
A Scalable Middleware Solution for Fast Data Transport

YINGJIN CUI
Department Computer Science

Virginia Commonwealth University
Richmond, VA

USA

ADE OLA
Learning Scope, Incorporated

PO Box 29215
Richmond VA 23242

USA

STEVE DAVIS
Department of Management

Clemson University
101 Sirrine Hall, Clemson, SC 29624-1305

USA

XUE BAI

Department of Computer Information Systems
Virginia State University

Petersburg, VA 23834
USA

Abstract - Multipoint distribution of data is a requirement for various types of applications in such areas as
distance learning, multimedia conferencing and group collaboration. The economy of scale of multicast transport
for multipoint distribution is not in doubt. The challenge is to develop technologies that will satisfy the varied
requirements of these applications. However, IP Multicast has proven difficult to deploy on a large scale, and it
can not satisfy the requirements of the plurality of multicast applications. Many multicast protocols have been
proposed as alternatives to the open service model of IP Multicast. But no one set of protocols is capable of
satisfying the various, often at odds, service requirements of multicast applications with heterogeneous multicast
receivers. This paper proposes a middleware approach to provide core protocols, functions and interfaces, the
combination of which can be selected and customized to meet the specific demands of various multicast-based
applications. At its core, the proposed middleware solution will allow the routing of both datagrams and streams,
using multiple channels and variants of the standard transport protocols, over clustered trees that scale well for
large number of hosts in a multicast group.

Key-Words: - Data transportation, multimedia streaming, high performance data transfer, middleware, routing

Proceedings of the 5th WSEAS Int. Conf. on DISTANCE LEARNING AND WEB ENGINEERING, Corfu, Greece, August 23-25, 2005 (pp128-133)

1 Introduction
One of the essential requirements of multimedia
conferencing and collaboration applications is an
efficient multipoint data distribution technology.
The requirements of these and similar applications
are varied [1]. In addition to satisfying the varied
service requirements of different applications, there
is also the need to accommodate, within the same
application and multicast group, multiple
heterogeneous multicast receivers - with their
diversity of bandwidth capacity and delivery delay.
 The challenge is to develop multicast
technologies that will not only resolve deployment
issues of IP Multicast, but also satisfy the varied
requirements of multicast applications. Many
multicast protocols have been proposed as
alternatives to the open service model of IP
Multicast, including Source-Specific Multicast [2],
reliable multicast projects [3] and application-level
multicast protocols [3, 4, 5, 6]. However, no one set
of protocols is capable of satisfying the various,
often at odds, service requirements of multicast
applications having heterogeneous multicast
receivers. This paper proposes a middleware
solution based on application-level multicast
protocol and high-performance data transfer
protocols through multiple-socket connection.

2 The Middleware Approach
Middleware is services above the TCP/IP level but
below the application environment [7]. The
proposed middleware consists of various data
transport protocols, services overlay network
construction, group management, multicast routing
and secure multicast. The new approach solves the
problem of satisfying the service requirements of
varying multicast applications with heterogeneous
multicast receivers through:

• middleware as a protocol and service software

library from which multicast application services
can be provided,

• clustered tree protocol as a basis for constructing
routing structures that will scale well for large
number of heterogeneous receivers,

• two types of parallelism through multiple
sockets between two nodes and multiple sockets
from one node each “connected” to a different
node,

• TCP, UDP, and variants of TCP and UDP as
transport to provide various levels of reliability,
latency, and throughput, and

• populating the library with solutions to provide
various degrees of secure multicast.

 Each component of the approach helps provide a
solution to the problem of the supporting various
multicast requirements for groups of receivers with
diverse bandwidth capacity and delivery delay:

• The clustered tree routing protocol allows

dynamic constitution of hosts into a multicast
group. Hosts having the least capacities are
located at the lower levels of the delivery tree.

• Parallel data delivery through the use of multiple
sockets between any two nodes maximizes the
throughput, subject to fair use of the network..
Allowing a node to open multiple sockets each
“connected” to a different node reduces latency
rather than increasing throughput.

• Data delivery through TCP, UDP, and variants
of the two protocols provides varying degrees of
throughput, latency, and reliability.

• Interfaces to security solutions must be reviewed
for their impact on the performance of the
multicast application.

• The middleware approach allows the multiple
protocols and services to be developed and
provided in a library, together with application
interfaces for integration with other applications.

3 Middleware Components
This paper focuses on routing protocols and high
performance data transfer functions, the core
components. Multicast routing will be accomplished
through a dynamic clustered tree structure capable of
supporting large number of multicast participants
within a specified delay constraint. We introduced
the Clustered Tree protocol for implementing
application-level multicast in [7]. It is based on
unicast relay of TCP packets. However, in that
protocol, for a host to distribute a packet to multiple
(say N) child hosts the packet can only be sent to the
Nth host after first N-1 hosts have received the
packet. An enhancement to the Cluster Tree protocol
will allow parallel packet distribution between a host
and its direct children. A brief overview of this
protocol is presented in Section 3.1. Section 3.2
describes our implementation of a high performance
data transfer application and experimental results.

Proceedings of the 5th WSEAS Int. Conf. on DISTANCE LEARNING AND WEB ENGINEERING, Corfu, Greece, August 23-25, 2005 (pp128-133)

3.1 Multicast tree protocol

3.1.1 Overview of application-level multicast
In Application-Level Multicast (ALM), hosts
participating in a multicast system share the
responsibility for forwarding data to other hosts and
all packets are transmitted as unicast packets. Thus,
multicast-capable routers are not required. However,
application-level multicast cannot perform as well as
IP multicast, especially with regards to delay and
scalability. An ALM tree is an overlay topology
where each of its edges corresponds to a unicast path
in the underlying structure. The structures in Fig. 1
depict, respectively, IP multicast, application-level
multicast and a way of constructing a multicast tree
to reduce link stress.

4

Fig. 1: Multicast examples

The data source labeled S sends data packets to
recipients V, M1, and M2, respectively. Fig. 1(a)
depicts the IP multicast protocol, where at most one
copy of a packet is sent over any physical link. Each
recipient receives data with about the same delay as
if by unicast. Figs. 1(b) and 1(c) show application
level multicast overlay topologies. In Fig. 1(b), S
sends a packet to host M1; M1 sends it to host M2;
and M2 sends it to host V. Redundant data
transmission over the physical links R1-R2, R2-M1,
and R2-M2 increases the link stress on some of the
physical links and increases the delay from the
source to recipients M2 and V. Fig. 1(c) is a better
multicast overlay topology. The same data still
appear multiple times over some physical links, but
only a single copy of data is sent over the link R1-
R2. Communication between two hosts is more
reliable and more efficient if the hosts are connected
to the same router because transmission will require
fewer hops and less time. Therefore, the delay from
source S to V is reduced, while the delay from the
source to M2 remains the same.

3.1.2 Overview of the clustered multicast tree
(CMT) protocol

The CMT protocol is designed to efficiently
implement large-scale data distribution on the
Internet. The objectives are to (a) construct dynamic
multicast topologies to support large number of
participants within a delay constraint, and (b) to
provide the capability to reconstruct the structures in
response to changing network conditions that affect
delay and bandwidth utilization. CMT protocol
design follows these principles:

• Minimize duplicate packets along router-to-

router links which are more costly. Perform the
bulk of packet redistribution within host clusters
having short inter-host transmission latency.

• Put two hosts in the same cluster only if they
share a router or the unicast latency between
them is less than a specified threshold. Place
hosts in a tree cluster to avoid accumulation of
packets in the buffers caused by a host
exceeding its capacity to consume packets.

• When data accumulation occurs, the host with
the largest total latency among all its direct
clients is moved to a lower level in the multicast
tree. For a given bandwidth, this scheme forces a
host with the longest latency to move to the
bottom of its cluster where it will no longer
adversely affect other hosts.

• One “dispatcher” host in the system assists a
new host to join the clustered multicast tree and
handles host departure or failure. It decides
whether a host should disconnect its clients or
should connect to another host. The use of
multiple dispatchers localizes restructuring to
each cluster.

 A clustered multicast tree consists of a set of
clusters, each of which is made up of end host
systems such that the multicast latency of data
transmission among members of a cluster is
minimized. Ideally, no duplicate data packets will
traverse the same physical link between routers.
Thus this protocol tends to minimize link stress.

3.2 High performance data transfer
Often applications can utilize only a small
percentage of the total available bandwidth. For
instance, using FTP [8] on a network where the
slowest hop from site A to site B is 100 Mbps one
may achieve a throughput of only 4Mbps. Research
has shown that tuning both the parameters of TCP
communication and the TCP configuration of the
communication devices themselves can lead to
significant performance improvements [9]. In many

 (a) IP (b) Application level (c) Application level
 overlay with high overlay with low
 link stress link stress

Proceedings of the 5th WSEAS Int. Conf. on DISTANCE LEARNING AND WEB ENGINEERING, Corfu, Greece, August 23-25, 2005 (pp128-133)

circumstances, TCP connections require manual
tuning to obtain respectable performance [10]. Many
variants of TCP have been developed for high
bandwidth network [11, 12], but the environments
considered are often not characterized by low
bandwidth connections.
 To investigate how the TCP buffer size and the
number of concurrent socket connections influence
throughput we developed TCP/IP connection
software in Java. We discuss first the impact of TCP
window size and number of concurrent sockets on
TCP performance followed by other techniques for
improving TCP performance.

TCP window size and socket buffer sizes: TCP
uses the congestion window (cwnd) to determine
how many packets can be sent at one time. The
larger the congestion window size, the higher the
throughput would be. The TCP “slow start” and
“congestion avoidance” algorithms determine the
size of the congestion window that is usually less
than 65535 bytes. Most operating systems support a
much larger window size up to 1,073,741,823 bytes
[13], which should be enough for a speed up to 1
Tbps. The maximum congestion window size is
related to the amount of the TCP buffer space that an
operating system allocates for each socket. For each
socket buffer, there is a default value for the buffer
size, which can be changed in a program. The buffer
size can be modified for both the send and receive
ends of the socket. To get maximum throughput, it is
critical to use optimal TCP send and receive socket
buffer size for the link connection. If the buffers are
too small the TCP congestion window will never
fully open, and if they are too large the sender can
overrun the receiver, and the TCP window shuts
down. Table 1 shows the result of transfer rate for
varying socket buffer sizes. The experiment involves
transferring over the Internet 23.3 megabytes of data
between two computers located in Florida and
Virginia, respectively. The 65536 byte buffer gives
the best transfer rate.

Table 1: Socket buffer sizes vs. transfer time and
transfer rate

Transfer rate Socket buffer
size

Transfer time
(ms) KBps Mbps

 8192 84750 281.9 2.2
 32768 30422 785.2 6.1
 65536 26719 894.0 7.0
 524288 28641 834.0 6.5
 1048576 47172 506.4 4.0

Concurrent multiple socket connections: Multiple
sockets may be used to get a better use of the
bandwidth capacity, often yielding linear speedup.
Table 2 shows the increase in transfer rate with
increasing number of connections when the buffer
size is set to 8192 bytes.

Table 2: Number of connections vs. transfer time
and transfer rate

Transfer rate Number of
connections

Transfer time-
(ms) KBps Mbps

1 77328 308.9 2.4
2 45594 523.9 4.1
3 32188 742.1 5.8
4 26125 914.3 7.1
5 22469 1063.1 8.3
6 19094 1251.0 9.8
7 17219 1387.2 10.8
8 15844 1507.6 11.8
9 14407 1658.0 12.9

Interaction between socket buffer size and
number of concurrent connections: To examine
how socket buffer size interacts with the number of
concurrent connections in impacting the TCP
performance, we chose five socket buffer levels. For
each buffer level, tests were performed for 1 through
9 concurrent connections. Eleven runs were
conducted for each combination of the socket buffer
and number of concurrent connections. For each
number of concurrent connections, the throughput is
maximized at the socket buffer size of 32768 bytes.
Throughput increases with increase in buffer size
within a certain range but begins to decrease after a
certain buffer size level.
 There is no optimal number of concurrent
connections that generates maximum throughput for
all the socket buffer sizes we considered. Nine
concurrent socket connections each optimizes
throughput when socket buffer is set at 8192 (default
buffer size in Java API), 32768 or 524288. A
transfer rate of 15.5 Mbps can be achieved with a
socket buffer size of 32768 byte and three
concurrent socket connections. Compared to the
throughout without TCP tuning, this TCP tuning
configuration can transfer data about 7 times faster.
 When the socket buffer is set at 32768 bytes,
increasing the number of concurrent socket
connections from 1 through 10 improves throughput.
 Since the buffer size at 32768 bytes outperforms
other buffer sizes, this buffer size was used to test
the effect of increasing the number of concurrent

Proceedings of the 5th WSEAS Int. Conf. on DISTANCE LEARNING AND WEB ENGINEERING, Corfu, Greece, August 23-25, 2005 (pp128-133)

connections from 1 to 20 (Fig. 2). The best transfer
times are achieved with the number of concurrent
connections at between 8 and 13, after which it
increases. Interferences among concurrent socket
connections beyond 8 have adverse impact.

5000

10000

15000

20000

25000

30000

35000

0 10 20
Number of concurrent connections

Tr
an

sf
er

 ti
m

e
(m

s)

Fig. 2: Transfer time vs. number of concurrent
connections

3.3 The middleware
The proposed enhancement to the Cluster Tree
protocol will allow parallel packet distribution
between a host and its direct children. Then, to
construct a multicast system, any number of data
transport protocol may be incorporated into the
clustered tree routing protocol. Specifically, an
instance of the middleware will consist of the
following:
• The Clustered Tree routing protocol using TCP

as the transport, instead of IP Multicast.
• An enhanced Clustered Tree routing protocol

that allows multiple socket connections between
a host and one of its direct descendants.

• An enhanced Clustered Tree protocol which
allows multiple socket “connections” from a
node with each connection to one of its direct
descendants.

• One-to-many multicast distribution systems by
transporting TCP data streams over each of the
routing structures.

• One-to-many multicast distribution systems by
transporting UDP data streams over each of the
routing structures.

After a complete implementation, the main product
will be a middleware to be offered as Software
Development Kits and through Application
Programming Interfaces to allow dynamic
integration of multicast services with other
applications. The software library will facilitate

development of multicast products for many
application areas.

4 Related Work
Several protocols for application-level multicast
have been developed [4,5,6].
 A repository of “Transport Protocols other than
Standard TCP” is in [14]. Other parallel data
distribution research and software includes Psockets
[15], Java Parallel Secure Stream for Grid
Computing [16] and GridFTP [17].
 The Grid architecture emphasizes the
identification and definition of protocols and
services first to be followed by APIs and SDKs [18].
RelayCast suggests finding the common functions of
ALM systems and incorporating them into a
middleware [19].
 What distinguishes our approach is the prospect
of handling the plurality of multicast applications
through a middleware that provides application-level
multicast routing and high performance data transfer
functions.

5 Conclusion
This new approach provides a framework for
combining application level multicast with parallel
data distribution to produce protocols and services as
a middleware, to satisfy diverse multicast
application requirements. The middleware services
will then made available through either SDKs for
constructing multicast applications or through APIs
to allow dynamic integration of multicast services
with other applications. The framework can lead to
innovative implementations capable of meeting the
diverse and conflicting requirements of multicast
applications.

References:
[1] Yamamoto, M., Multicast Communications –

Present and Future, IEEE Transactions on
Communications, Vol. E86-B, No. 6, June
2003, pp.1754-1767

[2] Bhattacharyya, S., RFC 3569 - An Overview
of Source-Specific Multicast (SSM), July
2003,
http://www.faqs.org/rfcs/rfc3569.html

[3] Lucas, M., Dempsey, B. & Weaver, A.,
MESH-R: Large-Scale, Reliable Multicast
Transport IEEE International Conference on

Proceedings of the 5th WSEAS Int. Conf. on DISTANCE LEARNING AND WEB ENGINEERING, Corfu, Greece, August 23-25, 2005 (pp128-133)

Communication (ICC '99), Vancouver, BC,
June 1999, pp. 657--665

[4] Bai, X., Ola, A., Cui, Y. & Ikem, F., A
Clustered Tree Method for Implementing
Application Level Multicast, 3rd International
Symposium on Information and
Communication Technologies, Las Vegas,
Nevada. June 16-18, 2004

[5] Jannotti, J., Gifford, D. Johnson, K., Kaashoek,
M. & O., J., Jr., 2000, Overcast: Reliable
Multicasting With An Overlay Network,
Proceedings OSDI ’00, pp. 197-212

[6] Pendarakis, D., Shi, S., Verma, D. &
Waldvogel, M., ALMI: An Application Level
Multicast Infrastructure, Proceedings of 3rd
Usenix Symposium on Internet Technologies &
Systems (USITS’01), San Francisco, March,
pp. 49-60.

[7] Aiken, B., Strassner, J., Carpenter, B., Foster,
I., Lynch, C., Mambretti, J., Moore, R. &
Teitelbaum, B., RFC 2768 - Network Policy
and Services: A Report of a Workshop on
Middleware, 2000,
http://www.faqs.org/rfcs/rfc2768.html

[8] Postel, J. & Reynolds, J., RFC 959 - File
Transfer Protocol (FTP), 1985,
http://www.faqs.org/rfcs/rfc959.html

[9] Leese, M., Grid-Mon – TCP Tuning, 2003,
http://gridmon.dl.ac.uk/tcp_tuning.html

[10] Semke, J. Mahdavi, J. & Mathis, M.,
Automatic TCP Buffer Tuning, Computer
Communication Review, ACM SIGCOMM,
Vol. 28, No. 4, October 1998, pp. 315-323

[11] Survey of Transport Protocols Other than
Standard TCP, http://www.evl.uic.edu/eric/atp/

[12] Chen, J., Akers, W., Chen, Y. & Watson, W.
III, Java Parallel Secure Stream for Grid
Computing, High Performance Computing
Group, Thomas Jefferson National Accelerator
Facility,
http://www.jlab.org/hpc/papers/jparss.pdf

[13] Jacobson, V., Braden, R. & Borman, D., RFC
1323 - TCP extensions for high performance,
1992, http://www.faqs.org/rfcs/rfc1323.html

[14] Goutelle, M., Gu, Y., He, E., Hegde, S.,
Kettimuthu, R., Leigh, R., Primet, P., Welzl,
M. (Ed.), Xiong, C. & Yousaf, M., Suvery of
Transport Protocols Other Than Standard TCP,
2004,
http://www.gridforum.org/Meetings/ggf10/GG
F10%20Documents/Survey%20DT-RG.pdf

[15] Sivakumar, H., Bailey, S. & Grossman, R.,
PSockets: The Case for Application-level

Network Striping for Data Intensive
Applications using High Speed Wide Area
Networks, Proceedings of SuperComputing
2000, Dallas, Texas. November 2000

[16] Chen, J., Akers, W., Chen, Y. & Watson, W.
III, Java Parallel Secure Stream for Grid
Computing, High Performance Computing
Group, Thomas Jefferson National Accelerator
Facility,
http://www.jlab.org/hpc/papers/jparss.pdf

[17] Allcock, W. (Ed.), GridFTP: Protocol
Extensions to FTP for the Grid, April 2003,
http://www.ggf.org/documents/GWD-R/GFD-
R.020.pdf

[18] Foster, C., Kesselman, C. & Tuecke, S., The
Anatomy of the Grid: Enabling Scalable
Virtual Organizations, International Journal of
Supercomputer Applications, Vol. 15, No. 3,
2001, http://www.globus.org/
alliance/publications/papers/anatomy.pdf

[19] Mimura, N., Nakauchi, K., Morikawa, H. &
Aoyama, T., RelayCast: A Middleware for
Application-level Multicast Services, 3rd
International Symposium on Cluster
Computing and the Grid, May 12 - 15, 2003, p.
434

Proceedings of the 5th WSEAS Int. Conf. on DISTANCE LEARNING AND WEB ENGINEERING, Corfu, Greece, August 23-25, 2005 (pp128-133)

