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Abstract: -    Evolutionary Programming    (EP)    optimization technique is recently applied in solving electric power 

system optimization problems. It is a fraction in the Evolutionary Computation (EC) optimization techniques under 

the artificial intelligence hierarchy. Optimization is an important issue in power system operation and planning 

particularly in the area of voltage stability studies. This paper presents transmission loss minimisation using 

optimal reactive power planning techniques (RPP). The problem involved optimization process; utilizing the ideas 

of EP to identify the optimal solution for RPP. In this study, EP engine was initially developed to implement the 

optimisation process considering two RPP procedures, namely optimal reactive power dispatch (ORPD) and 

optimal transformer tap changer setting (OTTCS). Comparative studies performed in this study aimed to identify 

the most suitable RPP technique for minimising transmission loss in power system, while maintaining the voltage 

profiles at reasonable voltage levels and avoiding overcompensating to the system. Repetitive load flow program 

was implemented for the fitness computation of the EP. Simulation results on a bulk IEEE Reliability System 

(RTS) are included to demonstrate the effectiveness of the proposed technique. Results indicated that ORPD 

outperformed OTTCS in minimising the system transmission loss with voltage profiles maintained within the 

acceptable limit. 
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1 Introduction 
The increasing demand of reactive power loading to a 

system has resulted to gradual voltage decay in line with the 

increase in transmission loss in the system. This has also 

caused stressed condition to a system making the system 

operates close to its point of collapse. Transmission loss can 

be minimised by performing reactive power planning which 

involves optimisation process. Therefore, some measures 

should be taken in order to support for the reactive power 

loading and hence loss minimisation could be effectively 

performed to the system. Optimal reactive power dispatch 

(ORPD) and optimal transformer tap changer setting 

(OTTCS) are two popular RPP techniques for this reason. 

The implementation of ORPD determined the reactive 

power required to be dispatched by the generators in the 

system for minimising transmission loss while controlling 

voltage profile. On the other hand, the implementation of 

OTTCS will alter the transmission line properties affecting 

the I
2
R loss of the system. Various techniques have been 

reported for loss minimisation scheme in power system [1-

10]. There are numerous optimisation techniques such as 

Tabu Search, linear programming, non-linear programming, 

Simulated Annealing (SA), Genetic Algorithm (GA), 

Evolutionary Programming (EP), Evolutionary Strategy 

(ES) and Genetic Programming (GP). GA, EP, ES 

and GP are the optimisation methods based on 

natural evolution called the Evolutionary 

Computation (EC) in the Artificial Intelligence (AI) 

hierarchy. References [14, 6-9] described the GA 

based optimisation technique in the RPP procedures. 

Lee et al. [1] proposed an improved method of 

operational and investment-planning utilising a 

Simple Genetic Algorithm (SGA) incorporated with 

successive linear programming method. The 

flexibility, robustness and easy modification of SGA 

were highlighted, making it a promising approach 

for RPP scheme. The application of EP in the RPP 

optimisation was reported as a reliable technique in 

minimising the total loss and voltage profile in 

power systems [9-10]. Lee et al. [10] performed a 

comparative study for the three EC techniques 

namely the EP, ES and GA with the linear 

programming method in solving the RPP. Results 

obtained from the proposed ECs techniques 

indicated better performance over the linear 

programming method in terms of total cost and 

power loss with hard limits satisfied.  

In this paper, a new method for determining the 

suitable technique for loss minimisation was 

proposed. Prior to the determination of most suitable 

technique, ORPD and OTTCS were implemented 

considering the same loading conditions and system 
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properties. Evolutionary programming optimisation engine 

has been developed to implement the RPP procedures. The 

effectiveness of the proposed methodology was verified by 

the analysis on an IEEE RTS.  

 

2 Evolutionary Programming Technique  
Evolutionary Programming has been employed in the field 

of design search and optimisation more thoroughly after the 

exposure from Fogel [12] when it was first implemented in 

the prediction of finite states machines. Since then, EP has 

undergone refinement process in which self-adaptation 

parameters and different mutation strategy has been 

implemented. EP searches for the optimal solution by 

evolving a population of candidate solutions over a number 

of generations. During each generation, a new population is 

formed from the existing population by implementing the 

mutation operator. The operator produces a new solution by 

perturbing each component of the current solution 

by a random amount. The strength of each of the 

candidate solution is determined by its fitness that is 

evaluated from the objective function of the 

optimisation problem. The selection process is done 

through the tournament scheme, in which 

individuals from a population compete with each 

other. The individuals that obtained the most 

numbers of wins will be selected for the new 

generation. The competition scheme must be such 

that the fittest individuals will have a greater chance 

to survive, while weaker individuals will be 

eliminated. Through this, the population evolves 

towards the global optimal solution. Processes 

involved in the EP implementation are random 

number generation, mutation and selection 

tournament. The overall process of EP 
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Fig. 1. Flow chart for EP implementation 
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implementation is given in the form of flow chart as shown 

in Figure 1. 

 

2.2 Initialisation 
Initially a series of random number, xi is generated using a 

uniform distribution number, where;  

xi = [λ1
i
,�λ 2

 i
, λ 3

 i
,…�λm

 i
]                       (1) 

i =1, 2, 3, 4, 5, …m, where m is the population size from a 

sets of  random distributions ranging from λmin �to �λ�max �. λ is 

the value of control variable in the optimisation process. The 

random number represents the new amount of reactive 

power to be dispatched by the generators and transformer 

tap changer setting in the system, which functioned as the 

control variables. The number of variables depends on the 

number generators and transformer tap changer settings in 

the system. Inequality constraints considered during the 

initialisation are as follows:- 





<

>
=

minmin

maxmax

lim
,

,

iii

iii

i
VVifV

VVifV
V                        (2) 





<

>
=

minmin

maxmax

lim
,

,

GiGiGi

GiGiGi

iG
QQifQ

QQifQ
Q               (3) 

 

The fitness value of each population, xi will be the total 

transmission loss in the system. Fitness was calculated 

subject to the following inequality constraints:- 

setlosslossonTransmissi _≥                                     (4) 

setVV m _)( ≥                                      (5) 

 

The loss_set is the transmission loss before the 

implementation of the EP, while V_set  is the voltage at the 

loaded bus before the implementation of EP.  

 

2.1 Mutation 
Mutation is performed on the random number, xi to produce 

offspring. The mutation process is implemented based on 

the following equation: 

)))((,0(
max

minmax,,
f

f
xxNxx i

jjjijmi −+=+ β      (6) 

where:  xi+m, j  = mutated parents (offspring) 

 xij  = parents 

N  = Gaussian random variable with mean µ and 

variance γ2
 

 β  = mutation scale, 0<β<1 

xjmax  = maximum random number for every 

variable 

xjmin  = minimum random number for every 

variable 

fi  = fitness for the i
th
 random number 

fmax  = maximum fitness 

 

The mutation scale, β can be manually adjusted to 

achieve better convergence. Large value of β causes 

big search step, which leads to slow convergence of 

the EP and vice versa.  

 

2.2 Selection 
The offsprings produced from the mutation process 

were combined with the parents to undergo a 

selection process in order to identify the candidates 

that can be transcribed into the next generation. In 

this study, the priority selection was employed as a 

method for the tournament selection. In this 

approach, the populations were sorted in ascending 

order according to their fitness values since the 

objective function is to minimise the total loss in the 

system. The first half of the populations would be 

transcribed to the next generation. Pair wise 

selection technique can also be used as an 

alternative selection technique. However, it was 

found that pair wise comparison selection technique 

is less accurate due to its randomised criteria. 

 

3 EP for Reactive Power Planning 
In this study, EP engines were separately developed 

for separately implementing the ORPD and OTTCS. 

The descriptions are explained individually in the 

subsequent sections. 

 

3.1 Optimal Reactive Power Dispatch 

(ORPD)   
In the first part of the study, ORPD was 

implemented to the system by using total loss 

minimisation as the objective function. The injected 

reactive powers on the generator buses were taken 

as the variables in order to reduce the total 

transmission loss of the test system indicated by the 

total loss value. In the proposed technique, EP was 

used to determine the optimum reactive power to be 

dispatched by the participating generator buses. An 

EP programme was developed using the MATLAB. 

In this case, the random number represented the 

injected reactive power of the generator buses in the 

system. The number of variables depends on the 

number of generator buses in a system excluding the 

slack bus. For the IEEE 30-bus RTS, five variables 

namely x1, x2, x3, x4 and x5 were generated to 

represent the reactive power to be injected to 

generators 2, 5, 8, 11 and 13.  These variables are 

assigned as the reactive load (Qd) with negative sign 

(or loaded negatively) indicating the reactive power 

are actually injected or generated at the particular 

generator buses. The generator bus code (PV) was 

changed to load bus code (PQ) and the sign for the 

real power loading was also changed to negative in 
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order to indicate the real power is injected. These 

assignments were implemented in the system data for the 

load flow programme. The results from the load flow 

programme was then utilised to calculate the total loss as the 

fitness. Some inequality constraints must be set at the 

beginning so that the EP will only generate random numbers 

that satisfy some predetermined conditions.  The constraints 

imposed during the initialisation are the total loss value must 

be less than loss_set and the bus voltage limit must be 

higher than V_set, where V_set is the voltage at the loaded 

bus before optimal RPD is implemented. The constraints 

were set in such a way that the total loss value calculated 

using the generated random numbers must be smaller than 

loss_set and hence the fitness can be improved. Otherwise, 

the solution may converge; however, the total loss may not 

be improved. In addition, the constraint on the voltage limit 

will avoid any violation to the system voltage along with 

total loss improvement. The following procedures were 

implemented in order to develop an EP programme for RPD 

optimisation:- 

i. Set the RPD constraints, i.e. total loss ≤  loss_set and 

Vm(bus) ≥  V_set 

ii. Generate random number, x1, x2, x3, x4 and x5. 

iii. Check for constraints violations. If constraints 

violated, go to step ii, otherwise go to step iv. 

iv. Fill in population in pool. 

v. If pool is not full, go to step ii, otherwise go to step vi. 

vi. Determine x_min and x_max. 

vii. Assign x1, x2, x3, x4 and x5 to Qg2, Qg5, Qg8, Qg11 and 

Qg13 in the system data. 

viii. Calculate fitness by running load flow programme to 

evaluate total loss. 

ix. Determine loss_min, loss_max, loss_avg and loss_sum 

(for statistical evaluation). 

x. Mutate the parents i.e. x1, x2, x3, x4 and x5 (generate 

offsprings). 

xi. Recalculate fitness using the offsprings (Run load 

flow to re-evaluate total loss). 

xii. Combine parents and offsprings. 

xiii. Perform selection by tournament process. 

xiv. Transcribe new generations. 

xv. If solution is not converged, repeat steps vi to xiv, 

otherwise go to step xvi. 

xvi. Stop. 

 

3.2 Optimal Transformer Tap Changer Setting 

(TTCS)  
In the second part of the study, TTCS was controlled in 

order to improve the total loss of the test system by 

optimising the total loss value. Transformer tap setting 

values were taken as the control variables in order to 

improve the total loss of the system. For the case of TTCS 

optimisation technique, random numbers generated from 

initialisation process represent the TTCS values. In the IEEE 

30-bus RTS, there are four transformers present, 

thus making only four variables required during the 

initialisation. In this case, similar constraints as in 

previous section were imposed in the EP 

optimisation process. In this study the fitness is the 

total loss value which needs to be optimised. The 

participating parameters are the TTCS. Once the 

total loss is optimised, the TTCS values are the 

optimised values that can improve the total loss in 

the system. The following procedures were 

implemented in order to develop an EP programme 

for TTCS optimisation:- 

i. Set the TTCS inequality constraints, i.e. 

total loss ≤  loss_set and Vm(bus) ≥  V_set. 

ii. Generate random number, x1, x2, x3 and x4.  

iii. Check for constraints violations. If 

constraints violated, go to step ii, otherwise 

go to step iv. 

iv. Fill in population in pool. 

v. If pool is not full, go to step ii, otherwise go 

to step vi. 

vi. Determine x_min and x_max. 

vii. Assign x1, x2, x3, x4 and x5 to T1, T2, T3 and 

T4 in the system data. 

viii. Calculate fitness by running load flow 

programme to evaluate total loss.  

ix. Determine loss_min, loss_max, loss_avg 

and loss_sum (for statistical evaluation). 

x. Mutate the parents i.e. x1, x2, x3 and x4 

(generate offsprings). 

xi. Recalculate fitness using the offsprings 

(Run load flow to re-evaluate total loss). 

xii. Combine parents and offsprings. 

xiii. Perform selection by tournament process. 

xiv. Transcribe new generations. 

xv. If solution is not converged, repeat steps vi 

to xiv, otherwise go to step xvi. 

xvi. Stop. 

   

4 Test System 
The reactive power planning procedures was tested 

on the IEEE 30-bus Reliability Test System in order 

to optimise the total loss in the system. This system 

has 24 load buses and 6 generator buses with 41 

interconnected lines. The one line diagram of the 

system is illustrated in Figure 2. The system has five 

generators and four transformers, therefore five 

control variables are required for the ORPD and 

four control variables for the OTTCS.  

5 Results and Discussion 
The results are presented in three individual sub-

sections, namely ORPD and OTTCS. 

Proceedings of the 6th WSEAS Int. Conf. on EVOLUTIONARY COMPUTING, Lisbon, Portugal, June 16-18, 2005 (pp239-244)



 

Table 1: Results for ORPD when bus 3 was reactively loaded 
Loading 

Conditions 

(MVAR) 

Analysis 

Total 
loss 

MW 

Comp 
time (sec) 

Qg2 

MVAR 

Qg5 
MVAR 

Qg8 

MVAR 

Qg11 
MVAR 

Qg13 

MVAR 

Vm 
(p.u.) 

VSA 18.53  35.17 35.67 55.06 18.90 15.68 0.9937 
Qd3 = 50 

RPD 4.75 13.73 1.38 15.95 4.94 10.60 16.8 1.0267 

VSA 20.76  41.37 32.55 61.62 22.69 21.81 0.9489 
Qd3 = 100 

RPD 6.08 13.62 32.98 17.14 42.22 21.89 18.5 1.0201 

VSA 22.33  55.06 37.37 59.95 26.05 22.25 0.9285 
Qd3 = 125 

RPD 6.96 16.95 33 17.18 42.31 21.92 18.51 0.9946 

VSA 24.55  43.31 39.16 67.12 26.38 28.13 0.9044 
Qd3 = 150 

RPD 8.35 13.54 33.04 17.22 42.37 21.94 18.53 0.9673 

VSA 27.14  58.46 44.41 67.98 26.53 29.41 0.8816 
Qd3 = 175 

RPD 10.36 13.52 33.04 17.22 42.37 21.94 18.53 0.9378 

VSA 30.45  42.94 43.59 88.4 29.38 29.89 0.8581 
Qd3 = 200 

RPD 13.17 13.63 33.04 17.22 42.37 21.94 18.53 0.9053 

 

  

5.1 Loss Minimisation Using ORPD 
The results for the ORPD performed on the system when 

bus 3 was subjected to load variation are tabulated in Table 

1. The total losses and voltage bus variation were recorded 

as the loading condition was gradually increased. From the 

table, it is observed that all the total losses during the RPD 

are lower than that in the VSA, which implies that the total 

losses are reduced. The voltage profiles are improved as can 

be observed from the table. It can be seen for the case of Qd3 

= 200 MVAR; the total losses are improved from 30.45 MW 

to 13.17 MW. The computation time taken for fully 

optimising the fitness is 13.63 seconds. However, this 

technique has managed to improve the voltage at bus 3 from 

its original value of 0.8581 p.u. to 0.9053 p.u.. The 

results for Qg2, Qg5, Qg8, Qg11 and Qg13 for the RPD 

are the optimised reactive powers need to be 

assigned to the generator buses in order to reduce 

the transmission loss. 

 

5.2 Loss Minimisation Using OTTCS 
The results for loss minimisation using OTTCS are 

tabulated in Table 2. From the table, the 

implementation of OTTCS optimisation has reduced 

the total losses in the system from 30.45 MW to 

27.13 MW at Qd3 = 200 MVAR. Voltage profile at 

the loaded bus at each increment is higher before the 

implementation of OTTCS. The reduction in loss at 

each increment is not significant, meaning that this 

technique could be not a good technique for loss 

minimisation purposes. The computation time at 

each loading condition was also very bad due to the 

time taken to generate initial population in order to 

satisfy the constraints. Nevertheless, the voltage at 

bus 3 is increased from 0.8581 p.u. to 0.9030 p.u..  

 

5.3 Comparative Studies 
The results obtained from the ORPD 

and OTTCS were compared and 

results of comparison at at Qd3 = 200 

MVAR are tabulated in Table 3. 

From the table, it is observed that 

using ORPD, total loss has been 

reduced from 30.45 MW to 13.63 

MW; while OTTCS can only reduce 

the total loss to 27.13 MW. The 

computation time for obtained using 

ORPD is 13.63 second, while 

OTTCS consumed 1068.40 seconds 

to converge to an optimal solution. 

The voltage profile difference 

obtained using both techniques are 

not significant, hence it is 

acceptable. 

 

6 Conclusion 
A new technique for transmission loss minimisation 

using EP as the optimisation approach is presented. 

Two separate RPP procedures implemented using 

EP engines were developed.  Namely, optimal 

reactive power dispatch and optimal transformer tap 

changer setting engines were developed in 

implementing the loss minimisation scheme. The 

optimised results given by the EP in the ORPD are 

the optimal reactive power to be dispatched by the 

generators to minimise the transmission loss in the 

system. Similarly, the results given by the EP in the 

OTTCS are the optimal transformer tap changer 

 

Fig. 2: IEEE Reliability Test System 
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values to perform the same task. Comparative studies 

revealed that the implementation of ORPD outperformed 

OTTCS in transmission loss minimisation while maintaining 

voltage profiles at acceptable level. Results obtained from 

the study can be utilised by the power system engineers to 

perform any remedial action in an attempt to reduce 

transmission loss. Consequently, the developed EP engine 

can be feasible to be used in further optimisation problems 

with appropriate modification in initialisation and objective 

function. 
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Table 2:  Results for OTTCS when bus 3 was reactively 

loaded 

Loading 

Conditions 
Analysis 

Total 

loss 
MW 

T1 T2 T3 T4 
Vm 

(p.u.) 

pre-TTCS 18.53     0.9937 
Qd3 = 50 

post-TTCS 18.32 1.289 1.103 1.103 1.346 1.0147 

pre-TTCS 20.76     0.9489 
Qd3 = 100 

post-TTCS 19.71 1.366 1.145 1.481 1.095 0.9874 

pre-TTCS 22.33     0.9285 
Qd3 = 125 

post-TTCS 21.10 1.321 1.146 1.450 1.208 0.9670 

pre-TTCS 24.55     0.9044 
Qd3 = 150 

post-TTCS 22.49 1.260 1.261 1.490 0.995 0.9510 

pre-TTCS 27.14     0.8816 
Qd3 = 175 

post-TTCS 24.28 1.260 1.259 1.489 0.993 0.9298 

pre-TTCS 30.45     0.8581 
Qd3 = 200 

post-TTCS 27.13 1.259 1.231 1.444 0.940 0.9030 

 

Table 3:  Results for comparative studies for at Qd3 

= 200 MVAR. 

RPP Techniques VSA ORPD OTTCS 

Total loss (MW) 30.45 13.17 27.13 

Computation time 

(second) 
 13.63 1068.40 

Vm (p.u.) 0.8581 0.9053 0.9030 

Max voltage at other 

load buses (p.u.) 
1.06 1.06 1.06 
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