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Abstract: - In classic direct method to calculate the Hopf bifurcation points, a (2n+2)-dimensional augmented 
was required for an n-dimensional power system. The computation was expensive to solve the augmented 
system. A fast method to calculate the Hopf bifurcation points in power system dynamic voltage stability is 
presented. A (n+2)-dimensional augmented system is founded which includes the differential-algebraic 
equations set to describe the dynamic characteristics of the power system and 2 scalar equations. The Hopf 
bifurcation points can be ascertained by solve the new augmented system. The proposed method has been 
applied to a classic power system dynamic model to illustrate its effectiveness. 
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1   Introduction 
Bifurcation theory has been a powerful tool for the 
analysis of voltage stability in power system. Hopf 
bifurcation is a kind of representative dynamic 
bifurcation. In 1980, Van Ness J.E. firstly combined 
the oscillation of power system with the bifurcation 
theory and investigated the oscillatory occurrence 
associated with Hopf bifurcation [1]. Abed and 
Varaiya demonstrated the existence of subcritical 
Hopf bifurcation in a simple power system model 
[2]. Alexander discovered the supercritical and 
subcritical Hopf bifurcations by analyzing a small 
power system with 2 generators [3]. Henceforth a lot 
of bifurcation phenomenons, even chaos, were 
found in power system [4,5]. Now, Hopf has been 
regarded as one of the three kinds of bifurcations 
which can cause voltage instability [6,7]. Therefore 
it is very important for the dynamic voltage stability 
research to calculate the Hopf bifurcation points of 
power system [8~11]. 

There are two kinds of methods to compute Hopf 
bifurcation points: 

(1) Continuous method, by tracing the 
equilibrium solution manifold and 
computing eigenvalues of Jacobi matrix 
during the continuation process. The Hopf 
bifurcation was obtained if a pair of 
complex conjugate eigenvalues crossing 
the imaginary axis. The numerical 

computation was complicated and time-
consuming. 

(2) Direct methods, using an augmented 
system of time independent equations for 
which the Hopf bifurcation point is an 
isolated solution. 

The directed method can determine the Hopf 
bifurcation point on the solution manifold directly. 
However, in the classic direct method a (2n+2)-
dimensional augmented was required for an n-
dimensional power system [12~14]. The 
computation was expensive to solve the augmented 
system. A fast method to calculate the Hopf 
bifurcation points in power system dynamic voltage 
stability is presented. A (n+2)-dimensional 
augmented system is founded which includes 2 
scalar equations and the differential-algebraic 
equations set to describe the dynamic characteristics 
of the power system. 
 
 
2   Direct method  
 
 
2.1 Hopf bifurcation 
Consider the nonlinear dynamic system as show 
below:  

pn RRxxfx ∈∈= λλ ,),,(&        (1) 
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Assume that )),(( λλx is one-parameter solution of 
a family of (1) and )),(()( λλλ xfA x=  is the one-
parameter matrix family. Then the numerical 
computation of Hopf bifurcation becomes the 
problem to determine λ  so that )(λA has a pair of 
pure imaginary eigenvalue. For the given 0λ , 0ω , if 
there exists sufficient smooth functions )(),( λωλη  
which defined in a neighborhood of 0λ  and satisfy 
the following Hopf conditions H1-H4, then 

2
000 ),,( RRx n ×∈ωλ  will be a Hopf bifurcation 

point of (1). 
H1 )()()( λωληλµ i+= is an eigenvalue of )(λA . 
H2 0)( 0 =λη , 0)( 00 >ωλω £½ . 

H3 0)( 0
' ≠λη . 

H4 )( 0λωi  is an eigenvalue of )( 0λA  and there is 

no eigenvalue of )( 0λA  in the form of 1,0 ≠kkiω . 

Let 0
2

0
10 φφφ i+=  be the corresponding eigenvector 

of the simple eigenvalue )( 0λωi  of 0
xf . 

 
 
2.2   Numerical method 
To compute Hopf bifurcation points, Roose and 
Hlavacek proposed the following augmented 
system: 
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where q  is a constant vector without null-projection 
in the space spanned by 0

1φ , 0
2φ . The 

mark ><, denotes computing the scalar product of 
the vector. 
Then there exists a unique vector 

0
2

0
10 ,φφspanp ∈ such that ),,,( 00000 ωλpxy =  

is an isolated solution of 0)(
ϖ

=yF [14]. It is obvious 
that (2) is (2n+2)-dimensional equations set and to 
work out it will cost much time and storage. 
Therefore, it is disadvantageous for the application 
on the bulk power system. 
In [15] a fast direct method was presented in which 
the augmented was reduced to an (n+2)-dimensional 
one. Now a sketch is shown as below. 
Since 0

2
0

10 ,φφspanp ∈ , there exists constants d1, 

d2 such that: 

0
22

0
110 φφ ddp +=                   (3) 

Let ∗− ][ 0
0 Iif x ω  be the adjoint operator of 

][ 0
0 Iif x ω− , then: 

0
2

0
10

0 0)]([ ψψψω ispanIifKer x +==− ∗       (4) 

0ψ  satisfies: 
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It is obvious that: 
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then 
0,,1, 0

0
40

0
3 >=<>=< pp ψψ          (6) 

Denote 2ω=k , 2
00 ω=k ,

0

2

T
x

C
BkIf

A
+

= . Since 

]),([ 000
0 Ikxf x +λ  has a dual eigenvalue, we could 

choose ),( 21 bbB = , ),( 21 ccC = such that matrix 
A is nonsingular. Then Lemma 1 is obtained. 
Lemma 1 The following systems are unique 
solvable: 
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where )2,1(,,, =∈∈ iRgkRuv ii
n

i  are functions 
of ),,( kx λ , and 
(1) >+<−= vkIfug xii )(, 2  

(2)
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The proof of Lemma 1 can be seen in [15]. 
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The following augmented system is presented to 
compute the Hopf bifurcation point. 
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where )2,1(,, =igvu ii  are obtained by Lemma 1 
and 
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Theorem 1 Assume that ),,( 000 kx λ is a Hopf 

bifurcation of 0),(
ϖ

=λxf with )(yG defined as 

(9), then ),,( 0000 kxy λ=  is an isolated point of 

0),,(
ϖ

=kxG λ . 
Before we prove Theorem 1, the following Lemma 2 
is presented. 
Lemma 2 If ),,( 000 kx λ  is a Hopf bifurcation of 

0),,(
ϖ

=kxG λ , then 
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 The proof of Lemma 2 can be seen in [15]. 
 
Proof of Theorem 1: 
It is needed to prove the following linear system has 
only trivial solution. 
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Expanding (10) yields: 
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Namely 
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Since 0

xf  is nonsingular, it follows from (12-1) that 

0
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where v0 satisfies 
00

0
0

ϖ
=+ λfvf x                 (13) 

Multiplying (12-2) by 1
12

2
2
1 )( ddd ⋅+ − , and (12-3) 

by 2
12

2
2
1 )( ddd ⋅+ − , then take the sum, yields 
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In a similar way, multiplying (12-2) by 
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Substitute 0vx λ=  into (15) and take (6) into 
account, then 
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It follows from the result of Lemma 2 that (16) 
becomes: 

0)(2 00
' =⋅ ωληλ                (17) 

According H2, H3, (17) has one unique solution 
0=λ , and consequently 0

ϖ
=x . It follows from 

(16) that 0, 0
0
3 >=< pk ψ , so 0=k . So far the 

proof is finished. 
 
 
2.3   Arithmetic procedure 
The numerical computational process of Hopf 
bifurcation points is shown as below: 
Step 1: Suitably choose B, C and initial value 

),,( 000 kx λ of ),,( kxy λ= . 
Step 2:  Solve the linear equations (7), (8) and obtain 

)2,1(,, =igvu ii . 

Proceedings of the 5th WSEAS Int. Conf. on Power Systems and Electromagnetic Compatibility, Corfu, Greece, August 23-25, 2005 (pp85-89)



Step 3: Solve the augmented system (9) based on 
Newton's method and obtain ),1,0( Λ=∆ mym . 
Step 4: Let mmm yyy ∆+=+1  and go back to step 2 
until the desired accuracy is satisfied. 
It can be seen from the above steps that there are 3 
linear (n+2)-dimensional equations sets and a 
nonlinear one need to be solved. Thus it takes less 
time and storage compared with the algorithm by 
solving (2) which is of order 2n+2. 
 
 
3   Numerical example 
 
 
3.1   mathematic models 
 
 
 
 
 
 
 
 
 
 
Consider the power system shown in Fig.1 that 
consists of a load which is supplied by two 
generators. One generator is a slack bus and the 
other one has constant voltage magnitude and the 
dynamics model is given as below. 
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where mm TDM ,,  are the generator inertia, damping 
and input angular force respectively. 
The load is represented by a capacitor in parallel 
with an induction motor. Instead of including the 
capacitor in the circuit, it is convenient to account 
for the capacitor by adjusting E0 and Y0 to give the 
Thevenin equivalent of the circuit with capacitor as 
shown in Fig.2. 
 
 
 
 
 
 
 
 
 
 
 

The adjusted values are shown as below. 
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The real and reactive powers supplied to the load by 
the network are 
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The combined load model is 
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where 00 ,QP are the real and reactive powers of the 
motor and 11 ,QP  represent the constant PQ load. 
Considering (18)~(21), the system differential 
equations are obtained in the form of equation (22). 
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The equations of this system consist of four state 
variables that correspond to generator angle mδ , 
generator angular velocityω , the angle θ and 
magnitude 2v  of load voltage. The load reactive 
power Q1 is chosen as the system controlling 
parameter. 
Parameters of the power system are shown in Tab.1. 
 

Table 1 Parameters of the power system 
0E  mT  mD  M  mE  

1.0 1.0 0.05 0.3 1.0 
0y  0α  C  my  mα  

20.0 -50 12.0 5.0 -50 
ωpK ωqK  pvK  qvK  2qvK  

0.4 -0.03 0.3 -2.8 2.1 
T  0P  0Q  1P   
8.5 0.6 1.3 0.0  
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Fig.1 Power system connecting diagram 
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Fig.2 Power system connecting diagram 
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3.2   Computing result 
One Hopf bifurcation point (Ha) of the example 
system is obtained if the initial values of state 
variables and controlling parameter are (0.30, 0.0, 
0.10, 1.0) and 8.101 =Q  respectively by applying 
the method presented and another one (Hb) is found 
with the initial values (0.35, 0.0, 0.12, 0.9) and 

3.111 =Q . The result is shown in Tab.2 in detail. 
Table 2 Hopf bifurcation points 

 mδ  ω  θ  2v  1Q  
Ha 0.3059 0.0000 0.1157 1.0986 10.944
Hb 0.3471 0.0000 0.1534 0.9239 11.404 

 
The result is in conformity with that presented in 
[16] which illustrate the effectiveness of the method 
put forward in this paper. However this method 
takes less time and storage compared with the 
classic ones. 
 
 
4   Conclusion 
A fast method to calculate the Hopf bifurcation 
points is introduced to the analysis of dynamic 
voltage stability in power system. This method is a 
predigestion of the classic ways. A (n+2)-
dimensional augmented system is established which 
includes the differential-algebraic equations set to 
describe the dynamic characteristics of the power 
system and 2 scalar equations. The Hopf bifurcation 
points can be ascertained by solve the new 
augmented system. The application to a classic 
power system dynamic model illustrates its 
effectiveness. The presented method takes less time 
and storage compared with the classic ones, so it is 
suitable for the application of dynamic voltage 
stability analysis in bulk power system. 
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