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Abstract: In the present article the voltage drop in a low voltage isolated cable is analyzed by the authors. This 
analysis considers the effect of resistivity variation with the temperature; which, as well, depends on the current. 
It makes to them to define the ‘temperature factor’. 

The authors demonstrate that the voltage drop due to the cable reactance cannot be neglected when 
temperature effects are taken into account. 

Finally, it is shown two fast, simple and systematic methods to calculate the cross-section of a LV isolated 
cable. These methods consider the cable real temperature and reactance. One of them is analytical and the other 
uses the tables of per unit voltage drop provided by manufacturers and standards. 
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1 Introduction 
The second annex of the ‘Technical Guide to the 
Application of the Low Voltage Electrotechnical 
Regulations’ [5], published by the Spanish Ministry 
of Science and Technology, is devoted to the 
calculation of LV cables. Henceforth, this guide will 
be denoted as ‘The Guide’. 

The Guide points out that the calculation of 
voltage drop in an isolated cable using the resistivity 
of a conductor at 20ºC, as is recommended in some 
texts, may lead to the underestimation of this value 
and to the selection of an excessively small cross-
section. For this reason, The Guide recommends the 
use of the maximum temperature withstood by the 
cable in voltage drop calculations. In this case, it is 
possible to be excessively cautious and to select an 
unnecessarily large cross-section. 

If a more accurate calculation is required, The 
Guide provides a fairly accurate method for 
determining the temperature of a cable in order to 
obtain its resistivity from it. 

References [2], [3] and [12] present a summary of 
the calculation of a cable cross-section taking into 
account its temperature following the recommen-
dations of The Guide. [12] presents a first approxi-
mation to the coefficient which we have termed 
‘temperature factor’ to take into account the effect of 
the temperature on the resistivity of the cable. 

The present paper describes a detailed and 
systematic study of the temperature factor, 
establishing the equations which allow it to be 
obtained rapidly from the current flowing through the 
cable. 

This paper also includes a detailed analysis of the 
per unit voltage drop tables provided by The Guide 
[5] and the cable manufacturers [4]. The importance 
that voltage drop through reactance can have is 
determined and the most appropriate resistivity, ρ, 
and per unit reactance, x, values for use in the 
calculations are determined. 

Finally, two methods are presented for the rapid, 
simple and systematic calculation of an LV cable 
cross-section taking into account both its temperature 
and its reactance. One of them is analytical and the 
other is based on the per unit voltage drop tables. 
 

 

2 Influence of Temperature on Voltage 

Drop 
The voltage drop of an LV cable can be calculated 
quite accurately as the sum of the voltage drops, eR 
and eX, caused by its resistance and its reactance, 
respectively. The first of these is normally the most 
important and depends on the resistivity of the 
conductors; which, in turn, varies linearly with the 
temperature. The relationships that permit obtaining 
eR and eX are the following: 
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In these expressions sin ϕ is positive for inductive 
loads and negative for capacitive loads. On the other 
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hand, the coefficient KF is equal to 2 in single-phase 

lines and 3  in balanced three-phase lines. 

Moreover the coefficient K'F is equal to 2 in single-
phase lines and 1 in balanced three-phase lines. 

Let us remind that a conductor's resistivity varies 
with the temperature according to this rule: 

 
 ( )( )20120 −θα+ρ=ρ  (3) 

 

ρ resistivity at temperature θ (Ω mm
2
/m) 

ρ20 resistivity at 20ºC (Ω mm
2
/m) 

α coefficient of resistivity variation with 

temperature (ºC
-1
) 

 
Let us call θmáx the maximum temperature 

withstood by a cable, which will arise when the 
current Imáx is flowing through it if the environmental 
temperature is θ0. The resistivity values at these two 
temperatures are ρmáx and ρ0, respectively. 

When the current I is flowing through a cable, it 
has a temperature θ and a resistivity ρ. In these 
conditions, the temperature factor is defined with 
the following equation: 
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The Guide establishes that the increase in 

temperature of a cable with respect to the 
environment is proportional to the square of the 
current flowing through it. From this, we have 
deduced the following equation: 
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kθ0 is the temperature factor at environmental 

temperature θ0 and, according to (3); it can be 
obtained by this formula: 
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Since the coefficients α of variation of resistivity 

with temperature of copper and aluminium are 
practically identical (α = 0.0039ºC-1), the same kθ 
values can be used for both materials. 

With the Spanish standardized values of θmáx and 
θ0, the temperature factor takes the values shown in 

Table 1. Let us notice that the temperature factor 
varies between 0.8 and 1. The column of table 1 that 
corresponds to a null value of the current shows the 
values of kθ0. 
 

Table 1: Temperature factor (if α = 0.0039ºC-1) 
 

 
 
 

3 Impedance Factor 
The impedance factor kZ is this quotient (see [11]): 
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In the calculation of the cross-section of a cable 

we will use this nomenclature: 
S’ cross-section of the conductor that gives rise 

to the voltage drop e when its reactance is 
neglected and its resistivity is ρmáx. 

S” cross-section of the conductor that produces 
the same voltage drop e when its resistivity is 
ρmáx and its reactive voltage drop eX is taken 
into account. 

S’” cross-section of the conductor that produces 
the voltage drop e when its reactive voltage 
drop eX is taken into account and its real 
resistivity at temperature θ is considered. 

Then we get: 
 

 SkS Z ′⋅=′′  (8) 

 SkS ′′⋅=′′′ θ  (9) 
 

Although the value of kZ for a given cable varies 
with its temperature, when this parameter is 
calculated not for a given cross-section, but rather to 
obtain a predefined voltage drop, it turns out that kZ 
is independent of the temperature. In this case, kZ can 
be obtained from the cross-section S’ by means of the 
formula (10): 
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4 Per Unit Voltage Drop Tables 
In The Guide [5] and in manufactures’ catalogues 
[10] there are per unit voltage drop tables eu; that is, 
voltage drop per current and length unit. The 
manufacturers give their values of eu only at the 
temperature θmáx while The Guide provides values of 
eu at various temperatures. The effects of both 
resistance and reactance are considered in these 
values. 

Analysing these tables, the values of the most 
suitable parameters of resistivity ρ and per unit 
reactance x (reactance per length unit) for the voltage 
drop calculation can be determined for every cross-
section. An example of these parameters it is shown 
in the Table 2. 

 

Table 2: Values of ρ and x 
(Cables of copper and 0.6/1 kV at 90ºC) 

 

The Guide Manufacturer 
S 

ρρρρ    x ρρρρ    x 

mm2 Ω Ω Ω Ω mm2/m ΩΩΩΩ/km Ω Ω Ω Ω mm2/m ΩΩΩΩ/km 
1.5 0.0231 0.165 0.0229 0.154 

2.5 0.0236 0.137 0.0230 0.139 

4 0.0235 0.129 0.0230 0.127 

6 0.0236 0.125 0.0233 0.114 

10 0.0233 0.106 0.0231 0.106 

16 0.0235 0.097 0.0232 0.108 

25 0.0232 0.094 0.0229 0.094 

35 0.0234 0.091 0.0232 0.087 

50 0.0247 0.090 0.0245 0.087 

70 0.0239 0.087 0.0238 0.085 

95 0.0234 0.087 0.0230 0.090 

120 0.0234 0.083 0.0236 0.085 

150 0.0237 0.082 0.0234 0.090 

185 0.0234 0.083 0.0235 0.081 

240 0.0231 0.080 0.0236 0.081 

 

Table 3: Resistivity ρ 
 

ρρρρ (ΩΩΩΩ mm2/m) 
 

20ºC 70ºC 90ºC 

Copper 0.019 0.022 0.024 

Aluminium 0.030 0.036 0.039 

 
Examining the results that have been obtained it is 

concluded that the best calculations are done when 
the resistivity ρ takes the values of the Table 3. Also 
it is verified that x varies little with cross-sections, 
especially if they are greater than 16 mm2. In 
addition, x is not influenced by temperature and its 
value for three-phase cables is slightly bigger than the 
ones for groups of three one-phase cables. To 
calculate eX, in default of more accurate values, it 
will be utilized 0.086 Ω/km as a mean value of the 
per unit reactance x. 

The error made by underestimating the cable 
reactance has been calculated and Table 4 has been 
drawn up to indicate the cross-sections above which 
this error begins to be important (bigger than 6%). 
 

Table 4: Cross-sections S’ (in mm2) above 
which the calculation error becomes 
bigger than 6 % if eX is neglected 

 

Cos ϕϕϕϕ 
 

0.8 0.85 0.9 0.95 

Copper 25 25 35 50 

Aluminium 35 50 70 95 

 
It is deduced that, except for power factors very 

close to the unity, the error caused by 
underestimating the reactance may be of the same 
order of magnitude or even greater than that caused 
by the use of the resistivity ρmáx. Hence, if the aim is 
to be as accurate as possible in the voltage drop 
calculation taking into account the temperature, the 
cable reactance should also be taken into account. 
 
 

5 Cross-Section Calculation Methods 
On the basis of the previous paragraphs, we have 
developed two methods for determining the cross-
section of a cable taking into account the effects of 
both reactance and temperature on the voltage drop. 

The first of these is analytical and is based on the 
use of the temperature and impedance factors. First, 
the cross-section S’ is calculated. To do this the 
formula (1) is used supposing that eR has the same 
value that e (eX is neglected). Then the impedance 
factor kZ can be determined from (10) and S” from 
(9). Next the temperature factor is obtained from (5) 
using the current Imáx_. This is the maximum current 
that can be withstood by the cross-section S_, the 
standardized one immediately inferior to S”. Now, 
conditions (11), based on the relationship (9), are 
successively checked. In this way it can be deduced 
whether S_ is the cross-section to be used or whether 
it should be the next-highest standardized one (S+). 

 

 +=→≤ SS8,0"S_/S  (11a) 

 +θ =→≤ SSk"S_/S 0  (11b) 

 +θ =→≤ SSk"S_/S  (11c) 

 _SSk"S_/S =→> θ  (11d) 
 
Condition (11a) is based on the fact that the mini-

mum possible value for kθ and kθ0 is 0.8 (table 1). 
The second method uses manufacturers’ per unit 

voltage drop tables, which give only the values of eu 
at the temperature θmáx. From these, the voltage drop 
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at temperature θ can be obtained by means of the 
temperature factor. In effect, if we know the values of 
eu (per unit voltage drop at the temperature θmáx 
when the power factor is cos ϕ (eu = euϕ, θmáx)) and 
eu1 (per unit voltage drop at the temperature θmáx 
when the power factor value is the unity (eu1 =        
eu1, θmáx)), its per unit voltage drop eu, θ for the same 
power factor cos ϕ at the temperature θ (eu, θ = euϕ, θ) 
can be obtained thus: 

 
 ( )ϕ⋅⋅−−= θθ cose)k1(ee 1uu,u  (12) 

 
Normally, although the value of the power factor 

is not among the tabulated values, one could carry out 
a sufficient approximation to the value of its per unit 
voltage drop by fast interpolation of the values of the 
table. When it is desired a more accurate calculation 
of eu or when the power factor is capacitive, the 
formula (13) can be used: 
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In this formula the per unit voltage drop euϕ of a 

cable for a power factor cos ϕ is obtained from the 
tabulated values euϕ' (for the power factor cos ϕ') and 
eu1 (for the unity power factor). All per unit voltage 
drops of expression (13) are at the same temperature. 

This expression also allows to obtain eu1 if the 
values of eu that appear in the table are euϕ and euϕ', 
that correspond with two power factors (cos ϕ and 
cos ϕ'); no one of them is for the unity power factor. 

Also, it is necessary to keep in mind that, in order 
to apply a table of per unit voltage drops eu corre-
sponding with three-phase lines for the calculation of 
a one-phase line, it is necessary to multiply the 
tabulated values by 1.155. This value is the quotient 
between the respective values of KF for one and 

three-phase lines, respectively (1.155 = 3/2 ). 
In the following sections there are a more detailed 

explication of these two methods using examples. 
 
 

6 Analytical Method Example 
We want to calculate the cross-section of a 400 V 
three-phase line. Its load is 145 kW, its power factor 
is 0.9 and its length is 40 m. Spanish regulations [6] 
establish an admissible voltage drop equal to 0.5% 
(e(%) = 0.5). 

The line will be made with a group of one-phase 
cables of copper and 0.6/1kV whose insulating 

material is reticulated polyethylene. These cables will 
be put inside a buried tube. 

As they are buried cables the environmental 
temperature θ0 is 25ºC. 

The reticulated polyethylene has a maximum 
admissible temperature, θmáx, equal of 90ºC. 

The current is calculated thus: 
 

A5.232
9.04003

000145

cosU3

P
I =

⋅⋅
=

ϕ
=  

 
The admissible voltage drop e is: 
 

( )
V2400

100

5.0
U

100

%e
e ===  

 
S’ is calculated from the relationship (1), taking to 

eR the value of e obtained previously (2 V) and to the 
resistivity the value indicated in table 3 for a 
maximum temperature, θmáx, equal to 90ºC (ρmáx =            
0.024 Ω mm2/m). This is a three-phase line, therefore 

the coefficient KF is equal to 3 : 
 

1749.05.23240
2

024.03
'S =⋅⋅⋅

⋅
=  mm2 

 
Next, it is analyzed the convenience of including 

the reactance voltage drop effect. For it the value of 
S’ is compared with the ones in table 4. In our 
example S' is greater than 35 mm2, then the reactance 
effect must be considered. 

From (9) and (10) we obtain these results (if           
x = 0.086 Ω/km): 

 

43.1
484.0174

024.0

1000/086.0
1

1
kZ =

⋅⋅−
=  

8.24817443.1SkS Z =⋅=′⋅=′′ mm2 
 

The maximum current Imáx_ withstood by a cable 
of cross-section S_ can be determined from the table 
52 N1 of standard [8] or from the table 7 of standard 
[7]. Moreover, it is necessary to take into account the 
factor of 0.8 (for group of cables in a same tube) 
recommended in the ITC-BT-07 [6]. We obtain a 
value of S_ equal to 240 mm2 and a value of Imáx_ 
equal to 440 A (= 550 x 0.8). This result also can be 
obtained by means of the table A of The Guide’s 
section BT-14 [5]. 

If the current I (232.5 A) that flows through the 
cable was bigger than Imáx_, thermal criterion would 
be the most severe. Then we would chose the smaller 
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standardized cross-section that would be able to 
withstand the current of 232.5 A. 

But in this example the current I has a value lower 
than Imáx_. So, in this case it is deduced that voltage 
drop criterion is the most severe and the calculation 
continues checking the conditions (11): 

 

965.0
8.248

240

S

_S
==

′′
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20900039.01

20250039.01
k 0 =
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( ) 856.0528.0)801.01(801.0k 2 =⋅−+=θ  
 
These temperature factors could also have been 

obtained from the table 1. 
As the quotient S/S” is bigger than the 

temperature factor kθ, the cross-section to be used 
will be S_. Therefore, cables of 240 mm2 will be 
utilized. 

Finally, it is necessary to check that the chosen 
cross-section also verifies the short-circuit current 
criterion: when a short-circuit takes place, the cross-
section of a cable must be able to withstand, during 
the protection time, the high current that is going to 
flow through it. 
 
 

7 Per Unit Voltage Drop Method 
We want to calculate the cross-section of a 230 V 
one-phase line. Its load is 10868 W, its power factor 
is 0.9 and its length is 10 m. Spanish regulations [6] 
establish an admissible voltage drop equal to 1% 
(e(%) = 1). 

The line will be made with cables of aluminium 
and 0.6/1kV whose insulating material is ethylene-
propylene. These cables will be put together inside a 
tube that has superficial installation. 

 
Table 5: Per unit voltage drops at 90ºC for groups 

of 3 single-phase cables of aluminium and 0.6/1 kV 
 

 
 

As they are not buried cables the environmental 
temperature θ0 is 40ºC. 

The ethylene-propylene has a maximum 
admissible temperature, θmáx, equal of 90ºC. 

Manufacturer’s catalogue [10] has Table 5. This 
table gives per unit voltage drops at 90ºC for three-
phase lines made with three one-phase cables of 
aluminium. 

Power factor is 0.9, then: 
 

434.0sin9.0cos =ϕ→=ϕ  
 
The current is calculated thus: 
 

A5.52
9.0230

10868

cosU

P
I =

⋅
=

ϕ
=  

 
The admissible voltage drop e is: 
 

( )
V3.2230

100

1
U

100

%e
e ===  

 
This is a one-phase line but we will use a table for 

three-phase lines. Then in the calculations we must 
use this per unit voltage drop (three-phase 
equivalent): 

 

km,A/V79.3m,A/V1079.3

105.52

3.2

155.1

1
e

3

u
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Consulting the table 5 this is obtained: 
 

S_ = 16 mm
2
 

 

eu0.8_ = 3.42 V/A, km         eu1_ = 4.15 V/ A, km 
 
By means of the relationship (13) we obtain the per 

unit voltage drop eu_ at 90ºC and power factor 0.9: 
 

( )

km,A/V81.3

434.0
6.0

8.015.442.3
9.015.4_eu

=

=
⋅−

+⋅=
 

 
The table 52-C2 of the standard [8] shows that an 

aluminium cable of 16 mm2 withstands a current 
Imáx_ equal to 72 A. As the current I that flows 
through the cable is 52.5 A, smaller than Imáx_; it is 
deduced that in this case the voltage drop criterion is 
the most severe and the calculation will be continued 
using this criterion. Otherwise, the section of the 
cable would be obtained by the thermal criterion 
choosing the smallest standard cross-section that was 
able to withstand the current of 52. 5 A. 

Proceedings of the 5th WSEAS Int. Conf. on Power Systems and Electromagnetic Compatibility, Corfu, Greece, August 23-25, 2005 (pp496-501)



Now we determine this quotient: 
 

73.0
72

5.52

_I

I

máx
==  

 
Then, according to the table 1, the temperature 

factor kθ is 0.93. 

Next, we calculate the per unit voltage drop eu,θ_ 
when the aluminium cable of section S_ is at 
temperature θ and power factor 0.9. To do this the 
formula (12) is used: 

 

( )
km,A/V55.3

9.015.4)93.01(81.3_e ,u

=

=⋅⋅−−=θ
 

 

As eu,θ_ is smaller than eu, the cross-section to be 
utilized will be S_; that is, 16 mm2. Otherwise it 
would be necessary to choose the cross-section S+       
(25 mm2). 

Finally, it will be necessary to check if this cross-
section of 16 mm2 also verifies the short-circuit 
current criterion. 

The definitive voltage drop edef that is produced in 
this line of 16 mm2 is obtained thus: 

 

V15.21055.35.5210155.1e 3
def =⋅⋅⋅⋅= −

 

The factor the 10-3 is because length is measured 

in meters and eu,θ_ is measured in V/A, km. The 
1.155 factor appears because this is a one-phase line 

and eu,θ_ has been calculated by means of a table for 
three-phase lines. 
 
 

8 Conclusion 
The temperature factor proves to be an ideal 
procedure for assessing the effects of temperature on 
the voltage drop in LV isolated cables. 

If the aim is to obtain an accurate calculation of 
the voltage drop incorporating the influence of 
temperature, the reactance should also be included. 
This can be done quite simply by using the 
impedance factor. 

Adequate values for ρ and x can be deduced from 
The Guide’s per unit voltage drop tables. It is shown 
that x hardly varies with the conductor cross-section. 
These tables give the error caused by underestimating 
the effects of reactance on the cable. 

Finally, two procedures are presented for 
calculating the cross-section of a cable taking into 
account its temperature and reactance. 
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