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Abstract: - The two-bus equivalent model is commonly used for voltage stability studies in both distribution and 
transmission systems. The paper presents a simple method to evaluate, for each bus, the parameters which define the 
equivalent circuit of a radial distribution network. In particular, a straightforward way for determining the Thévenin 
equivalent impedance behind a load node is proposed, which allows to better identify the maximum loading point 
beyond which the voltage collapse takes place in the network. Simulation results show that the proposed method is 
significantly more accurate than other existing methods on evaluating the critical power at a particular node (i.e. the 
weak node of the network) starting from any operating point. 
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1   Introduction 
The voltage stability problem has become one of the 
major concerns of several researchers and power system 
planning engineers in the last two decades. This problem 
and above all the related phenomenon of voltage collapse 
have been concerning, till now, power transmission 
networks. The main reason of that is the constant 
increase in system loading in spite of a limited expansion 
of these systems for economical and environmental 
reasons. Furthermore, the deregulated energy market and 
the trend to a higher exploitation of existing transmission 
and distribution facilities have worsened even more the 
problem of voltage instability or collapse, extending the 
phenomenon also to the distribution networks.  
At a given operating point of the system, the 
determination of the voltage stability features of a 
network is generally done with the following steps: 
1. definition of a proper voltage stability index to 

assign to each node of the network; 
2. identification of the weak node, i.e. the most 

vulnerable node of the network; 
3. evaluation of the maximum loading capability of the 

weak node or the maximum loadability margin of the 
entire network, beyond which voltage collapse takes 
place. 

Even though the phenomenon of voltage instability 
involves dynamic aspects, a static approach is usually 
adopted for evaluating stability conditions and load 
capability of either the weak node or the entire network, 
starting from static models of the system.  

Voltage stability problems have been till now widely 
dealt with in literature by several authors, especially with 
reference to transmission networks and the heavy 
consequences of system blackouts due to the voltage 
collapse [1]. On the contrary, the research on the 
phenomenon of voltage instability of radial distribution 
networks is still at an early stage. Jasmon and Lee [2,3] 
established the mathematical condition for voltage 
instability of a radial network starting from an single-
line/two-bus equivalent system of the entire network. 
The equivalent system is determined on the basis of the 
load flow solution of radial distribution networks 
developed by Baran and Wu [4]. A different equivalent 
of a radial network, based on voltage phasor 
measurements, has been proposed by Gubina and 
Strmčnik [5] in order to asses voltage collapse proximity 
and active and reactive power margins. A stability index 
for the load nodes of radial distribution network is 
proposed by Chakravorty and Das [6], also considering 
compound loads; the index is defined by solving a 
single-line equivalent and determining the condition for 
which the voltage magnitude at the ending node has a 
real solution. Finally, the loadability limits of real 
distribution networks has been examined by Prada and 
Souza [7] with respect to voltage stability as well as to 
thermal constraints, demonstrating that maximum 
loading can be limited by voltage stability rather than 
thermal limit. Thus, it follows the necessity of 
considering voltage stability as a new constraint in 
operation and planning of distribution systems, 
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especially when new loads are added to a part of the 
system because of network reconfigurations. 
This paper deals with voltage stability assessment in 
radial distribution networks. The voltage collapse 
proximity index proposed by Chebbo et al. [8], for power 
transmission systems, is assumed. Based on the optimal 
impedance solution of a two-bus equivalent system, this 
index indicates how far the load nodes of the actual 
network are from their voltage collapse points, allowing 
the weak node and its critical power to be identified, i.e. 
the maximum load power beyond which voltage collapse 
takes place.  
The proposed method differs from the one used in [8] 
and the revised method proposed by Haque [9] on the 
determination of the two-bus equivalent, obtaining much 
better results in evaluating the critical power at the weak 
node, with smaller errors between actual and predicted 
values than others methods. 
 
 
2   Background Theory 
In this section the expressions of the voltage stability 
index and the critical power for a two-bus system are 
given and the validity limits for their extension to an 
actual radial distribution system are defined. 
 
 
2.1   A two-bus system 
Consider a two-bus system in which a load represented 
by the impedance ZL∠φ is fed by a constant voltage 
source VS (Fig. 1).  
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Fig. 1 – Two-bus system. 
 
If ZS∠β represents the impedance of the line between the 
source and the load node and the shunt admittances are 
neglected, the active power transmitted at the load node 
can be expressed as [8]: 
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Starting from an operating point, if the load at the 
receiving end of Fig. 1 is increased but maintaining the 
power factor constant (i.e. the modulus of load 
impedance ZL decreases while φ remains constant) the 
load current I flowing through the feeding line increases 
causing an increase on voltage drop along the line, so 
that load voltage VL decreases; consequently PL, 
calculated by (1), at first increases (when ZL>ZS) and 
after reaching a maximum it decreases (ZL<ZS), which 
make the system become instable when the load is of 
constant power type or of composite type with a portion 
of such voltage-independent load within the total load. 
 
 
2.2   Critical power and voltage stability index 
On the basis of equation (1) the condition of the 
maximum power transferred to the load (∂PL/∂ZL=0) is 
achieved when the modulus of the load impedance equals 
that of the line impedance: 
 

SL ZZ =            (2) 
 
In this case the transmitted active power reaches the 
critical value given by the following expression [8]: 
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which represents, for a given load power factor (cosφ), 
the maximum loading point beyond which the voltage 
collapse occurs when constant power loads are 
considered.  
Note that the above condition takes place only when the 
load impedance and the line impedance are equal in 
modulus (ZS /ZL=1). At the normal operation the load 
impedance is much greater than the line impedance (ZS 
/ZL <<1); hence the value assumed by the impedance 
ratio ZS/ZL when load changes can be considered as the 
node distance indicator from the voltage collapse point. 
Thus the following voltage stability index (SI) of the load 
node can be assumed: 
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The closer this ratio to 1, the nearer to the voltage 
collapse point the load is. 
In conclusion, it is important to point out some properties 
of relationship (3) when constant power loads are 
considered. The critical load expressed by (3) really 
represents the maximum loading capability beyond 
which voltage collapse occurs only if: 
- a two-bus system is considered (Fig. 1); 
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- the source voltage magnitude Vs, and the impedance Zs 
between the source and the load node are kept constant 
when the load (ZL) changes. 

 
 
2.3   Extension of Pcrit and SI to an actual radial 

distribution system  
On the basis of the above conclusion it is evident that is 
not possible to apply the expressions (3) and (4) directly 
to an actual radial distribution system constituted by a 
main feeder, laterals and a great number of load nodes; in 
order to apply the above expressions for a given load 
node it is necessary firstly to reduce the radial network to 
a two-bus equivalent system. Moreover, when loads in 
the network change, in order to evaluate SI and Pcrit with 
the equivalent system, the voltage at the feeding bus and 
the equivalent impedance of the network should remain 
constant. 
A given radial distribution network can be reduced to a 
two-bus equivalent by applying the Thévenin’s theorem 
at a particular node when the system loads and 
generators are linearised around the operating point.  
Starting from an operating point the voltage stability 
index can be then computed for every node of the 
network by applying relationship (4). The node with the 
maximum value of SI specifies the weak node of the 
system (generally the one where voltage takes on the 
lowest value); since it represents the most vulnerable 
node of the network, the critical active power can be 
evaluated by equation (3), to asses the node power 
margin before reaching the voltage stability limit. This 
procedure can be repeated at any operating point and 
should be implemented as a tool for real-time 
applications in automated distribution systems.  
Due to the strongly non-linearity of the original 
unreduced system, the parameters of the Thévenin 
equivalent circuit vary when system loading changes, so 
that the predicted value of the critical power at a given 
operating point will differ from that evaluated at a 
different point and will not match the corresponding 
actual value exactly. In other words, according to the 
conclusions drawn at the end of 2.2, there is no way to 
analytically evaluate the maximum loading capability of 
an actual radial network working at a given operating 
point. Nevertheless, the closer to the maximum loading 
point the considered operating point is, the more the 
predicted critical power evaluated by (3) will match the 
corresponding actual value. 
The proposed method allows much better results than 
those of other methods [8,9] in evaluating the critical 
power at any operating point of the network, with smaller 
errors between actual and predicted values. Moreover, on 
determining the two-bus equivalent, the proposed 
method differs from other methods in that it does not 
need to evaluate the impedance matrix of the network, 

but  requires only two load flow solutions of the original 
system, with less time and storage consumption. 
 
 
3   Two-bus Equivalent of a Radial 

Network 
This section describes in detail the procedures for finding 
the equivalent of the radial network with existing 
methods, which utilize the bus impedance matrix Z [8,9], 
and with the proposed method. 
 
 
3.1   Problem formulation 
Consider a radial network fed by a generator and 
containing a number of load nodes working at a given 
operating point (Fig. 2). Assume the loads as constant 
power with constant power factor.  
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Fig. 2 – Radial distribution feeder with laterals. 
 
For a generic node k the Thévenin’s theorem allows the 
equivalent of the radial network to be obtained as shown 
in Fig. 3, representing the whole system behind the 
considered node, where ETh is the no-load voltage at 
node k and ZTh is the impedance of the network as seen 
from the same node. 
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Fig. 3 – Two-bus equivalent of a radial network. 
 
In particular, if the weak node of the network is chosen 
as the candidate node, the two-bus equivalent of Fig. 3 
represents the whole weak-node/network at the given 
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operational point and equation (3) can be applied to 
establish the node power margin before reaching the 
voltage collapse point. 
 
 
3.2   The Z-matrix based method [8,9] 
As known, the Thévenin equivalent impedance can be 
calculated by means of the system Z-matrix, whose 
diagonal elements represent the impedance of the 
network as seen from different nodes.  
To determine the two-bus equivalent, taking into account 
the non-linearity of the system, due to the loads, and 
assuming k as the candidate node (i.e. the weak node), 
the following steps should be completed [8]:  
1. the load flow solution of the network at the operating 

point is calculated, to obtain the node voltages 
profile; 

2. all loads are linearised, replacing them by constant 
admittances: 
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3. the admittance matrix Y, not including node k, is 

evaluated; 
4. the impedance matrix Z is obtained by inversion of 

the Y matrix; 
5. ZTh=Zkk (k-th diagonal element of Z) is assumed; 
6. the load flow solution of the linearised model, 

ignoring the load at the node k, is calculated, in order 
to evaluate the no-load voltage ETh. 

The entire procedure has to be repeated when the system 
loading changes or when the Thévenin equivalent circuit 
behind a different node is needed because the weak node 
has changed. 
In the above procedure at step 3 the admittance matrix Y 
should be evaluated including also the candidate node k; 
in this case the Thévenin impedance and voltage of the 
equivalent circuit can be obtained as [9]: 
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where Zk is the equivalent impedance of the load at node 
k and Vk is the voltage at node k obtained at step 1.  
Steps 5 and 6 of the above procedure are then replaced 
by relations (6) and (7). 
In this manner it is possible to evaluate the Thévenin 
equivalent circuit behind all nodes without the need of 
repeating the process of the Z-matrix determination for 
every candidate node. 

3.3   The proposed method 
A conceptually similar but methodically less 
sophisticated algorithm for determining the two-bus 
equivalent system is the base of the proposed method. 
Two load flow solutions of the network are required; the 
first with all the loads, the second without the load at the 
weak node. For this purpose a backward/forward 
method, suitable for radial networks and which requires 
small time and storage consumptions, can be employed.  
Starting from a given operating point of the original 
network and referring to the circuit of Fig. 3 and to the 
meaning of its parameters, the following steps are 
performed: 
1. run the load flow program for the network with all 

the actual loads (considered as constant power), 
obtaining the load voltage Vk at the candidate node k 
and the load currents Ik, with: 
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where Pk and Qk are the active and reactive power at 
node k and Vk

* is the complex conjugate of the 
voltage; 

2. run the load flow program without the load at the 
node k (Pk =0; Qk =0), obtaining the no-load voltage 
ETh of the Thévenin equivalent circuit; 

3. evaluate the equivalent impedance of the two-bus 
system ZTh as: 
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The applications demonstrated that, on computing the 
critical power defined by (3) at the weak node, the 
proposed methodology produces a smaller error than the 
methods using the bus impedance matrix Z. Moreover, as 
the error is inversely proportional to the load at the weak 
node, when load increases the predicted value of the 
critical power will become more and more close to the 
actual value. This favorable circumstance makes the 
method particularly suitable for on-line monitoring and 
control of a distribution network, to evaluate how much 
the critical node can be loaded before reaching the point 
of voltage collapse.  
The process described above has to be repeated when the 
system loading changes. Moreover, if loads vary non 
conformally, the weak node on the original unreduced 
network should change; in this case the new candidate 
node k has to be located by evaluating the stability index 
of all the nodes as defined by (4), being: 
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where N is the number of the nodes in the network. 
To this end, and in the perspective of real-time 
applications, the evaluation of the Z-matrix which 
includes all of the nodes of the network can be performed 
at step 1, to easily check by (10) if any change occurs on 
the weak node location when the system loading 
changes. 
 
 
4   Simulation Results 
To demonstrate the effectiveness of the proposed method 
for determining the voltage stability limit of a general 
radial system through the two-bus equivalent, the 85-
node test system represented in Fig. 4 and whose data are 
reported in [10] has been used in the simulations. All 
loads are considered as constant power with constant 
power factor. At the base case operating point, node 53 is 
the weakest node and its active critical power has been 
evaluated for different load conditions and magnitude of 
the source voltage. For load flow computations a 
computer program based on the backward/forward 
method developed by the Authors [11] has been used and 
the convergence tolerance was set at 10-5. 
In the following, the computational results are compared 
with those obtained by means of repetitive load flow 
(RLF) calculations and the Z-matrix based method in the 
formulation proposed by Haque [8]. The RLF 
computation allows the maximum loading capability of 
the network to be determined by gradually increasing the 
loading system and computing the load flow solution in 

the original unreduced network until the method fails to 
converge. This straightforward method is very time 
consuming and is not suitable for on-line applications; 
nevertheless, in spite of some numerical problems in the 
neighbourhood of the voltage instability point [12], the 
results obtained are very close to the actual values and 
usually taken as reference for comparison.  
For the network of Fig 4, by setting the magnitude of the 
source voltage 1 p.u. and the loads power factor 0.9, the 
load at the node 53 has been gradually increased as a 
multiple of the nominal value. For each load increase the 
two-bus equivalent has been determined by the proposed 
method and by the Haque method, evaluating the 
predicted critical power at the weak node.  
Finally, the maximum loading capability has been 
calculated on the original unreduced network by the RLF 
method. Results are shown in Fig. 5, which represents 
the variation of the critical power of node 53 vs. the load 
power demand as obtained with the different methods. 
For the above reason, if it is considered that the actual 
value of Pcrit should be slightly higher than the value 
obtained by the non-convergence criterion of the RLF 
method, it can be seen that the values obtained by the 
proposed method at each operating point are much closer 
to the actual value than the Z-matrix based method; the 
maximum error occurs with both methods at the base 
case and is 4.78% with the proposed method and 22.36% 
with the other method, while at the verge of voltage 
collapse the errors are 0.36% and 4.70%, respectively. 
 

Fig. 4 – The 85-node test system. 
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Fig. 5 - Variation of Pcrit with load power demand at 

node 53. 

 RLF method (actual values) 
 Proposed method 
 Z-matrix method [6] 
 
In Table 1 the predicted critical power at node 53 
obtained at the base case by the two methods is 
compared with the actual value (RLF method), for 
various loads power factors and magnitudes of the source 
voltage (V0).  
 

Table 1 – Critical power at node 53 for different loads 
and source voltage conditions (Lf = 1.0) 

 

V0 
[pu] 

Cos 
φ 

RLF 
(actual) 

[kW] 

Propo- 
sed 

method 
[kW] 

 
Err 
% 

 

Z-
matrix 
method
[kW] 

 
Err 
% 

 
1 2,578 2,656 3.0 2,911 12.9 

0.9 2,050 2,123 3.5 2,396 16.9 
0.8 1,743 1,817 4.3 2,091 20.0 1.1 

0.7 1,459 1,536 5.3 1,808 23.9 
1 1,988 2,066 3.9 2,321 16.7 

0.9 1,542 1,616 4.8 1,887 22.4 
0.8 1,285 1,359 5.8 1,631 26.9 1 

0.7 1,045 1,123 7.5 1,393 33.3 
1 1,450 1,528 5.5 1,782 22.9 

0.9 1,078 1,152 6.8 1,419 31.7 
0.8 863 938 8.7 1,205 39.8 0.9 

0.7 661 739 11.7 1,004 51.8 
 
The same comparison when a load factor (Lf) of 1.25 is 
applied to all of the loads of the original network is given 
in Table 2.  
Simulation results show that the proposed method is 
significantly more accurate than the Z-matrix based 
method proposed in [8,9]. 
 

 
Table 2 – Critical power at node 53 for different loads 

and source voltage condition (Lf = 1.25). 
 

V0 
[pu] cosφ 

RLF 
(actual)

[kW] 

Propo- 
sed 

method 
[kW] 

 
Err 
% 
 

Z-
matrix 
method
[kW] 

Err 
% 
 

1 2,373 2,469 4.1 2,788 17.5 
0.9 1,830 1,923 5.1 2,261 23.5 
0.8 1,518 1,611 6.2 1,950 28.5 1.1 

0.7 1,226 1,324 8.0 1,660 35.4 
1 1,776 1,874 5.5 2,192 23.4 

0.9 1,316 1,409 7.0 1,743 32.4 
0.8 1,049 1,144 9.1 1,478 40.9 1 

0.7 799 898 12.4 1,228 53.8 
1 1,230 1,327 7.9 1,644 33.7 

0.9 838 932 11.2 1,259 50.3 
0.8 608 704 15.9 1,029 69.4 0.9 

0.7 383 481 25.8 800 109.1 
 
 
5   Conclusion 
The two-bus equivalent model is commonly used for 
voltage stability studies in both distribution and 
transmission systems.  
The paper presents a simple method to evaluate the 
parameters which define the equivalent circuit of a radial 
distribution network.  
In particular, a straightforward way for determining the 
Thévenin equivalent impedance behind a load node is 
proposed, which allows to better identify the maximum 
loading point beyond which the voltage collapse takes 
place.  
Simulation results show that the proposed method is 
significantly more accurate than the Z-matrix based 
method, proposed in literature, in evaluating the critical 
power at a particular node (i.e. the weak node of the 
network) starting from any operating point. 
Nevertheless, in a view of a real-time stability control, 
the Z-matrix as proposed in [9] can be utilized in order to 
easily evaluate the nodes stability index and identify the 
weak node location at any loading change of the system. 
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