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Abstract: In this paper, we present a trajectory planning method using a recurrent neural network with strictly 
limited interconnections. The trajectory obtained is then applied to PUMA560 robot arm which moves in an 
environment with obstacles. Each neuron of the network is connected only to the nearer neighboring neurons. 
This makes possible to reduce considerably the number of interconnections and to thus decrease the complexity 
of the network. The neural network evolves from an initial state to a final state, thus delivering an optimal 
trajectory that the robot must follow to avoid the obstacles and to reach the desired configuration. In order to 
avoid local minima, we use an adaptive parameter in the neural network activity equation. The most significant 
feature in this method is that it can be established to have a real-time trajectory planning in a dynamic 
environment. 
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1   Introduction 
Motion planning with obstacle avoidance is a very 
important issue in robotics. There are a lot of 
studies on robot motion planning using various 
approaches. Most of the previous models [1] use 
global methods to search the possible paths in the 
workspace. Ong and Gilbert [2] proposed a path 
planning model using penetration growth distance, 
which searches over the collision paths instead of 
the free workspace. These models deal with static 
environment only and are computationally 
complicated when in a complex environment. 
Several neural network models were proposed for 
real-time robot motion planning through learning, 
e.g. Muniz, Zalama, Gaudiano and Lopez-
Coronado [3] proposed a neural network model for 
dynamic navigation of a mobile robot with obstacle 
avoidance through unsupervised learning; Fujii, 
Arai, Asama and Endo [4] proposed a multilayered 
model for collision-free motion planning through 
reinforcement learning. However, the planned robot 
motions using learning based approaches are not 
optimal, particularly at the initial learning phase. 
Glasius, Komoda and Gielen [5] proposed a 
Hopfield-type neural network model for dynamic 
trajectory formation without learning, but it 
requires the robot to have faster dynamics than the 
environment. 

In this paper we present a structure of 
recurrent neural network, which is applied to real-
time trajectory planning in a dynamic environment.  
With the aim of decreasing the computing time, the 
structure of the neural network is selected in such 

that it reduces the possible maximum number of 
interconnections between the neurons. The 
trajectory planning is obtained from the progressive 
evolution of the neural network from an initial state 
towards a final state. This procedure is done 
without training.   
 
 
2   Neural model 
The robot configuration is determined by the  
articular positions {θ1 ,θ2 ,θ3 ,… θk} where θi is the 
articular  position of the ith articulation and K the 
number of freedom degrees. The robot articular 
space is discretized in cells with a step of 
discretization δθi given by : 
 

δθi = ( θmax - θmin )/gi  
 

where gi is the discretization order of the ith 
articulation. θmax and θmin are the  maximum and 
minimal acceptable values of  θi. 

Thus for a robot with K freedom degrees 
the total number of cells N is given by: 
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K

i

N ∏
=

=
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The problem arises in the following way, the robot 
is initially in a starting configuration which 
corresponds to the cell C0 and wants to reach the 
cell Cf which corresponds to the target 
configuration.  The trajectory followed between the 
starting cell C0 and the target cell Cf is defined by 
cells {C0, C1 C2,… Cf}. 
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To this discretized articular space we assign a 
locally recurrent neural network, where each 
neuron ni is the image of a cell Ci. The number of 
neurons of the network is thus equal to the number 
N of cells of the robot articular space.  Each neuron 
ni is connected only to the immediate nearer 
neurons, which represent the cells in direct contact 
with cell Ci. In a 3-D space the number of 
neighboring neurons is 26, as shown on Figure 1 
(diagonal connections are not represented). 

 

 
Fig.1  3-D neighboring interconnected neurons. 

 
The weights Wij and Wji of the connections 
between neuron ni and neuron nj are equal to the 
inverse of Euclidean distance separating their 
images Ci and Cj in the articular space: 

 
Wij = Wji = 1/|dij| 

 
Where |dij| is the Euclidean distance between cell 
Ci and cell Cj in the articular space. In addition to 
the connections between neurons, each neuron ni 
receives a bias entry Ii which informs it of the 
presence or not of a possible obstacle. If the neuron 
ni corresponds to a cell which contains an obstacle, 
its bias Ii= -E. Otherwise if the cell is free its bias is 
zero Ii=0. Only the neuron nf which corresponds to  
the target cell Cf has a bias If=+E. 
 The initial state of the neural network is 
such that all outputs xi of neurons are zeros: 
 

xi=0 {i=1,2…N} 
 
The network starts to evolve to a final state 
according to the following activity equation : 
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Where a, b, and c are constants. m is the number of  
neighboring neurons of neuron ni. 
The manner of interconnecting neural network and  
the values set to the biases force the maximum 
activity to moves gradually from neuron n0 image 
of initial cell C0 through neighboring neurons and 
with each iteration until reaching the neuron nf 

which corresponds to the target cell Cf. The cells 
{C0, C1 C2,… Cf} which constitute the trajectory of 
the robot, are obtained by : 
 

Ci ↔ max(xi , i=1,2,…m) (2) 
 

If the next iteration corresponds to the same cell, 
the evolution of the network stops without 
achieving the goal. To avoid such a state we 
introduces an adaptive factor µ in the activity 
equation : 

1)(
.)sgn(1 +

+=+ eabs
µeµµ ii δ

δδ  (3) 

 
Where sgn(µ)=1 if µ>0 and sgn(µ)= -1 if µ<0. δµ is 
constant. e is the mean quadratic error of 
articulation positions, and δe= ei+1 - ei. 

This allows the neural network after a 
certain number of iterations to avoid this situation 
and to continue its evolution until reaching the final 
goal. It can be proved that equation (1) satisfies 
stability conditions [6]. The stability and 
convergence of this equation can be rigorously 
proved using the Lyapunov stability theory [7]. 
Therefore the proposed neural network system is 
stable. 
 
 
3   Simulation Results 
The trajectory planning previously developed is 
applied to PUMA560 robot arm. Knowing that the 
three last articulations concerning the movements 
of the end-effector are of reduced size, only the 
first three degrees of freedom are considered.  
Articular space is thus of three dimensions. The 
order of discretization gi is 64 for each articulation. 
Thus the number of neurons N is equal to 
(64x64x64)=262144 neurons.  Therefore the steps 
of discretization of the various articulations are 
respectively:  (5, 3.9, 3.28) degrees. Two obstacles 
are placed on the way of the robot. The first 
obstacle is a box open on two parallel faces. The 
second one is a plan placed at a minimal distance 
from the robot. 

According to the simulation results, we 
notice that the second obstacle can be avoided by 
local planning methods when the plan is placed 
beyond a certain distance from the robot. On the 
other hand, the first obstacle is avoided only by the 
global or mixed planning methods. 

The method developed in this paper proved 
its effectiveness of avoidance of the most 
complicated obstacles with a short computing time. 
We give an example on the Figure2 which 
represents the trajectories followed by the first 
three articulations in an environment without 
obstacles, then in an environment provided with the 
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previous obstacles. In this example, the initial 
configuration corresponds to [θ1 θ2 θ3]=[0 0 0] and 

the target configuration is [θ1 θ2 θ3]= [170 -45 80] 
in degrees. 
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Fig.2 Trajectories: (a) Without obstacles (b) In the presence of obstacles. 
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The Figure3 represents the sequence of the 
movements of robot during its motion from the 
starting configuration (first image) to reach the 
final configuration (last image). This result is 
obtained for the following parameters values: 
a=10, b=1, c=1, E=100, µ1=0.03, δµ=0.001. 
 
 
4   Discussion 
In the proposed neural network structure, it could 
be established that a real-time trajectory planning, 
in a dynamic environment, using hardware or 
software implementation is possible. This method 
can also be applied to a mobile robot or a multi-
robots system.  The fact of introducing the adaptive 
factor µ into the neural network activity equation, 
allows avoiding local minima, but this can 
introduce instability of the network when its state 
approaches the final state. In order to avoid this 
problem it is required only to stop the neural 
network evolution process once the mean squared 
error of articular positions is smaller then the 
discretization step (e<max(δθi) ). 
 
 
5   Conclusion 
In this paper a real-time trajectory planning method 
with obstacles avoidance is developed. The 
trajectory obtained is optimal in the sense of the 
shortest path. Simulation results are satisfactory 
and encouraging for further research work. The 
system stability is guaranteed by both qualitative 
analysis and the Lyapunov stability theory. 
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Fig.3 Movements sequence of PUMA560 arm.   
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