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Abstract: - In this paper we propose a model to feature selection based on ant colony and rough set theory 
(RST). The objective is to find the reducts. RST offers the heuristic function to measure the quality of one 
feature subset. We have studied three variants of ant’s algorithms and the influence of the parameters on the 
performance both in terms of quality of the results and the number of reducts found. Experimental results 
show this hybrid approach shows interesting advantages when compared with other heuristic methods. 
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1   Introduction 
Feature selection (FS) is useful to reduce the 
problem dimensionality problem; but also in 
improving the speed of data manipulation, and 
increasing the performance of processes by reducing 
the influence of noise features [8], [3], and [16].  
     FS methods search through of a set of nf features 
and try to find the best subset among the competing 
2nf-1 candidate subsets according to some evaluation 
measure. All FS methods contain two important 
components: an Evaluation function (EF) used to 
evaluate a candidate feature subset and a Generation 
procedure (GP) to generate candidate sub-sets.  
     The EF tries to measure the discriminating ability 
of a subset of features, in order to distinguish the 
different class labels. It measures the goodness of a 
subset produced by some generation procedure. An 
optimal subset is always relative to a certain EF.  
The GP is a search algorithm to search through the 
feature space. Search strategies are important 
because the FS process may be time consuming and 
an exhaustive search for the “optimal” subset is 
impractical for even moderate sized problems. 
Examples of GP are blind and heuristic search, 
probabilistic methods and hybrid algorithms. 
     The approach presented in this paper is based on 
the Rough Sets Theory (RST) and Ant Colony 
Optimization (ACO). The former is used to build the 
EF and the latter to implement the GP using a filter 
approach based on forward selection. 

     RST was proposed by Z. Pawlak [12], it provides 
a technique for gaining insights into the data 
properties and it does not need any external 
information [18].  An important issue in the RST is 
FS based on the reduct concept. A reduct is a 
minimal set of features that preserves the 
partitioning of universe and hence the ability to 
perform classifications [11]. The use of reducts in 
the selection and reduction of attributes has been 
studied by various authors, among them are [11]. 
     However, this beneficial alternative is limited 
because of the computational complexity of 
calculating reducts. The problem of finding a 
globally minimal reduct for a given information 
system is NP-hard. Good approximation methods for 
calculating reducts have been developed using 
heuristic search, among them [17], [1] and [4]. 
Another heuristic approach is ACO, which has been 
used in data mining tasks. In particular, R. Jensen 
and Q. Shen [7] have proposed a method which 
combines ACO and RS to find reducts with 
promising results. 
     Our research addresses the same issue. Our 
objective is to experimentally study the performance 
of three variants of the ACO applied to FS, and to 
analyze the parameter settings of the ACO. The 
setting of parameters is crucial for the performance 
of the algorithm [5] and [6]. 
     In the following sections we present the study.  
First, we give the basic elements of ACO and RST 
in paragraph 2. After that the algorithms are 
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described in paragraph 3, and experiments and its 
results are showed in paragraphs 4. 
 
 
2   About ACO and Rough set theory 
ACO [5] and [6] was introduced by M. Dorigo, it is 
a metaheuristic used to guide other heuristics in 
order to obtain better solutions than those that are 
generated by local optimality methods. A colony of 
artificial ants cooperates to look for good solutions 
to discrete problems. Artificial ants are simple 
agents that incrementally build a solution by adding 
components to a partial solution under construction. 
Similar to real ants, artificial leave a pheromone trail 
while exploring the search space. This pheromone 
attracts other ants, and as such allows the ants to 
indirectly communicate with each other. 
     Ant System (AS) is the first ACO algorithm. It 
uses a random proportional rule to select the next 
component. This rule takes into account the 
pheromone intensity between the last and the next 
component and a heuristic value about the effect of 
adding the next component. Two parameters, α and 
β, determine the balance between the importance of 
the trail intensity and the heuristic value. 
 
Ant Colony System (ACS) is an advanced successor 
algorithm of AS. ACS uses an extra pseudorandom 
proportional rule to select the next component which 
parameters Alpha denotes the relative weight of trail 
intensity, Beta indicates the relative weight of 
heuristic value, and a new parameter q0 (tunable 
parameter of transition rule) is introduced. Tuning 
the parameter q0 allows modulation of the degree of 
exploration; with probability q0 ants make the best 
possible move according to the learned pheromone 
trail and the heuristic information, while with 
probability (1-q0) it explores other solutions. 
     The RST is the second component in our hybrid 
approach. In RST, a Decision System is any 
information system of the form SD=(U, A∪{d}) 
where U is a non-empty finite set of N objects called 
the Universe, A is a non-empty finite set of nf 
features and d∉A is the decision attribute. The basic 
concepts of RST are the lower and upper 
approximations of X⊆U; they are introduced with 
reference to an indiscernible relation IND(B), where 
objects x and y belong to IND(B) if and only if x 
and y are indiscernible from each other by features 
in B. Let B⊆A and X⊆U. It can be proved that B 
defines an equivalence relation. The B-lower and B-
upper approximations for all subset X⊆U are 
defined by B*X={x : [x]B⊆X } and B*X={x : 

[x]B∩X≠φ} respectively, where [x]B denotes the 
equivalence class of x. 
     RST offers several measures about the Decision 
System. One of them is the quality of the 
approximation of classification (expression 1). It 
expresses the percentage of objects which can be 
correctly classified into the target classes Y={Y1, ..., 
Yn} employing the set of features in B. 
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     A reduct is a minimal set of attributes B⊆A such 
that IND(B)=IND(A). Therefore, a reduct is a 
minimal set of features such that the X-
indiscernibility relation is con-served. That is 
γA(Y)=γB(Y). Bell [1] shows that the computational 
cost of finding a reduct in the information system 
that is bounded above by nf2N2, while the 
complexity in time of finding all the reducts is 
O(2nfJ),  where J is the computational cost required 
to find a reduct. 
 
 
3   A hybrid model to feature selection 
FS is an example of a difficult discrete problem. We 
represent this problem as a graph problem in the 
following way. Let A={a1, a2, anf} be a set of 
features. You can view this set as a network in 
which nodes represent features, and all nodes are 
connected by bidirectional links. Pheromone values 
τi are associated to nodes ai. This is a difference 
between our approach and the approach proposed in  
[7] in which pheromone is associated with the links, 
which is common in ACO. The amount of 
pheromone on link ai-aj is function of the 
dependence degree of attribute aj on feature ai. In 
our approach we associate pheromone to nodes. The 
amount of pheromone is a function of the 
dependency of the feature associated to that node, to 
all other features. As a result the pheromone we 
associate to node ai represents the absolute 
contribution of that feature to a reduct, rather than 
the contribution of ai, given the fact that aj was the 
previous feature included in the reduct. 
     The solution consists of reducts which have to be 
built step by step by the ants. Initially the ants are 
distributed over the nodes of the graph, and each has 
an empty subset which has to become a candidate 
reduct. The behavior of one single ant can be 
described as follows.  In the first step, the ant is 
assigned to one of the nodes, in the next step it will 
move to some other node in the network. In doing 
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so, the ant performs a forward selection in which it 
expands its subset step-by-step by adding new 
features. To select the next node to visit the ant 
looks for all features that are not yet included in the 
subset and selects the next according to the rule of 
ACO. On the one hand it is attracted by the 
pheromone the other ants have already deposited in 
the graph and on the other hand by the heuristic 
function. The heuristic we use here is given by 
expression (1). This expression is also used to 
determine if the subset built so far is a reduct. Over 
time the quality of the subsets build by the ants will 
improve, which is supported by the monotonicity 
property of classical RST; these converge to near 
optimal reducts.  
     We have studied three variants of algorithm to FS 
based on ACO. The first is based on the Ant System 
(AS-RST-FS), the second is a modified Ant System 
(AS*-RST-FS) and the last is based on Ant Colony 
System (ACS-RST-FS). Following, we state several 
common aspects to the three variants: 
a) Initial distribution of ants. 
      We have formulated the following rules to initial 
distribution of ants in each cycle of the algorithms: 
i) If m<nf, then random initial 

distribution of ants;  
ii) If m=nf, then one ant is associated with 

each feature;  
iii) If  m>nf, the first nf ants are distributed 

according to (ii) and the rest according 
to (i). 

b) Random proportional rule. 
     This rule is given by expression (2). It uses the 
quality of the approximation of the classification as 
heuristic function (η) to evaluate a subset B (η(B)= 
γB(Y)):  
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c) Initialization of trail. 
     Each attribute ai has associated a pheromone 
value τi. We consider three alternatives to calculate 
initial pheromone values: (i) random values to τi; (ii) 
τi(0)=1/nf; and (iii) τi(0)= σA,D(ai),  where σA,D(ai) is 
the relevance of feature ai according to rough set 
theory.  
d) Ant Stopping Criteria (ASC). 
     The ASC states when an ant finishes its activity 
in a cycle. Each ant k keeps adding one-feature-at-a-
time to its current partial set Bk until γB(Y)= γA(Y).  
e) Process Stopping Criteria (PSC). 
     The process of finding sets B is a sequence of 
cycles (NC=1, 2 …). In each cycle all ants build 

their set B. The process is stopped (PSC = true) 
when the following condition is met: NC > NCmax.  
f) Number of ants. 
     We tested several values for the parameter 
number of ants, m={3, 9, 12, 15, 24, 33, 42, 48, 54 
and 60}. From this experimental study we infer the 
following rules of thumb to determine the number of 
ants as a function of the quantity of features 
(m=f(nf)), where Round[x] denotes the closest 
integer to x: 
R1: If nf ≤19 then m=nf;  
R2: If  20≤  n f≤49 then  

[If 0.666*nf ≤ 24  
        then m=24 else m=Round[0.66*nf]] 

R3: If nf≥50 then  
    [If[0.5*nf≤33  
            then m=33, else m=Round[0.5*nf]] 
 
     Following we will describe the algorithms. The 
first algorithm is based on AS. 
     Algorithm AS-RST-FS: 

Initialization: PSC False and τi 
(0)←initial value  i=1,.., nf  
Repeat 

Initial distribution of ants (Each 
ant k is associated with one 
attribute ai and   Bk {ai})  

    Repeat 
for k=1 to m do if ASCk = False 

then Select the new feature ai* 
to add to Bk according to 
expression (2).                                           

Update ASCk.      
   Until ASCk is True for all ants. 

After all the ants have 
constructed their reduct the 
pheromones are updated: 

a) τi (1-ρ) * τi for i=1,…,nf   
(evaporation process) 
b) For k=1,…,m do For all 
ai∈Bk do τi  τi + γBk(Y)        

   Update PSC                  
Until PSC is True. 

 
     The second Algorithm, AS*-RST-FS, introduces 
some modifications. These affect the way in which 
the pheromone values are updated in three aspects: 
(i) After each ant has constructed her reduct τi is 
updated for all ai in the reduct, (ii) After all ants 
have constructed their reducts τi is updated for all ai 
in the best reducts (elitist strategy), and (iii) After all 
ants have constructed their reducts we applied an 
indirect evaporation for all τi by normalizing their 
values (indirect evaporation). 

∑
=
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     The last algorithm, ACS-RST-FS, is based on the 
ACS model. In this case, the rule for selecting a new 
feature and the way to update pheromone are 
different. 
     Algorithm ACS-RST-FS: 
Initialization of PSC to False and trail 
intensities (τi(0)) 
Repeat 

Initial distribution of ants (Each ant k is 
associated with one attribute ai and 
Bk {ai})  
Repeat 

For all ant k If ASCk=False then 
Select the new feature ai* to add to 
Bk (Bk k i

According to the pseudo-random 
proportional rule: 

  B  ∪{a *})  
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where I is selected using the 
expression (2). 
τi (1-ξ) * τi + ξ * τi (0),  for 
feature ai* (local pheromone update 
rule) 
Update ASCk

Until ASCk is True for all ants. 
After all the ants have finished: 

Select the best Bk  and for all ai ∈ 
Bk do 
τi (1-ρ * τi + ρ * γBk(Y) 

Update PSC      
Until PSC is True. 
 
     Considering the computation effort for finding 
either lower or upper approximations is O(nf*N2) 
according to [1] and [4], we can estimate the 
complexity of these algorithms as 
O(NC*m*nf2*N2), where NC is the number of 
cycles. 
 
 
4   Experimental results 
The aims of this experimental study are to evaluate 
the three previous algorithms, and to determine the 
rules of thumb for the setting of the parameters. 
     When we evaluated the initialization trail 
schemes previously presented alternatives (ii) and 
(iii) produce too low initial values. Using alternative 
(i) the algorithm generates slightly more reducts; 
this result is coherent with the fact that too low 
values for initial trails reduce the search space [6]. 
For this reason, further experiments were done using 
random [0, 1].  
     The algorithm performance was compared 
according to the resulting reduct quantity (RQ) and 
the average length of the resulting reduct set (RL); 

the length of a reduct is defined as the number of 
features in the reduct. We applied these algorithms 
to FS in database from UCI Repository [2]. For each 
database, all tests have been carried out for 
Ncmax=150 cycles and were averaged over ten 
trials. We evaluated several values for parameters 
Alpha (α), Beta (β) and q0 while ρ and ξ  were held 
constant; that is ρ=0.5 and ξ=0.1, and α={0.1, 0.5, 1, 
2, 5}, β={0.1, 1, 2, 5} and q0={0.3, 0.6, 0.9}.  

 Breast 
Cancer Exactly Exactly

 2 Heart LED Lung  
Cancer(1)

Lung 
Cancer(2)

  nf 9 13 13 13 24 56 56 

m 9 13 13 13 24 33 33 

1 
4(4) 
RQ=11
RL=4.6

6(1)
RQ=1
RL=6

10(1)
RQ=1
RL=10

6(2) 
RQ=2 
RL=6 

5(1) 
RQ=8 
RL=19.4 

4(33) 
RQ=138
RL=5 

4(1) 
RQ=206
RL=6.8

2 
4(2) 
RQ=5
RL=5 

6(1)
RQ=1
RL=6

10(1)
RQ=1
RL=10

6(1) 
RQ=4 
RL=7.5

5(1) 
RQ=4 
RL=16.5 

4(4) 
RQ=33 
RL=6.9 

5(2) 
RQ=60
RL=7.1

3 
4(1) 
RQ=4
RL=4.8

6(1)
RQ=1
RL=6

10(1)
RQ=1
RL=10

7(3) 
RQ=4 
RL=7.5

5(1) 
RQ=1 
RL=5 

4(7) 
RQ=29 
RL=5.5 

4(1) 
RQ=61
RL=6.1

4 
4(2) 
RQ=2
RL=4 

6(1)
RQ=1
RL=6

10(1)
RQ=1
RL=10

7(1) 
RQ=1 
RL=7 

5(1) 
RQ=1 
RL=5 

4(1) 
RQ=18 
RL=5.8 

6(2) 
RQ=42
RL=7.9

5 
4(4) 
RQ=9
RL=4.6

6(1)
RQ=1
RL=6

10(1)
RQ=1
RL=10

6(1) 
RQ=10 
RL=7.3

5(1) 
RQ=2 
RL=13.5 

4(69) 
RQ=202
RL=4.7 

4(8) 
RQ=337
RL=6 

6 
4(4) 
RQ=17
RL=4.9

6(1)
RQ=1
RL=6

10(1)
RQ=1
RL=10

6(1) 
RQ=11 
RL=7.7

5(1) 
RQ=6 
RL=18 

4(46) 
RQ=399
RL=6 

4(8) 
RQ=643
RL=7.15

Table 1: Comparison between algorithms using data 
base from UCI Repository. Where 1 denotes AS-
RST-FS with α=1, β=5; 2 AS-RST-FS with α=5, 
β=1; 3 AS*-RST-FS with α=1, β=5; 4 AS*-RST-FS 
with α=5, β=1; 5  ACS-RST-FS with β=5, q0=0.9; 6  
ACS-RST-FS with β=1, q0=0.3. 
     Our research shows the relation between 
parameters α and β has the strongest impact on the 
quantity of generated subsets by AS-RST-FS and 
AS*-RST-FS algorithms. We think this is the key 
relation in these algorithms. Results show that 
regardless of the method to calculate τi(0), values {1 
,5} are key values for parameters α and β; the 
combination (α=1, β=5) found more than twice the 
number of reducts than the combination (α=5, β=1) 
in the case of AS-RST-FS, and about 1.5 time in the 
case of AS*-RST-FS algorithm. Another interesting 
result is the combination (α=1, β=5) that generates 
shorter reducts than (α=5, β=1).  
     Similarly, there is a key relation is between β and 
q0 in the ACS-RST-FS algorithm, in this case the 
key values are {0.3, 0.9} for q0 and {1, 5} for β, we 
use α=1. The combination (β=1, q0=0.3) generates 
about 3 times more reducts than combination (β=5, 
q0=0.9), regardless of the quantity of the ants and the 
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number of cycles. But, in this case the combination 
(β=5, q0=0.9) obtained shorter reducts than other 
combinations. Also, the effect of increasing the 
number of ants needed is bigger in the case of 
combinations (α=1, β=5) and (β=1, q0=0.3) than 
other combinations.  
     In Table 1, we present the algorithm 
performances. Where, n1(n2) denotes n2 shortest 
reducts with n1 features; RQ is the resulting quantity 
of reducts and RL is the average length of the 
resulting reducts. We only present information about 
the two shortest reducts. The database Lung Cancer 
(1) was discretized by using the method 
EntropyScaler from Rosetta [10], others containing 
real valued features have been discretized as [7]. 
The algorithm based on ACS obtains the best 
results. The average number of cycles to find the 
shortest reduct was 15, 21 and 27 for ACS-RST-FS, 
AS-RST-FS and AS*-RST-FS respectively.  
     In their earlier work [7], R. Jensen and Q. Shen 
have proposed the algorithm AntRSAR to find 
reducts, they showed promising results when 
comparing the results of this method with other 
methods to build reducts such as RSAR (using 
Quickreduct), [15], and GenRSAR (genetic 
algorithm based), and suggested more 
experimentation and further investigation to study 
the influence of the parameters. In Table 2, we 
present a comparison between ACS-RST-FS, 
AntRSAR, RSAR and GenRSAR algorithms (data 
for the last three are taken from [7]) with respect to 
the length of minimal reduct found by algorithms. 
These results show that the algorithms based on 
ACO obtain the best results. In the case of ACS-
RST-FS, 21 cycles were enough to obtain these 
results while the results reported back in [7] were 
obtained in 250 cycles. 

Algorithm Heart Exactly Exactly 2 LED 
Lung 

Cancer

nf 13 13 13 24 56 

RSAR 7 9 13 12 4 

GenRSAR 6 6 10 6 6 

AntRSAR 6 6 10 5 4 
ACS-RST-FS 6 6 10 5 4 

 Table 2: Comparison with other algorithms. 
 
     Moreover, we have compared the algorithms 
performance with the performance of other methods 
to select features. These are LEX, UMDAf3 and 
RSReduct algorithms.  

     LEX algorithm was proposed by Santiesteban 
[14], it reports the best results among others in the  
pattern recognition area.  
     We have defined the method UMDAf3 for 
calculating reducts starting from the integration of 
the adaptability function f3 reported in [17] and the 
UMDA method (Univariate Marginal Distribution 
Algorithm) [9].  
     Moreover, we have formulated a greedy 
algorithm called RSReduct that starts with an empty 
set of attributes and builds reducts by selecting 
features according to the heuristic function 
f(ai)=H(ai)+C(ai), where terms H(ai)  and C(ai) 
were proposed by Piñeiro in [13].  
     In Table 3 we present a comparison of the 
performance of these three algorithms and ACS-
RST-FS using the data base Lung Cancer discretized 
using the method EntropyScaler from Rosetta [10]. 
We selected the Lung Cancer database because this 
has the largest quantity of features. Again, the 
algorithm based on ACO has the best results. 

Variable ⇒ 
Algorithms ⇓ 

Length of shortest 
 reduct QR Average 

LR 
LEX 4(1)5(57)6(92) 150 5.6 
UMDAf3 4(1)5(17) 18 4.9 
RSReduct 4(1) 1 4 
ACS-RST-FS 4(69)5(122) 202 4.7 

 Table 3: Comparison of ACS-RST-FS and other 
algorithms. 
 
 
4   Conclusion 
We have presented a study about the possibilities of 
applying a hybrid model (ant model + rough sets) to 
feature selection. This research includes, as an 
important issue, the setting of ant parameters. 
     We have studied three alternatives of algorithms, 
the first one based on Ant system model (AS-RST-
FS), the second one on Ant system plus an elitist 
strategy (AS*-RST-FS) and the third one based on 
Ant Colony System (ACS-RST-FS). We can 
conclude ACS-RST-FS performs better than others. 
     Also, we have determined that the values of 
parameters α and β in AS-RST-FS and AS*-RST-FS 
algorithms and parameters β and q0 in ACS-RST-FS 
algorithm are crucial; they have the most important 
effect on the algorithm performances. 
     The comparison of the hybrid model with other 
methods to calculate reducts in RST shows that ant 
model based algorithms yield good results. This 
ratifies results obtained by R. Jensen and Q. Shen in 
[7]. In this research, we have obtained additional 
results about the set-ting of the parameters of the ant 
model. 
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