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Abstract – This paper presents a new method for static power factor correction (SPFC). A static system is used 
to compensate four-quadrant reactive power using only small component (capacitance) values. As such, SPFC 
is able to deal with inductive and/or capacitive load characteristics.   

The proposed SPFC method combines a passive filter and an inverter with pre-calculated pulse-width 
modulation (PWM) switching angles. The obtained system produces low harmonic distortion thus providing 
reliable and long lasting system components.  

Simulation results show that the system is able to provide variable positive and negative true and reactive 
powers while keeping the passive system components values constant. 
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1 Introduction 
Power factor correction (PFC) has been the focus 
of attention for many years. Several methods have 
been developed based on well known circuits 
(Buck-boost, half-bridge, full-bridge), in an attempt 
to solve inherent PFC problems as caused by 
harmonic currents and voltages.  

Harmonic distortion impairs actuators and 
switches as it increases eddy currents, hysterisis 
losses, and reduces the life time of the machine 
winding insulators [1, 2]. Pre-calculated pulse 
width modulation method is used to determine the 
switching angles to minimize the harmonic 
distortion [3]. 

The proposed solutions as in [4, 5, 6, 7], to name 
but a few, can be divided into two broad classes: 
dynamic PFC correction scheme through the use of 
a synchronous wind rotor machine (synchronous 
condenser), and static PFC compensation scheme 
consisting of switched banks of very bulky 
capacitors. Alternative solutions have been 
proposed as in [8, 9, 10] to enhance performance 
and/or reduce capacitors size.   

It is true that the above methods have brought 
substantial improvement of the PFC, nevertheless, 
their main problem is that PFC compensation can 
only be performed for either inductive or capacitive 
load while they fail to compensate PFC for the 
already existing network reactive power. In this 
paper, we propose a novel static PFC approach that 
is capable of operating in the four-quadrant true-

power (hereafter denoted P) –reactive power 
(hereafter denoted Q) ‘PQ’ plane as shown in Fig. 
1. Consequently, SPFC compensates power factor 
for any type of reactive power.      

The remaining of the paper is organized as 
follows: system modeling and analysis are 
presented in section II; section III describes the 
new SPFC method using pre-calculated switching 
angles. Simulation results are presented in section 
IV. At last, a conclusion is given in section V. 
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Fig. 1 Four-quadrant PQ plane 
 
 

2 System Modeling and Analysis 
Figure 2 shows the basic structure of a single-phase 
PFC inverter having E as dc voltage, V as ac output 
voltage. An LC circuit is used to filter the inverter 
output. The inverter filtered output voltage is taken 
across the capacitor C (between points a and b). R 
represents the inductor internal resistance. Ti and 
T’i (i=1, 2) are the semiconductor switches. 
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Fig. 2 Single-phase full-bridge inverter 
 

It can be shown that the circuit of Fig. 2 can be 
transformed to an equivalent circuit represented in Fig. 3 
as seen by the load, where ThE  is the Thevenin’s 
equivalent generator voltage. 

 
 

Fig. 3 Load-side equivalent circuit 
 
From Fig. 3, one can obtain ThE  as given by eq. (1). 

ωω jRCLC
VETh
+−

= 21
    (1) 

This leads to the transfer function T  given by (2). 

ωω jRCLCV
ET Th

+−
== 21

1    (2) 

It can be shown that the maximum of T ( maxT ), is given 
by (3)  
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that can be reduced to 
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From (4), it can be easily shown that maxT  is always 
greater than 1. Consequently, the harmonic filter 

behaves as an amplifying circuit for the fundamental as 
well. In the next section we describe the novel PFC 
scheme using pre-calculated switching angles. 
 
 
3 New Static PFC Compensation 
Using Pre-calculated Switching 
Angles 
 
3.1 Pre-calculated Switching Angles 
In order to achieve single-phase reactive power 
compensation, a pre-calculated switching angles 
determination method similar to that developed in 
[3] has been used. 

 The objective is to determine directly the 
switching angles so as to obtain the best possible 
match between the inverter output voltage V and 
the desired ac voltage Vd. 

 For this purpose, we propose to compare their 
respective harmonics. A perfect matching between 
V and Vd is achieved only when an infinite number 
of harmonics is considered. Practically, the number 
of harmonics N that can be identical is finite. This 
number, to be maximized, depends on the number 
of switching times per period. 

Figure 4 gives the algorithm used to determine the 
switching angles αi from the nonlinear set of 
equations kk da = , where NP is the number of 
parameters (switching angles). 

 

 
 

Fig. 4 Single-phase switching angles 
determination algorithm 

Proceedings of the 5th WSEAS Int. Conf. on Power Systems and Electromagnetic Compatibility, Corfu, Greece, August 23-25, 2005 (pp528-533)



 

3.2 Proposed SPFC 
Figure 5 shows the load voltage polarity and 
current flow direction. One can notice that voltage 
and current are chosen to be of opposite direction. 
 

 
 

Fig. 5 Load voltage polarity and current flow 
direction 

  
 
Depending on the sign of the instantaneous 
power ivp out .= , two cases may arise 
 
- Case 1: p is positive; the power is absorbed by the 
load, as shown in Fig. 6(a). 
- Case 2: p is negative; the power is delivered by 
the load as shown in Fig. 6(b).  

 
 

 
 

Fig. 6 Load behavior depending on the 
instantaneous power sign 

 
The active and reactive load powers are given by 
(5). 
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where ϕ is the phase shift angle between the load 
current and voltage, ( )outVI ,=ϕ . 
From Fig. 5,  the generator voltage ThE   can be 
expressed as  
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This is represented under phasor diagram form in 
Fig. 7 with δ  being the phase shift angle between 

outV  and ThE . 
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                      δ                         β                    
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Fig. 7 ETh  phasor diagram  

 
Ultimately, (5) can be rewritten as 
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It is worth to remind that our main objective is to 
perform power factor correction meaning that the 
delivered power to the load must be zero.  
 
Pdelivered=0, and Qdelivered+Qload=0.  
 
Consequently, (9) yields 
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where ( )outll VI ,=ϕ  and Il being the load current as 
illustrated in Fig. 8. 
 

 
Fig. 8 PFC and supply network currents 

 
 

Equation 11 shows that the delivered reactive 
power (Q) depends on both the capacitor C and the 
phase shift angle ( )Thoutref EV ,=δ . By varying the 

refδ from 
2
π

−  to 
2
π , the reactive power can be 

varied in the interval ] [∞∞− , .  This allows our 
SPFC scheme to compensate large reactive power 
using only small capacitance values. However, in 

the neighborhood of 
2
π

± , the amplitude of the 

generator voltage will increase. 
 
Rearranging (11), we obtain the following 

expressions for the reference generator voltage and 
phase shift angle ( )Thoutref EV ,=δ . 
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4 Simulation Results 
Simulation is carried out  using the parameters 
given in Table 1. 
 

Table 1 Simulation parameters 
R L C Vout 

0.1 Ω 1 mH 100 µF 230 V 
 
where R represents the internal inductor resistance. 
 
The load current variation is normalized from 0 to 1 
and the phase angle ϕl is varied in the 

interval 



−

2
,

2
ππ . 

 
Taking ETh= 1000 Vout and δ= 1.56 radians, the 
obtained results show that, SPFC is able to 
compensate a reactive power of 529 KVAr. For the 
sake of comparison, a conventional PFC scheme 
will be able to compensate only 1.6 KVAr as 
illustrated in Table 2. 
 
Table 2: Comparative table between conventional 
and proposed static PFC methods 

Parameters Compensated reactive power 
ETh=1000 Vout Conventional 

PFC 
Proposed 

SPFC 
Phase angle 
δ= 1.56 rads 1.6 KVAr 529 KVAr 

 
Figure 9 shows the reference voltage ETh variation 
with respect to load current Il and load phase angle 
ϕl. One can notice that ETh increases when ϕl  

approaches 
2
π

± . This increase is the cost to keep 

the value of capacitor C constant.  
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Fig. 9 Reference voltage–load current variation 

 
 

       Figure 10 shows the phase shift angle 
( )Thoutref EV ,=δ  with respect to load phase angle 
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ϕl and load current (Il) variation. refδ is 

proportional to ϕl and Il. 
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Fig. 10 δref with respect to load current variation 

 
Figures 11 and 12 show other 3-D views of the 
variations of the reference voltage ETh and phase 
shift angle refδ respectively using another set of 
simulation parameters given in Table 3. 
 
Table 3 Other simulation parameters 

R L C Vout 
0.1 Ω 100 µH 200 µF 230 V 
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Fig. 11 Reference voltage–load phase variation 

 
 
5 Conclusion 
A new static PFC method based on the pre-
calculated switching angles approach has been 
presented. The switching angles are pre-calculated 
by resolving a nonlinear system of equations. 
Compared with other  methods, the proposed SPFC 
method is able to balance four-quadrant reactive 
power (load independent) using small component 
(mainly capacitance) values, and provides more 
reliable and long lasting system components due to 

low harmonic distortion. It can represent a cost 
effective method for implementing four-quadrant 
PFC compensation for power systems. 
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Fig. 12 δref with respect to load phase variation 
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