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Abstract: - A design approach is proposed for the stabilization of  non linear systems using fuzzy Takagi-Sugeno 
models. The fuzzy model is represented as a set of uncertain linear systems where the uncertainty depends on the 
fulfillment degree of each rule. An optimization procedure is used to maximize the stability region of each closed loop 
local system. The local controller design is based on the resolution of a set of independent algebraic Ricatti equations. 
The global control law is obtained by a switching between local controllers. A simulation example is given to illustrate 
the efficiency of the proposed method. 
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1   Introduction 
During the last few years, the analysis and design of 
fuzzy logic controllers based on the Takagi-Sugeno 
fuzzy model have been a popular research topic in 
control community . Tanaka et al. discussed the stability 
and the design of  fuzzy control systems in [1, 2]. They 
gave some checking conditions for stability, which can 
be used  to design fuzzy control laws.  Unfortunately, the 
stability conditions require the existence of a common 
positive definite matrix for all the local linear models. 
However, this is a difficult problem to be solved in many 
cases, especially when the number of rules is large. 
Representation of fuzzy models by a set of  linear 
uncertain systems has been suggested by Cao et al. [3, 
4], and based on linear uncertain system theory several 
control design approaches has been proposed. The 
drawback  of  the precedent approaches  is that the LMIs 
or the algebraic Riccati equations used to check the 
stability can be infeasible. Based on the representation of 
Cao et al. [3] we propose, in this work, a switching 
control design approach. The proposed approach  is 
based on the resolution of a set of independent algebraic 
Ricatti equation.  The fulfillment degree of each rule is 
incorporated in the algebraic Riccati equation to 
overcome the problem of infeasibility.  The rest of the 
paper is organized as follows. Section 2 introduces the 
fuzzy dynamic model. Section 3 presents the switching 
controller design approach for fuzzy dynamic models 
based on algebraic Ricatti equations. To demonstrate the 
efficiency of the proposed approach, a simulation 
example is given in section 4. Finally, conclusions are 
given in section 5. 
 
 

2   Takagi-Sugeno Fuzzy Model 
Many physical systems are very complex in practice so 
that rigorous mathematical models can be very difficult 
to obtain, if not impossible. However, many of these 
systems can be expressed in some form of  mathematical 
models and Takagi-Sugeno fuzzy models has been 
largely used to model complex non linear systems[5].  
The continuous-time Takagi-Sugeno fuzzy dynamic 
model is a piecewise interpolation of several linear 
models through membership functions. The fuzzy model 
is described by a set of fuzzy if-then rules. The ith rule 
of the fuzzy model for the non linear system take the 
form: 
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where ( ) nRtx ∈  denotes the state vector, ( ) mRtu ∈  the 
control vector, ( ) pRty ∈ the output vector, i

jF  is the jth 

fuzzy set of the ith rule, nn
i RA ×∈ , mn

i RB ×∈  and 
np

i RC ×∈  are the state matrix, the input matrix and the 
output matrix for the ith local model. r  is the number of 
if-then rules, and ( ) ( ) ( )tztztz g,,, 21 K  are some 
measurable system variables, i.e. the premise variables. 
The final output of the fuzzy model can be expressed as: 
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The scalars ( )( )tziα  are characterized by: 
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The T-S fuzzy model (2) has strong  nonlinear 
interactions among its fuzzy rules which complicates the 
analysis and the control. In order to overcome these 
difficulties, the TS fuzzy model is represented as a set of 
uncertain linear systems [3]. The global state space 

nR⊆Ω  is  partitioned into r subspaces, each subspace 
is defined as : 

( )( ){ } ritzll ,2,1,0 K=>Ω=Ω α          (5) 

Each subspace lΩ  is the union of two subsets: 

lll ∆Ω∩Ω=Ω                                      (6) 
where  

( )( ){ }1=Ω=Ω tzlll α , ( )( ){ }10 <<Ω=∆Ω tzlll α  
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These subspaces are characterized by: 
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If the rules i and j  can be inferred in the same time than 
φ≠Ω∩Ω ji     

jjiijiji ∆Ω⊆Ω∩Ω∆Ω⊆∆Ω∩∆Ω=Ω∩Ω ,  
If the rules i and j  can’t be inferred in the same time 
than   φ=Ω∩Ω ji    
In each subspace the TS fuzzy model (2) can be 
represented as: 
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where  

liilliilliil CCCBBBAAA −=−=−= ,,     (10) 

Since   ( )( ) ( )( )tztz l

r

li
i

i αα −=∑
≠
=

1
1

 

The TS fuzzy model can be written as: 
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If  ( )( ) 1=tzlα  then the fuzzy model can be represented 
by the corresponding linear local model. 
In each subspace, the fuzzy model  consists of  a 
dominant nominal system ( )lll CBA ,,  and a set of 
interacting systems representing the effect of  other 
active rules. 
In this paper we suppose that the state space is 
measurable and  ( ) ( )txty = . 
The fuzzy system can be simplified to: 
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3 Controller Design 
We assume that the fuzzy system (2) is locally 
controllable, that is, the pairs ( ) rlBA ll ,,1,, K=  are 
controllable. 
The basic idea is to design local feedback controllers that 
maximize the region of stability of each closed loop 
local model.  
Theorem 1: If there exist positive definite matrices 

mm
l RR ×∈ , nn

l RQ ×∈  scalars 0,0 21 >> ll µµ  and 
10 <≤ lα  such that the following algebraic Ricatti 

equation: 
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then the state feedback control law: 
( ) ( )txPBRtu l

T
lll

1~ −−=                           (22) 
quadratically stabilize the fuzzy system in the sub region 
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s
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In order to maximize the region of stability, the minimal 
value that guarantee the stability is obtained by solving  
the following minimization program: 
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Note that this minimization program has always a 
solution, 1<lα , since the local systems are 
controllable.  

If  U
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Ω=Ω  then the local controllers ,iK  

ri ,,2,1 K= satisfy the stability covering condition [6].  
Corollary: The scalars iα , ri ,,2,1 L=  satisfy the 
stability covering  condition if  there exist, at each time t, 
at least one integer rk ≤≤1  so that: 

( )( ) kk tz αα ≥                                 (25) 
 
Theorem 2.  If there exists a common positive definite 
matrix  rPPPP ==== K21  solution to the algebraic 
Ricatti equation (20) for ri ,,2,1 L=  and the scalars 

iα  satisfy the stability covering condition than the fuzzy 
system (2) is globally stabilizable by the following 
switching control law: 

( ) ( )txKtu l−=                                 (25) 
with  l  satisfying : ( )( ) ll tz αα ≥  

Since several rules may satisfy this condition, the control 
law is given by: 

  ( ) ( )txKtu l−= ,   ( )( )( )iiri
tzl αα −=

= ,1
maxarg    (26) 

It is difficult, if not impossible to find a common matrix 
P  that satisfy r  algebraic Ricatti equations in the same 
time.  
A common matrix is not necessary if  the switching 
between the local controllers is sufficiently slow [7].  
Lemma:  If the controllers satisfy the stability covering  
condition  and  the switching time is sufficiently slow, so 
as to allow the transient effects to dissipate after each 
switch, than the switching control law (26) globally 
stabilize the fuzzy system (2).  
Remark: Even if the stability covering condition is not 
fulfilled the fuzzy system may be stable [7]. 
 
The resolution of the r independent minimization 
programs  leads to three possible cases: 
Case 1 : Several or all 0=iα , ri ,,2,1 L= , the 
number of controllers can be reduced since a local 
controller can be used to stabilize its own local system 
and local systems of neighborhood regions. The number 
of controllers is inferior to the number of rules . 
Case 2 : If the number of controllers can’t be reduced 
and the stability covering condition is fulfilled than the 
number of controllers is equal to the number of rules. 
Case 3: If the stability covering condition is not fulfilled 
than the global system may be instable. To solve this 
problem, we can add new rules to the model since we 
know exactly in which region in the state space we need 
new ones. Or we can add new controllers without 
changing the model by using new nominal systems 
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which is equivalent to the addition of new rules in the 
model. 
 
Design procedure 
The design procedure of the switching controller can be 
summarized in the following steps: 
- Step 1 : Obtain the fuzzy plant model of the non 

linear plant by means of the methods in [5], or other 
suitable ways 

- Step 2:  Determine the subsystems  matrices iA  and 

iB , ri ,,1K=  
- Step 3 :  Choose the suitable matrices 

lAM , 
lAN , 

lBM , and 
lBN  for each local model. 

- Step 4 :  For each subsystem, solve the minimization 
program (24). 

- Step 5 : Check if the stability covering condition 
(25) is satisfied, otherwise go to Step 3 and choose 
other values for the free design parameters or add 
new controllers until the covering condition will be 
fulfilled.  

 
 
4   Simulation Example 
To illustrate the controller synthesis approach, we 
consider the following problem of stabilizing the ball 
and beam system represented in Fig. 1. The motion of 
the ball and the beam can be described by the following 
differential equations [8]: 
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where rx =1  denotes the position of the ball,  rx &=2  
its velocity, θ=3x   the angle of the beam and θ&=4x  
the angular velocity of the beam. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The control u  equals the angular acceleration, B  and  
G  are parameters reflecting the mass of the ball and the 
beam. In our simulations below, we choose 7143.0=B  
and 81.9=G . The goal  is to determine the control u  
such that the ball will converge to its stability position. 
Assuming that 3x  is about 0 and [ ]ddxx ,41 −∈ , where 

5=d , the ball and beam system can be represented by 
the following TS fuzzy model [8]: 
R1 :  If  3x  is  about 0  and 41xx  is about 0,  
                                                      Then  uBxAx 11 +=&  
R2 :  If  3x  is  about 0  and 41xx  is about d ,  
                                                     Then  uBxAx 22 +=&  
R3 :  If  3x  is  about 0  and 41xx  is about  d− ,  
                                                    Then  uBxAx 33 +=&  
where  
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and the membership functions, shown in Fig. 2, are : 
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Fig. 1  Ball and beam system 
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Fig. 2, Membership  functions and  local controllers 
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The values obtained after the resolution of the three 
minimization programs: 
Subsystem 1: 
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The minimal values found are 0321 === ααα   
which means, as shown in Fig. 2, that the state feedback 
( ) ( )txKtu 1−=  is sufficient to stabilize the Ball-and-

Beam system  and the controller is simplified. To 
illustrate the controller performance, the position of the 
bal is shown in  Fig. 3,  and  the angle of the beam in 
Fig. 4,  for the following initial conditions [0.5 m, 0, 
30.0°, 0],  [0.5 m, 0, 60.0°, 0] and [-0.5 m, 0, -45.0°, 0]. 
The switching controller is reduced to a simple linear 
state feedback, it is one advantage of this approach.   
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Fig. 3, Position of the ball 
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Fig. 4, Angle of the beam 

 
 
4   Conclusion 
This work presents a switching control design approach 
for the stabilization of non linear systems represented by 
fuzzy models. The basic idea of this approach is to 
decompose the global non linear design control problem 
into a number of simple linear state feedback local 
controllers. The maximization of the stability region of 
each local controller permit the minimization of the 
number of controllers. However, the problem of global 
stability still unsolved in the case of fast switching 
between local controllers.  
 
References: 
[1] K. Tanaka, M. Sano, A robust stabilization problem 

of fuzzy control systems and its application to 
backing up control of a truck-Trailer, IEEE 
Transactions on Fuzzy systems,  Vol. 2, No.2, 1994, 
pp. 119-134 

[2] K. Tanaka, T. Ikeda, H. Wang, Fuzzy regulators and 
fuzzy observers: Relaxed stability conditions and 

Proceedings of the 6th WSEAS Int. Conf. on FUZZY SYSTEMS, Lisbon, Portugal, June 16-18, 2005 (pp45-50)



LMI based design, IEEE Transactions on Fuzzy 
systems,  Vol. 6, No. 2, 1998, pp. 250-265. 

[3] S. G. Cao, N. W. Rees, G. Feng, Stability analysis 
and design for a class of continuous-time fuzzy 
control systems, International Journal of Control, 
Vol.64, 1996, pp. 1069-1089. 

[4] S. G. Cao, N. W. Rees, G. Feng, H∞ Control of 
uncertain dynamical fuzzy discrete-time systems, 
IEEE Transactions on Systems Man and Cybernetics, 
Vol.31, No. 5, 2001, pp. 802-812. 

[5] T. Takagi, M. Sugeno, Fuzzy identification of 
systems and its application to modeling and control,  
IEEE Transactions on Systems, Man and 
Cybernetics,  Vol. 15, 1985, pp. 116-132. 

[6] D. J. Stilwell, W. G. Rugh, Interpolation of Observer 
State Feedback Controllers for Gain Scheduling, 
IEEE Transactions on Automatic Control, Vol. 44, 
No. 6, 1999, pp. 1225-1229. 

[7] D. Liberzon, A. S. Morse, Basic problems in stability 
and design of switched systems, IEEE Control 
Systems Magazine, Vol. 19, No. 5, 1999, pp. 59-70. 

[8] Q. Sun, R. Li, P. Zhang, Stable and optimal fuzzy 
control of  complex systems using fuzzy dynamic 
model, Fuzzy Sets and Systems, Vol. 133, No. 1, 
2003, pp. 1-17. 

Proceedings of the 6th WSEAS Int. Conf. on FUZZY SYSTEMS, Lisbon, Portugal, June 16-18, 2005 (pp45-50)


