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 Abstract: - The CIGRE-defined lightning current parameters were replaced by a new set of parameters, slightly different, 

especially for time-components, and univariate analysis was performed for all the involved random variables. Multivariate 
frequency distribution of the new set of parameters was also analysed and some practical conclusions related to time to crest and 
steepness of the current, important for lightning protection applications, are presented. 
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1 Introduction 
The present analysis is based upon a sample of 
lightning current records available in [1], which 
includes 98 single and multiple negative downward 
flashes. A previous analysis of the same sample of 
current waveshapes (WSH) was performed in [2], 
leading to a full relation of the statistical distribution of 
lightning current parameters. Correlation amongst the 
various parameters has also been examined and 
subsequently analyzed in [3]. The current parameters 
related to the front of the WSH – designated as front 
parameters and represented in Fig. 1, will be here 
referred as CIGRE parameters. The time-origin of the 
current's waveshape has been set when the actual 
current value exceeds 2 kA (ITRIG). The coordinates of 
the first local extreme point A {T100, I100} serve as 
the basis to define most of the impulse shape 
parameters. The two CIGRE parameters T10 and T30 
are used to estimate the conventional time-to-crest Tc,10 
or Tc,30 and the steepness S10 or S30. 

 
Fig. 1. CIGRE front parameters defined in [1] 

Therefore taking into account this previous work our 
paper will only deal with some aspects of the lightning 
current shape focusing on the front characteristics, 
which are of great importance to predict system 

performances. New parameters were introduced to get a 
description of the wavefront consistent with the random 
character of the current waveshapes, [4], [5]. To define 
the new parameters we used the same characteristic 
points A to F (located on the WSH) as those used in 
Fig. 1, but the time coordinates were measured with 
respect to the first local extreme point on the WSH, i.e. 
point A{T100-I100} in Fig. 2. 

 
Fig. 2. New front parameters. 

The relationships between the new parameters and the 
CIGRE ones are given in Table 1. As it can be observed 
the main differences appear for time components. 
Table 1  

CIGRE parameters Relationship 
T10 = TT10 – TT90 
T30 = TT30 – TT90 
S10 = 0.8 I100 / (TT10 – TT90) 
S30 = 0.6 I100 / (TT10 – TT90) 
I100 = I100 
IMAX = IMAX 
TAN-G = DI_MAX 

Both the CIGRE-parameters and the new parameters 
introduced above will be considered further as the 
components of primary random vectors denoted as 

],,,[ 21 mCIGRE PPPP L=  for the CIGRE parameters and 
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],,,[ 21 pVVV L=V for the new ones. The univariate 
analysis conducted for the CIGRE-front parameters in 
[2], produced the results summarized in table2. 
Table 2 

Parameter Units PDF µ 
10logσ  

T10 [µs] log 4.5 0.25 
T30 [µs] log 2.3 0.24 
S10 [kA/µs] log 5.0 0.28 
S30 [kA/µs] log 7.2 0.27 
I100 [kA] log 27.7 0.20 

IMAX [kA] log 31.1 0.21 
TAN-G [kA/µs] log 24.3 0.26 

PDF-Probability Density Function (log standing for lognormal), 
µ-mean, -scale parameter for the lognormal distribution.  

10logσ

The results of the univariate analysis conducted in [4] 
for the new parameters are listed in table 3. 
Table 3 

Parameter Units PDF µ 
10logσ  

TT10 [µs] log 7.04 0.161 
TT30 [µs] log 4.714 0.155 
TTF50 [µs] log 3.314 0.160 
TT90 [µs] log 1.57 0.207 
TTCR [µs] log 10.30 0.333 
TTDIM [µs] log 2.06 0.191 
I 100 [kA] log 28.90 0.189 
IMAX [kA] log 33.75 0.210 
DI_IMAX [kA/µs] norm 10.20 2.823 

As it can be seen, all the parameters in tables 2 and 3 
are random variables which follow lognormal 
distributions, except for DI_MAX in table 3 which is 
normally distributed. 
 
 
2. Bivariate analysis 
Correlation matrix C was computed for all components 
of the random vector V but we will give bellow only 
results pertaining to the front-shape parameters. Zero-
order sample correlation coefficients were estimated by 
the sample coefficient of correlation, (1). 
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Marked correlations are significant at p < 0.05 
As it can be seen, changing the definition for time-
components by measuring them with respect to the first 
local extreme of the current WSH, had a strong 
influence on the values of the coefficients of correlation 
which are increased with regard to those computed for 
the CIGRE parameters and quoted in [3]. In the 
following, some of the zero order correlations will be 

exposed in more details. In Fig. 3 to 6, we plot the 
bivariate distributions for some pairs of correlated 
components. With the scattering plot of each sample, we 
represented the scattering center, the regression lines 
DREG1 and DREG2, the principal dispersion axes AX1 
and AX2, and the concentration ellipses for two 
different probabilities (ESD-0.3935 and E95-0.950). The 
characteristics listed above were computed using the 
theoretical background presented in [5], the inferred 
parameters in table 3 and the 0-order correlation 
coefficients from the correlation matrix C. 
 
2.1 Correlation DI_MAX÷I100 
Correlation reported in Fig. 3 is an important tool that 
can be used in all lightning protection applications 
involving the joint effect of the current and current's 
derivative, such as: predetermination of the risk of 
failure for the phase insulation under back-flashover 
conditions, analyze of the surge performance of an 
earthing system or evaluation of induced voltages. 
The characteristics bellow can be used to completely 
specify the bivariate PDF: 

marginal means 
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The regression lines can be drawn using the equations:  
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Fig.3 Sample correlation and bivariate lognormal 

distribution for components I100 and DI_MAX 
 
2.2 Correlations TT10-TT90 and TT30-TT90 
It is also of interest to evaluate the joint behavior of 
other two pairs of components: {TT10, TT90} 
represented in Fig. 4 and {TT30, TT90} in Fig. 5. The 
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regression lines equations were obtained following the 
same rules as mentionned for the previous partial 
correlation analyzed. 

 
Fig.4 Sample correlation and bivariate lognormal 

distribution for components TT10 and TT90 

 
Fig.5 Sample correlation and bivariate lognormal 

distribution for components TT30 and TT90 
 

3. Comparison with CIGRE parameters 
 
Having established with reasonable confidence the 
distributions (PDF) associated with the random vector's 
V components, attention can now be turned to the more 
difficult problem of finding a suitable distribution for 
the conventional front duration Tf,10=T10/0.8 or 
Tf,30=T30/0.6. At this purpose, joint probability density 
functions in figures 4 and 5 can be used. According to 
table 1 the CIGRE parameters T10 and T30 can be 
obtained using components TT10, TT30 and TT90, each 
of the two CIGRE parameters being defined as 
functions of pairs of correlated random variables 
having a joint density function (Fig. 4 and Fig. 5). 
According to the previous results, components 
{TT10, TT90} and {TT30, TT90} are joint log normally 
distributed, following the bivariate distribution given 
by: 
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 (2) 
In (2), variables  and  will be the pairs ix jx
{ }90,10 TTTT  or { }90,30 TTTT . 
The new random variable defined by : 
  (3) ji xx −=∆

will have the probability distribution function  
  (4) ( ) ( ) iii dxxxfg ∫

∞

+∆=∆
0

,

obtained through a bivariate transformation briefly 
explained in the following. In 2D a transformation 

( ) ( )yxhvyxgu ,,, ==  maps a region yx IIR ×=  of points 
in the xy plane into a region  of points in the 
uv plane. If the Jacobian of the transformation is never 
zero over R there is a unique inverse transformation 

vu II ×=S

 ( ) ( )vuHyvuGx ,,, ==  (5) 
and the density of (u,v) is given by: 
 ( ) ( ) ( )( ) ( )

( )vu
yxvuHvuGfvu ,

,,,,,
∂
∂=γ  (6) 

Knowing the joint density function for variables xy , we 
find the joint density function for variables uv and 
consequently the univariate density functions for each of 
the variables u or v as marginal distributions: 
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Unfortunately the integral in (7) cannot be analytically 
solved insofar as the authors are aware, although it can 
be estimated using numerical methods. To obtain the 
main statistical values (mean and standard deviation) in 
order to compare them with the corresponding ones 
reported in [2], the following relations are used: 
   (8) [ ] ( )∫

∞

∆∆∆=∆
0

dgM [ ] [ ]( ) (∫
∞

∆∆∆−∆=∆σ
0

22 dgM )

As the probability density functions of T10 and T30 are 
obtained through numerical integration, the differences 
with respect to the lognormal distributions estimated in 
[2] can be judged with the help of the values for the 
mean, standard deviation and p-quantiles for both PDF-s 
(see table 4), where they can be directly compared with 
the corresponding estimations given in [2]. Differences 
are important mainly for the dispersion and 
consequently for the 5% and 95% quantiles. 
The resulting cumulative distribution functions (CDF) 
for T10 and T30 are represented in Fig. 6 together with 
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the sample distribution functions (SDF) and the 
confidence limits computed with the Lilliefors test for 
normality, [4]. 
Table 4  

 Statistic CIGRE 
[µs] 

New CDF 
[µs] 

Difference 
[%] 

Mean 5.31 5.41 -1.90 
STD 3.33 2.26 32.10 
5% - quantile 1.80 2.48 -37.78 T10 

95%-quantile 11.30 9.75 13.70 
Mean 3.03 2.94 2.97 
STD 1.81 1.13 37.57 
5% - quantile 1.80 1.45 19.44 T30 

95%-quantile 5.80 5.08 12.41 
 

 

 
Fig.6 Comparison between the sample (SDF) and the 

computed cumulative distribution function (CDF) 
On the same figure we represented the probability 
density functions (PDF) for the original CIGRE 
lognormal distribution and the computed one (with 
ecuation (7)), to emphasize the differences.  
Another interesting result was obtained by re-
evaluating the steepness S10 and S30. The steepness 
(or rate-of-rise) was defined in [1] as: 
The definition for the stepness, or rate-of-rise is: 

 9030
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The variables I100, TT10, TT30 and TT90 are 
lognormal and strongly correlated as it can be seen 
from (3). Consequently, the distribution for the random 

variable "steepness" in (9), can be obtained using the 
same rules as those used for the bivariate 
transformation, extended for four correlated variables. 
The results are reported in figure 7 and table 5. 

 
Fig. 7 Sample and computed cumulative distribution 

functions for steepness S10 and S30. Sample and 
cumulative distribution for component DI_MAX. 

Table 5 
 Statistic CIGRE 

[kA/µs] 
NEW  

[kA/µs] 
Difference 

[%] 
S10 Mean 6.20 4.51 27.26 

 5% - quantile 1.73 2.06 -19.07 
 50%-quantile 5.00 4.13 17.40 
 95%-quantile 14.44 8.26 42.79 

S30 Mean 8.73 6.00 31.27 
 5% - quantile 2.59 2.77 -6.95 
 50%-quantile 7.20 5.50 23.61 
 95%-quantile 20.01 10.92 45.43 

 
 
4. Conclusions 
This paper use the new set of parameters introduced in 
[4] to compute probability density functions for 
conventional front duration and steepness of the 
lightning current waveshape. Comparisons are made to 
the original distributions and differences are analysed. 
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