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Abstract: - In classic direct method to calculate the Hopf bifurcation points, a (2n+2)-dimensional augmented
was required for an n-dimensional power system. The computation was expensive to solve the augmented
system. A fast method to calculate the Hopf bifurcation points in power system dynamic voltage stability is
presented. A (n+2)-dimensional augmented system is founded which includes the differential-algebraic
equations set to describe the dynamic characteristics of the power system and 2 scalar equations. The Hopf
bifurcation points can be ascertained by solve the new augmented system. The proposed method has been
applied to a classic power system dynamic model to illustrate its effectiveness.
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1 Introduction

Bifurcation theory has been a powerful tool for the
analysis of voltage stability in power system. Hopf
bifurcation is a kind of representative dynamic
bifurcation. In 1980, Van Ness J.E. firstly combined
the oscillation of power system with the bifurcation
theory and investigated the oscillatory occurrence
associated with Hopf bifurcation [1]. Abed and
Varaiya demonstrated the existence of subcritical
Hopf bifurcation in a simple power system model
[2]. Alexander discovered the supercritical and
subcritical Hopf bifurcations by analyzing a small
power system with 2 generators [3]. Henceforth a lot
of bifurcation phenomenons, even chaos, were
found in power system [4,5]. Now, Hopf has been
regarded as one of the three kinds of bifurcations
which can cause voltage instability [6,7]. Therefore
it is very important for the dynamic voltage stability
research to calculate the Hopf bifurcation points of
power system [8~11].

There are two kinds of methods to compute Hopf

bifurcation points:

(1) Continuous method, by tracing the
equilibrium  solution  manifold and
computing eigenvalues of Jacobi matrix
during the continuation process. The Hopf
bifurcation was obtained if a pair of
complex conjugate eigenvalues crossing
the imaginary axis. The numerical

computation was complicated and time-
consuming.

(2) Direct methods, using an augmented
system of time independent equations for
which the Hopf bifurcation point is an
isolated solution.

The directed method can determine the Hopf
bifurcation point on the solution manifold directly.
However, in the classic direct method a (2n+2)-
dimensional augmented was required for an n-
dimensional  power system [12~14]. The
computation was expensive to solve the augmented
system. A fast method to calculate the Hopf
bifurcation points in power system dynamic voltage
stability is presented. A (n+2)-dimensional
augmented system is founded which includes 2
scalar equations and the differential-algebraic
equations set to describe the dynamic characteristics
of the power system.

2 Direct method

2.1 Hopf bifurcation
Consider the nonlinear dynamic system as show
below:

¥= f(x,4),xeR", 21 eR" 1)
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Assume that (x(A4),A) is one-parameter solution of
a family of (1) and A(4) = f (X(4), A1) is the one-
parameter matrix family. Then the numerical

computation of Hopf bifurcation becomes the
problem to determine A so that A(A) has a pair of

pure imaginary eigenvalue. For the given A,, @, if
there exists sufficient smooth functions 7(4), w(A4)
which defined in a neighborhood of A, and satisfy
the following Hopf conditions H1-H4, then
(Xo» A9, @,) € R" x R® will be a Hopf bifurcation
point of (1).

H1 u(1) =n(A) +iw(A) is an eigenvalue of A(4) .

H2 1(4,) =0, w(4,)EY®m, > 0.

H3 77 (4,) % 0.

H4 iw(4,) is an eigenvalue of A(4,) and there is
no eigenvalue of A(4,) in the form of kiw® k #1.
Let ¢, = ¢ +ig, be the corresponding eigenvector

of the simple eigenvalue iw(4,) of f..

2.2 Numerical method
To compute Hopf bifurcation points, Roose and
Hlavacek proposed the following augmented

system:

f(x A)

(f.(x )+’ )p @
F(y):F(X’ p’ﬂ“’a)): =0 (2)
<p,p>-1

<q,p>
where q is a constant vector without null-projection
in the space spanned by ¢°,4. The
mark <, >denotes computing the scalar product of
the vector.
Then there exists a unique vector

Po € Span‘¢107¢20‘SUCh that Y, = (X, Py, 4o, @)

is an isolated solution of F(y) =00 It is obvious

that (2) is (2n+2)-dimensional equations set and to
work out it will cost much time and storage.
Therefore, it is disadvantageous for the application
on the bulk power system.

In [15] a fast direct method was presented in which
the augmented was reduced to an (n+2)-dimensional
one. Now a sketch is shown as below.

Since p, € Span‘¢1°,¢2°‘, there exists constants d;,
d, such that:

Po = d1¢10 + d2¢20 ©)
Let [f?—iw,I]" be the adjoint operator of
[f2—iw,I], then:
Ker([f. —io,1]") = spanly 0=y +iy;|  (4)
v, satisfies:
<Wody> =2
<plgd> =1 <yl > =1
<yl > =0, <y 4> =0
It is obvious that:
{ Ker([(f,))? + ] 1]) = span|g’, 45|
Ker([(f.)* +@¢1]") = spanjy; 3|

Define:
1
vy =m(d1§//10+dzl//3)
1 2 (5)
0 l 0 0
¥V, =m(dz‘//1 —d,y,)
then
<‘//e(,)'p0 >=1, <‘//27p0 >=0 (6)
2
Denote k =0’ k, = ., A= f tkl B . Since
C

[£2(Xgs49) +K,11 has a dual eigenvalue, we could

choose B =(b;,b,), C=(c,,c,)such that matrix

A is nonsingular. Then Lemma 1 is obtained.
Lemma 1 The following systems are unique
solvable:

Aog;llzg ()
g, 1
u;  k, gl.A:(Zl 0 )
u, k, @, 0 01

where v,u, € R",k;, g, € R(i=1,2) are functions
of (x,4,k), and
1) g, =-<u,(fZ+kl)v>

2
OX 6x2
oA oA
%:—<ui,v>
ok

The proof of Lemma 1 can be seen in [15].



Proceedings of the 5th WSEAS Int. Conf. on Power Systems and Electromagnetic Compatibility, Corfu, Greece, August 23-25, 2005 (pp85-89)

The following augmented system is presented to
compute the Hopf bifurcation point.

f(x,1)
—9:(x,4,k)
—9,(x, 4,k)

f(x, 1) o
=|<u,,[(f (x,4)* +kI]>Vv|=0
<Uy, [(f, (X, A)? +kI]>v
where u;,v,g,(i
and

G(y) =G(x,4,k) =

9)

=1,2) are obtained by Lemma 1

U, (Xo, 49, Ko) = ‘//10

U, (Xo, 4o, Kp) :‘//2

V(Xe, 49, Ko) = Po
Theorem 1 Assume that (X,,4,,K,)is a Hopf
bifurcation of f(x,ﬂ):GJWith G(y) defined as

.I:O

(9), theny, =(X,,4,,K,) is an isolated point of

G(x,4,k) =0.
Before we prove Theorem 1, the following Lemma 2
is presented.

Lemma 2 If (X,,4,,K,) is a Hopf bifurcation of
G(x,4,k) =0, then

<y ((F2F2p + F 0PV, + F2F0 g+ 2 F0p,) >
=27 (o)

The proof of Lemma 2 can be seen in [15].

Proof of Theorem 1:
It is needed to prove the following linear system has
only trivial solution.

DyG(yO)lg = O!

9=(x,4,k) e R"™?
Expanding (10) yields:

(10)

f? 0 X

()
<l//1’fx fxxp0+fxxfx p0> <Wl’fx fxﬂp0+fx/1fx p0> <l//10’p0>.ﬂ“:0 (11)
<V/21fx1c po"']c fe Po > <‘//21f fxlp0+fx/lfx Po > <l//§vpo> k

XX "X

Namely

fox+ fOA=0
<yl 20 py + F0F0p, > x+ <y, F 00 p, + f

XX ° X

<yIZ'fx fxxp0+f f p0> X+<l//2'fx fxip0+f

XX ° X

Since fx0 is nonsingular, it follows from (12-1) that
fOX+ A0 =0
X = AV,
where v satisfies w
fov,+f2=0 (13)
Multiplying (12-2) by (d2+d2)™-d,, and (12-3)
by (d7 +d2)™ -d,, then take the sum, yields
<y, (f2F%p, +f° X>
WS ( X xxpO XX ' X pO) (14)
+A<ys, £ 0P+ o . o >+k<ys, pp >=0
In a similar way, multiplying (12-2) by
(d7 +d7)*-d,, and (12-3) by[~(d} +d})™-d,],
then take the sum, yields
<l/42’(fx p0+fXX X pO)X>
+a<yl, 1010 p,+f0 £0p, >+k<ys, p, >=0
Substitute X = Av, into (15) and take (6) into
account, then

(15)

(12-1)
xﬂ.fx p0>'/l+<l//10'p0>‘k=0 (12_2)
xﬂ.fx p0>'/l+<l//§'p0>‘k=0 (12_3)

ﬂ,<(//4,((f f p0+fxx xp0)0

+ f fxﬂpo + fxﬂ X p0)>_
It follows from the result of Lemma 2 that (16)
becomes:

(16)

A-217 (A,)w, =0 (17)
According H2, H3, (17) has one unique solution
A =0, and consequently X ~0. It follows from
(16) that k <wJ,p, >=0, so k=0. So far the
proof is finished.

2.3 Arithmetic procedure

The numerical computational process of Hopf
bifurcation points is shown as below:

Step 1: Suitably choose B, C and initial value
(Xgs 49, Kg) of Y = (X, 4,K).

Step 2: Solve the linear equations (7), (8) and obtain
u,v,g;(i=12).
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Step 3: Solve the augmented system (9) based on
Newton's method and obtain Ay, (m=0A).
Step 4: Let y_. ., =Y, +Ay,, and go back to step 2

until the desired accuracy is satisfied.

It can be seen from the above steps that there are 3
linear (n+2)-dimensional equations sets and a
nonlinear one need to be solved. Thus it takes less
time and storage compared with the algorithm by
solving (2) which is of order 2n+2.

3 Numerical example

3.1 mathematic models
E X
’ yjé(—% —7l2) Yo, —7l2) lm
/\/ 1 1 /\/
| & — | O
Sm

| |

So
C T l P +1JQ

Fig.1 Power system connecting diagram

Consider the power system shown in Fig.1l that
consists of a load which is supplied by two
generators. One generator is a slack bus and the
other one has constant voltage magnitude and the
dynamics model is given as below.
& =
M&&=T, +E_v,y,sin@-o,+a,)

+E2y,sina, -D,o

(18)

where M, D, ,T,, are the generator inertia, damping

and input angular force respectively.

The load is represented by a capacitor in parallel
with an induction motor. Instead of including the
capacitor in the circuit, it is convenient to account
for the capacitor by adjusting E, and Y, to give the
Thevenin equivalent of the circuit with capacitor as
shown in Fig.2.

By Yy L(-ay-712) Ypl-cy-rl2) EmEOm
IR |
AV 1 AV
So _ Sn
l P+ 1JQ,

Fig.2 Power system connecting diagram

The adjusted values are shown as below.

E, = E,/(L+C?y,” —2Cy," cosa, )"’

Yo = Yo(L+C?y," —2Cy;" cosar)*  (19)
Y, Sine,

Yy, cosa, —C

The real and reactive powers supplied to the load by
the network are

R =—E\V,Y,sin0+a) —E VY, sin0-35, +a;,)
+(y, sinay +Y,, sina, V2

o, =arctg

Q =EyY, c050-+c)+E, vy, sing—5, +,) )
— (Yo COSt, + Y, €O, V3
The combined load model is
{ P=P+P+K, &KV, +T&) 1)
Q =Qy +Q, + Ky, &4 Ky v, + KV,

where Py, Q, are the real and reactive powers of the

motor and P,,Q, represent the constant PQ load.

Considering (18)~(21), the system differential
equations are obtained in the form of equation (22).

K=o
M&=T_ +E,\V,Y, sin@-o, +a,)
+E2y, sina, — D,
an)&: _vaVZ - vaZVZ2 + QI - QO _Ql
TK, K& =K, K + (K, Ky, — K, K.,)

qo" S pv

+Kp (Q-Q +Q)—K, (R-R+FR)
The equations of this system consist of four state
variables that correspond to generator angled, ,

(22)

generator angular velocityw, the angle & and
magnitudev, of load voltage. The load reactive

power Q; is chosen as the system controlling
parameter.
Parameters of the power system are shown in Tab.1.

Table 1 Parameters of the power system
E, T D M E

m m m

10 | 1.0 [005] 03 | 1.0
yO aO C ym am

200 | -5° | 120 50 | -5°

K K K K K

pw qo pv qv qv2
04 |-003| 03 | -2.8 2.1
T I:’0 QO Pl
8.5 0.6 1.3 0.0
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3.2 Computing result

One Hopf bifurcation point (H,) of the example
system is obtained if the initial values of state
variables and controlling parameter are (0.30, 0.0,

0.10, 1.0) and Q, =10.8 respectively by applying
the method presented and another one (H,) is found
with the initial values (0.35, 0.0, 0.12, 0.9) and
Q, =11.3. The result is shown in Tab.2 in detail.
Table 2 Hopf bifurcation points

O % 0 v, Q

H, | 0.3059 0.0000 0.1157 1.0986 10.944
Hy, | 0.3471 0.0000 0.1534 0.9239 11.404

The result is in conformity with that presented in
[16] which illustrate the effectiveness of the method
put forward in this paper. However this method
takes less time and storage compared with the
classic ones.

4 Conclusion

A fast method to calculate the Hopf bifurcation
points is introduced to the analysis of dynamic
voltage stability in power system. This method is a
predigestion of the classic ways. A (n+2)-
dimensional augmented system is established which
includes the differential-algebraic equations set to
describe the dynamic characteristics of the power
system and 2 scalar equations. The Hopf bifurcation
points can be ascertained by solve the new
augmented system. The application to a classic
power system dynamic model illustrates its
effectiveness. The presented method takes less time
and storage compared with the classic ones, so it is
suitable for the application of dynamic voltage
stability analysis in bulk power system.
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