process. The first and second terms in the right hand side 

of (11) represent the normalized distance between E S( )  

and Eideal , and between Q S( )  and Qideal  respectively. Two 

additional constraints are added to ensure that the 

searching process will occur within the decision region. 

Minimization of the objective function T S( )  means to find 

a best-compromise solution S i  that must lie within the 

decision region and can be a best investment solution. 
 

3.3 Step 3 

The solution S i  from step 2 is a best-compromise 

answer, but it may be unsuited due to the policy of 

utilities. To choose not only a best-compromise but also a 

solution which is desirable for the utilities, the solution S i  

should be judged by the DMs of the utilities. If S i  is not 

acceptable, one of the objective functions ( E S( ) , Q S( ) ) 

should be chosen to be the compromised term. For 

example, if the DMs think that the cost of S i  is above the 

budget of the utilities and the voltage deviation of the 

system can be further degraded to save money, then Q S( )  

can be chosen as the compromised term and the 

parameters should be changed as below: 
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Conversely, if the DMs decide that the voltage 

deviation of S i  should be improved by spending more 

money, then E S( )  should be chosen as the compromised 

term and the parameters should be changed as shown 

below. 
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In (12) or (13), the decision region is modified toward 

the region of interest indicated by DMs according to the 

policy of the utilities. The parameters Dis E_  and Dis Q_  

shown below represent the decision region by detailed 

values. They also show the maximum improvement or 

degradation that the next search can attain. 
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They are very important references for DMs to use in 

deciding whether further searching is valuable or not. If 

the DMs determine to search in this decision region then 

the process should go back to step 2, otherwise the S i  will 

be the answer. The process should be executed 

continuously until a satisfactory solution is found. 
 

 

Proceedings of the 5th WSEAS Int. Conf. on Power Systems and Electromagnetic Compatibility, Corfu, Greece, August 23-25, 2005 (pp200-205)



4. Implementation of the Particle Swarm 

Optimization method  
Conceptually, (9,10,11) belong to the class of problems 

known as combinatorial optimization with constraints. 

Possible combinations grow dramatically as the number of 

switches increases. It is computationally intractable to 

deal with this problem by exhaustive search that every 

possible binary combination is traversed. Recently, the 

use of the global optimization technique called PSO [10], 

to solve real world problems have aroused researchers' 

interest due to its flexibility and efficiency. Limitations 

regarding the form of the objective function employed and 

the continuity of variables used for the classical greedy 

search technique can be completely eliminated. Owing to 

these attractive properties, PSO is used as the tool for 

solving (9,10,11) in this paper. 
 

4.1 Brief Review of the Particle Swarm 

Particle swarm optimization (PSO), first introduced by 

Kennedy and Eberhart, is one of the modern heuristic 

algorithms. It was developed through simulation of a 

simplified social system, and has been found to be robust 

in solving continuous nonlinear optimization problems 

[10-11]. The PSO technique can generate a high-quality 

solution within shorter calculation time and stable 

convergence characteristic than other stochastic methods 

[12-14]. Much research is still in progress for proving the 

potential of the PSO in solving complex power system 

operation problems. Researchers including Yoshida et al. 

have presented a PSO for reactive power and voltage 

control considering voltage security assessment. The 

feasibility of their method is compared with the reactive 

tabu system and enumeration method on practical power 

system, and has shown promising results [15]. Naka et al. 

have presented the use of a hybrid PSO method for 

solving efficiently the practical distribution state 

estimation problem [16]. 

Searching procedures by PSO based on the above 

concept can be described as follows: a flock of individuals 

optimizes a certain objective function. Each individual 

knows its best value Pbest  so far and its position. 

Moreover, each individual knows the best value in the 

group Gbest  among Pbest , namely the best value so far of 

the group. The modified velocity of each individual can 

be calculated using the current velocity and the distance 

from Pbest and Gbest as shown below: 
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where: 

 k

iv  : current velocity of individual i at iteration k, 

 1+k

iv  : modified velocity of individual i at iteration k+1, 

) (Rand  : random number between 0 and 1, 

 k

is  : current position of individual i at iteration k, 

k

iPbest  : Pbest  of individual i until iteration k, 

kGbest  : Gbest  of the group until iteration k, 

 ω  : weight function for velocity of individual , 

 
ic  : weight coefficients for each term, 

 
max,is  : the maximum boundary of allowable searching space, 

 
min,is  : the minimum boundary of allowable searching space. 

The constants 
1c  and 

2c  represent the weighting of the 

stochastic acceleration terms that pull each individual 

toward the Pbest  and Gbest  positions. Low values allow 

individual to roam far from the target regions before being 

tugged back. On the other hand, high values result in 

abrupt movement toward target regions. Hence, the 

acceleration constants 
1c  and 

2c  were often set to be 2.0 

according to simulation experiences. Suitable selection of 

inertia weight ω  in (17) provides a balance between 

global and local explorations, thus requiring less iteration 

on average to find a sufficiently optimal solution. As 

originally developed ω  often decreases linearly from 

about 0.9 to 0.4 during a run. In general, the inertia weight 

ω  is set according to the following equation: 

 

 Iter
Iter
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−=
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minmax
max

ωω
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where: 

 
maxω  : initial weight, 

 
minω  : final weight, 

 
maxIter  : maximum number of iterations 

 Iter  : current number of iterations. 

 

The search mechanism of the PSO using the modified 

velocity and position of individual based on (15) and (16) 

is illustrated in Fig.1. 

k

is

1+k

is

k
Gbest

k

iPbest

1+k

iv

k

iv

 
Fig. 1. The searching scheme of the PSO 
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4.2 Representation of Individual String 

Implementation of a problem in the PSO framework 

starts from the parameter encoding, i.e., the representation 

of the problem. In this study, integer representation is 

chosen for each particle. The individual string structure is 

represented in Fig. 2. The parameter Nc i
k
,  describes the 

number of capacitor banks mounted on bus i of period k, 

as defined previously. The value of each chromosomes' 

position should be limited so that they are not violating 

the expansion constraints Nc i,
max

. The value of each particle 

should be limited to 6 so that they are feasible solution. In 

the initial process, a random number from 1 to 6 will be 

generated to create the first positions of each individual. 
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Fig. 2. The individual string structure. 

 

4.3 Evaluation Function 

Implementation of an optimization problem in PSO is 

realized within the evolutionary process of an evaluation 

function. The function adopted is given below. 
 

 
)(1

1

ObjPenalty
Evaluation

×+

=  (18) 

where: 

 Obj  : the objective function, 

Penalty : a penalty term. If any constraint is violated then the 

penalty will be set to 1.5, otherwise 1 is instead. 
 

 

4.4 Parameter Selection and Convergence Criterion 

 If one of the following conditions is met, the PSO 

process is considered converged. 

(i). After 50 consecutive iterations, the best solution 

does not change. 

(ii). The total iterations exceed the upper limit of 10000. 
 

5. Test Study 
To illustrate the performance of the proposed solution 

methodology, consider a practical 12-bus, 11.4 kV 

distribution feeder, as shown in Fig. 2, that is a portion of 

the Taiwan Power Company's distribution system. The 

parameters that are the average values according to the 

real conditions in Taiwan are shown in Table 1 and each 

bank of capacitors is 300 kVar. The satisfaction rates for 

each objective are defined in (18). It represents the level 

of satisfaction within the attainable search region for each 

objective. 
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The test results are summarized in Table 2, where the 

symbols F (fixed), or S (switched), represent the capacitor 

type, and H (heavy), N (normal), L (light), indicate the 

various load levels. The digits before the capacitor type 

and load level indicate the number of capacitors installed 

and the number mounted during different load levels, 

respectively. The second column represents the 

performance of the system before the capacitors were 

installed. Obviously, the voltage constraint is violated and 

the compensating capacitors are needed. The third and 

fourth columns each correspond to a single objective 

programming that minimizes voltage deviation and cost 

respectively. Columns five to seven show the results of 

the proposed bi-objective solution procedures that 

consider both cost and voltage deviation. In fourth column, 

to achieve the minimum cost, the minimum voltage is 

only 0.920, which is almost on the feasible margin 

(0.92~1.05). The fifth column represents the first result of 

the proposed algorithm. Comparing the fifth column and 

the fourth column, it is obvious that 
ESA  has degraded 

slightly from 100% to 82.95% but 
QSA  has greatly 

improved from 0% to 75.11%. Generally, it is beneficial 

to perform such an investment. 

S
S

Bus 1
Bus 2

Bus 3

Bus 5

Bus 4

Bus 6

Bus 7

Bus 8

Bus 9

Bus 10 Bus 11

Bus 13Bus 12

 
Fig.2. The schematic of the 12-bus distribution test system. 

 

Table 1. Parameters for the study system. 

ideal

iV  eC  iIC ,  fC  sC  min

iV  max

iV  max

,icN  Y  

1   p.u. 1.8NT/

kWh 

387278 

NT 

43362 

NT/bank 

66241 

NT/bank 

0.92 

p.u. 

1.05 

p.u. 

6 7 

years 

 

The suitability of result 1 should be judged by the DMs 

of electricity utilities. If the DMs think that result 1 is not 

suitable for the policy of the utilities, then further 

compromise can be made according to the directions 

dictated by DMs. Unlike other approaches that indicate 

many unknown parameters such as weight values for 

further search, the DMs only have to choose one of the 

objectives (cost or voltage deviation) as the compromised 

term and then the proposed method can find a best-

compromise and desirable solution for the bi-objective 

problem. Assume the DMs think that the power quality of 

result 1 should be further improved and decide to spend 

more money to reduce the voltage deviation of the system. 

The parameter of Qnonideal  in result 1 is then changed, 

because further improvement of voltage deviation is 

needed. Similarly, the Eideal  is also changed, because 

further compromise will be made on the cost. Note that 

the decision region is changed simultaneously with the 

ideal and nonideal values of both E  and Q  such that it 

shifts toward the region of interest as indicated by DMs. 
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The values Dis E_  and Dis Q_  can help the DMs to 

understand the maximum improvement that a further step 

can achieve. If the DMs think that the maximum 

improvement in the desired term is too small to make 

further searching worthwhile, then they can stop the 

process. Assuming that the further step is allowed by the 

DMs, result 2 shows the consecutive result. Again, it is a 

flexible best-compromise solution within the decision 

region. 

The same procedure can be repeated again as shown in 

result 3. Gradually, the decision region will become 

smaller and focused on the intention of the DMs. 
 

Table 2. Numerical results. 

 Original Single objective Bi-objective programming 

 system Min Q Min E Result 1 Result 2 Result 3 

E S( )  
(NT/year) 

6209146 6284417 3934274 4335098 5137890 4595468 

Q S( )  (V) 
1520 13 913 237 67 138 

minV
i
k

(p.u.) 
0.867 0.999 0.920 0.979 0.994 0.988 

ESA (%) ------------ 0 100 82.95 48.79 71.87 

QSA (%) ------------ 100 0 75.11 94.00 86.11 

Satisfy ? ------------ ------------ No No No Yes 

Compromised 

term ? 

------------ ------------ E S( )  E S( )  Q S( )  
------------ 

Eideal  ------------ ------------ 3934274
 

4335098
 

4335098
 

------------ 

Enonideal  ------------ ------------ 6284417
 

6284417
 

5137890
 

------------ 

Qideal  ------------ ------------ 13 13 67
 

------------ 

Qnonideal  ------------ ------------ 913 237
 

237
 

------------ 

Dis E_  ------------ ------------ 2350143 1949319 802792 ------------ 

Dis Q_  ------------ ------------ 900 224 170 ------------ 

Continue ? ------------ ------------ Yes Yes Yes ------------ 

Bus 1 None 2F, 2S 

4H, 3N, 2L 

None None None None 

Bus 2 None 1F, 2S 

3H, 1N, 1L 

None None
 

None
 

None 

Bus 3 None 1F, 0S 

1H, 1N, 1L 

None None None None 

Bus 4 None 1F, 0S 

1H, 1N, 1L 

None None
 

None
 

None 

Bus 5 None 1F, 0S 

1H, 1N, 1L 

None 0F, 5S 

5H, 0N, 0L 

3F, 0S 

3H, 3N, 3L 

None 

Bus 6 None 1F, 4S 

5H, 1N, 1L 

3F, 1S 

4H, 3N, 3L 

None
 

3F, 0S 

2H, 0N, 3L 

None 

Bus 7 None 2F, 4S 

6H, 2N, 3L 

None 3F, 3S 

6H, 4N, 3L 

0F, 5S 

4H, 5N, 0L 

0F, 6S 

6H, 4N, 0L 

Bus 8 None 1F, 2S 

1H, 3N, 1L 

None None 0F, 4S 

4H, 0N, 0L 

None 

Bus 9 None 2F, 4S 

2H, 6N, 4L 

0F, 5S 

5H, 4N, 0L 

0F, 4S 

4H, 1N, 0L 

0F, 5S 

5H, 1N, 0L 

3F, 2S 

5H, 3N, 3L 

Bus 10 None 1F, 5S 

6H, 1N, 1L 

None 3F, 3S 

6H, 3N, 3L 

4F, 0S 

4H, 4N, 4L 

2F, 4S 

6H, 2N, 3L 

Bus 11 None 2F, 3S 

5H, 3N, 2L 

5F, 0S 

5H, 5N, 5L 

None
 

0F, 4S 

4H, 0N, 1L 

0F, 6S 

6H, 1N, 0L 

Bus 12 None 2F, 3S 

5H, 3N, 2L 

None 5F, 1S 

6H, 6N, 5L 

5F, 1S 

5H, 6N, 5L 

5F, 1S 

5H, 6N, 5L 

 

6. Conclusion 
A new bi-objective formulation for the general 

capacitor placement and sizing problem has been 

successfully applied. The objectives include both 

concerns of economics and quality. To get a more realistic 

solution, the load, operating, and expansion constraints of 

the system, together with the fixed and switched types of 

capacitors are considered. The IBC method for solving 

general bi-objective optimization problems has been 

presented and tested on a real system. The results show 

that the proposed methodology can find a flexible best-

compromise solution to be dictated by the DMs of the 

utilities. 
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