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Abstract - Multipoint distribution of data is a requirement for various types of applications in such areas as 
distance learning, multimedia conferencing and group collaboration. The economy of scale of multicast transport 
for multipoint distribution is not in doubt. The challenge is to develop technologies that will satisfy the varied 
requirements of these applications. However, IP Multicast has proven difficult to deploy on a large scale, and it 
can not satisfy the requirements of the plurality of multicast applications. Many multicast protocols have been 
proposed as alternatives to the open service model of IP Multicast. But no one set of protocols is capable of 
satisfying the various, often at odds, service requirements of multicast applications with heterogeneous multicast 
receivers. This paper proposes a middleware approach to provide core protocols, functions and interfaces, the 
combination of which can be selected and customized to meet the specific demands of various multicast-based 
applications. At its core, the proposed middleware solution will allow the routing of both datagrams and streams, 
using multiple channels and variants of the standard transport protocols, over clustered trees that scale well for 
large number of hosts in a multicast group. 
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1  Introduction 
One of the essential requirements of multimedia 
conferencing and collaboration applications is an 
efficient multipoint data distribution technology. 
The requirements of these and similar applications 
are varied [1]. In addition to satisfying the varied 
service requirements of different applications, there 
is also the need to accommodate, within the same 
application and multicast group, multiple 
heterogeneous multicast receivers - with their 
diversity of bandwidth capacity and delivery delay.  
      The challenge is to develop multicast 
technologies that will not only resolve deployment 
issues of IP Multicast, but also satisfy the varied 
requirements of multicast applications. Many 
multicast protocols have been proposed as 
alternatives to the open service model of IP 
Multicast, including Source-Specific Multicast [2], 
reliable multicast projects [3] and application-level 
multicast protocols [3, 4, 5, 6].  However, no one set 
of protocols is capable of satisfying the various, 
often at odds, service requirements of multicast 
applications having heterogeneous multicast 
receivers. This paper proposes a middleware 
solution based on application-level multicast 
protocol and high-performance data transfer 
protocols through multiple-socket connection. 
 
2 The Middleware Approach 
Middleware is services above the TCP/IP level but 
below the application environment [7]. The 
proposed middleware consists of various data 
transport protocols, services overlay network 
construction, group management, multicast routing 
and secure multicast. The new approach solves the 
problem of satisfying the service requirements of 
varying multicast applications with heterogeneous 
multicast receivers through: 
 
• middleware as a protocol and service software 

library from which multicast application services 
can be provided,  

• clustered tree protocol as a basis for constructing 
routing structures that will scale well for large 
number of heterogeneous receivers,  

• two types of parallelism through multiple 
sockets between two nodes and multiple sockets 
from one node each “connected” to a different 
node,  

• TCP, UDP, and variants of TCP and UDP as 
transport to provide various levels of reliability, 
latency, and throughput, and  

• populating the library with solutions to provide 
various degrees of secure multicast. 

 
      Each component of the approach helps provide a 
solution to the problem of the supporting various 
multicast requirements for groups of receivers with 
diverse bandwidth capacity and delivery delay: 
 
• The clustered tree routing protocol allows 

dynamic constitution of hosts into a multicast 
group. Hosts having the least capacities are 
located at the lower levels of the delivery tree.  

• Parallel data delivery through the use of multiple 
sockets between any two nodes maximizes the 
throughput, subject to fair use of the network..  
Allowing a node to open multiple sockets each 
“connected” to a different node reduces latency 
rather than increasing throughput. 

• Data delivery through TCP, UDP, and variants 
of the two protocols provides varying degrees of 
throughput, latency, and reliability.  

• Interfaces to security solutions must be reviewed 
for their impact on the performance of the 
multicast application.  

• The middleware approach allows the multiple 
protocols and services to be developed and 
provided in a library, together with application 
interfaces for integration with other applications. 

 
3  Middleware Components   
This paper focuses on routing protocols and high 
performance data transfer functions, the core 
components. Multicast routing will be accomplished 
through a dynamic clustered tree structure capable of 
supporting large number of multicast participants 
within a specified delay constraint. We introduced 
the Clustered Tree protocol for implementing 
application-level multicast in [7]. It is based on 
unicast relay of TCP packets. However, in that 
protocol, for a host to distribute a packet to multiple 
(say N) child hosts the packet can only be sent to the 
Nth host after first N-1 hosts have received the 
packet. An enhancement to the Cluster Tree protocol 
will allow parallel packet distribution between a host 
and its direct children. A brief overview of this 
protocol is presented in Section 3.1. Section 3.2 
describes our implementation of a high performance 
data transfer application and experimental results. 
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3.1  Multicast tree protocol 

3.1.1 Overview of application-level multicast 
In Application-Level Multicast (ALM), hosts 
participating in a multicast system share the 
responsibility for forwarding data to other hosts and 
all packets are transmitted as unicast packets. Thus, 
multicast-capable routers are not required. However, 
application-level multicast cannot perform as well as 
IP multicast, especially with regards to delay and 
scalability. An ALM tree is an overlay topology 
where each of its edges corresponds to a unicast path 
in the underlying structure. The structures in Fig. 1 
depict, respectively, IP multicast, application-level 
multicast and a way of constructing a multicast tree 
to reduce link stress. 
 

4 

 

Fig. 1: Multicast examples 

The data source labeled S sends data packets to 
recipients V, M1, and M2, respectively. Fig. 1(a) 
depicts the IP multicast protocol, where at most one 
copy of a packet is sent over any physical link. Each 
recipient receives data with about the same delay as 
if by unicast. Figs. 1(b) and 1(c) show application 
level multicast overlay topologies. In Fig. 1(b), S 
sends a packet to host M1; M1 sends it to host M2; 
and M2 sends it to host V. Redundant data 
transmission over the physical links R1-R2, R2-M1, 
and R2-M2 increases the link stress on some of the 
physical links and increases the delay from the 
source to recipients M2 and V. Fig. 1(c) is a better 
multicast overlay topology.  The same data still 
appear multiple times over some physical links, but 
only a single copy of data is sent over the link R1-
R2. Communication between two hosts is more 
reliable and more efficient if the hosts are connected 
to the same router because transmission will require 
fewer hops and less time.  Therefore, the delay from 
source S to V is reduced, while the delay from the 
source to M2 remains the same.  

3.1.2 Overview of the clustered multicast tree 
(CMT) protocol 

The CMT protocol is designed to efficiently 
implement large-scale data distribution on the 
Internet. The objectives are to (a) construct dynamic 
multicast topologies to support large number of 
participants within a delay constraint, and (b) to 
provide the capability to reconstruct the structures in 
response to changing network conditions that affect 
delay and bandwidth utilization. CMT protocol 
design follows these principles: 
 
• Minimize duplicate packets along router-to-

router links which are more costly.  Perform the 
bulk of packet redistribution within host clusters   
having short inter-host transmission latency.  

• Put two hosts in the same cluster only if they 
share a router or the unicast latency between 
them is less than a specified threshold. Place 
hosts in a tree cluster to avoid accumulation of 
packets in the buffers caused by a host 
exceeding its capacity to consume packets.  

• When data accumulation occurs, the host with 
the largest total latency among all its direct 
clients is moved to a lower level in the multicast 
tree. For a given bandwidth, this scheme forces a 
host with the longest latency to move to the 
bottom of its cluster where it will no longer 
adversely affect other hosts.   

• One “dispatcher” host in the system assists a 
new host to join the clustered multicast tree and 
handles host departure or failure. It decides 
whether a host should disconnect its clients or 
should connect to another host. The use of 
multiple dispatchers localizes restructuring to 
each cluster. 

      A clustered multicast tree consists of a set of 
clusters, each of which is made up of end host 
systems such that the multicast latency of data 
transmission among members of a cluster is 
minimized. Ideally, no duplicate data packets will 
traverse the same physical link between routers. 
Thus this protocol tends to minimize link stress. 
 
 
3.2 High performance data transfer 
Often applications can utilize only a small 
percentage of the total available bandwidth. For 
instance, using FTP [8] on a network where the 
slowest hop from site A to site B is 100 Mbps one 
may achieve a throughput of only 4Mbps. Research 
has shown that tuning both the parameters of TCP 
communication and the TCP configuration of the 
communication devices themselves can lead to 
significant performance improvements [9]. In many 

              (a) IP                      (b) Application level     (c) Application level 
                                                  overlay with high          overlay with low     
                                                  link stress                      link stress
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circumstances, TCP connections require manual 
tuning to obtain respectable performance [10]. Many 
variants of TCP have been developed for high 
bandwidth network [11, 12], but the environments 
considered are often not characterized by low 
bandwidth connections. 
      To investigate how the TCP buffer size and the 
number of concurrent socket connections influence 
throughput we developed TCP/IP connection 
software in Java. We discuss first the impact of TCP 
window size and number of concurrent sockets on 
TCP performance followed by other techniques for 
improving TCP performance. 

TCP window size and socket buffer sizes: TCP 
uses the congestion window (cwnd) to determine 
how many packets can be sent at one time. The 
larger the congestion window size, the higher the 
throughput would be. The TCP “slow start” and 
“congestion avoidance” algorithms determine the 
size of the congestion window that is usually less 
than 65535 bytes. Most operating systems support a 
much larger window size up to 1,073,741,823 bytes 
[13], which should be enough for a speed up to 1 
Tbps. The maximum congestion window size is 
related to the amount of the TCP buffer space that an 
operating system allocates for each socket. For each 
socket buffer, there is a default value for the buffer 
size, which can be changed in a program. The buffer 
size can be modified for both the send and receive 
ends of the socket. To get maximum throughput, it is 
critical to use optimal TCP send and receive socket 
buffer size for the link connection. If the buffers are 
too small the TCP congestion window will never 
fully open, and if they are too large the sender can 
overrun the receiver, and the TCP window shuts 
down. Table 1 shows the result of transfer rate for 
varying socket buffer sizes. The experiment involves 
transferring over the Internet 23.3 megabytes of data 
between two computers located in Florida and 
Virginia, respectively. The 65536 byte buffer gives 
the best transfer rate. 
 
Table 1: Socket buffer sizes vs. transfer time and 
transfer rate 

Transfer rate Socket buffer 
size 

Transfer time 
(ms) KBps Mbps 

  8192 84750 281.9 2.2 
  32768 30422 785.2 6.1 
  65536 26719 894.0 7.0 
  524288 28641 834.0 6.5 
  1048576 47172 506.4 4.0 

Concurrent multiple socket connections: Multiple 
sockets may be used to get a better use of the 
bandwidth capacity, often yielding linear speedup. 
Table 2 shows the increase in transfer rate with 
increasing number of connections when the buffer 
size is set to 8192 bytes. 
 
Table 2: Number of connections vs. transfer time 
and transfer rate 

Transfer rate Number of 
connections

Transfer time- 
(ms) KBps Mbps 

1 77328 308.9 2.4 
2 45594 523.9 4.1 
3 32188 742.1 5.8 
4 26125 914.3 7.1 
5 22469 1063.1 8.3 
6 19094 1251.0 9.8 
7 17219 1387.2 10.8 
8 15844 1507.6 11.8 
9 14407 1658.0 12.9 

  
Interaction between socket buffer size and 
number of concurrent connections: To examine 
how socket buffer size interacts with the number of 
concurrent connections in impacting the TCP 
performance, we chose five socket buffer levels. For 
each buffer level, tests were performed for 1 through 
9 concurrent connections. Eleven runs were 
conducted for each combination of the socket buffer 
and number of concurrent connections. For each 
number of concurrent connections, the throughput is 
maximized at the socket buffer size of 32768 bytes. 
Throughput increases with increase in buffer size 
within a certain range but begins to decrease after a 
certain buffer size level.  
     There is no optimal number of concurrent 
connections that generates maximum throughput for 
all the socket buffer sizes we considered. Nine 
concurrent socket connections each optimizes 
throughput when socket buffer is set at 8192 (default 
buffer size in Java API), 32768 or 524288.  A 
transfer rate of 15.5 Mbps can be achieved with a 
socket buffer size of 32768 byte and three 
concurrent socket connections. Compared to the 
throughout without TCP tuning, this TCP tuning 
configuration can transfer data about 7 times faster. 
       When the socket buffer is set at 32768 bytes, 
increasing the number of concurrent socket 
connections from 1 through 10 improves throughput.    
      Since the buffer size at 32768 bytes outperforms 
other buffer sizes, this buffer size was used to test 
the effect of increasing the number of concurrent 
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connections from 1 to 20 (Fig. 2).   The best transfer 
times are achieved with the number of concurrent 
connections at between 8 and 13, after which it 
increases. Interferences among concurrent socket 
connections beyond 8 have adverse impact. 
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Fig. 2: Transfer time vs. number of concurrent 
connections 
 
3.3 The middleware 
The proposed enhancement to the Cluster Tree 
protocol will allow parallel packet distribution 
between a host and its direct children. Then, to 
construct a multicast system, any number of data 
transport protocol may be incorporated into the 
clustered tree routing protocol. Specifically, an 
instance of the middleware will consist of the 
following: 
• The Clustered Tree routing protocol using TCP 

as the transport, instead of IP Multicast. 
• An enhanced Clustered Tree routing protocol 

that allows multiple socket connections between 
a host and one of its direct descendants. 

• An enhanced Clustered Tree protocol which 
allows multiple socket “connections” from a 
node with each connection to one of its direct 
descendants. 

• One-to-many multicast distribution systems by 
transporting TCP data streams over each of the 
routing structures.  

• One-to-many multicast distribution systems by 
transporting UDP data streams over each of the 
routing structures.  

 
After a complete implementation, the main product 
will be a middleware to be offered as Software 
Development Kits and through Application 
Programming Interfaces to allow dynamic 
integration of multicast services with other 
applications. The software library will facilitate 

development of multicast products for many 
application areas. 
 
 
4 Related Work 
Several protocols for application-level multicast 
have been developed [4,5,6].   
      A repository of “Transport Protocols other than 
Standard TCP” is in [14]. Other parallel data 
distribution research and software includes Psockets 
[15], Java Parallel Secure Stream for Grid 
Computing [16] and GridFTP [17].  
      The Grid architecture emphasizes the 
identification and definition of protocols and 
services first to be followed by APIs and SDKs [18]. 
RelayCast suggests finding the common functions of 
ALM systems and incorporating them into a 
middleware [19].   
      What distinguishes our approach is the prospect 
of handling the plurality of multicast applications 
through a middleware that provides application-level 
multicast routing and high performance data transfer 
functions. 
 
 
5  Conclusion 
This new approach provides a framework for 
combining application level multicast with parallel 
data distribution to produce protocols and services as 
a middleware, to satisfy diverse multicast 
application requirements. The middleware services 
will then made available through either SDKs for 
constructing multicast applications or through APIs 
to allow dynamic integration of multicast services 
with other applications. The framework can lead to 
innovative implementations capable of meeting the 
diverse and conflicting requirements of multicast 
applications. 
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