
1   Introduction 
In the last years we assist to a growing international interest 
in deep exploration of wide open regions of the Martian sur-
face. An exhaustive comprehension of planet's  terrain,  its  
geology  and  exploration characteristics is of great impor-
tance to the whole scientific community. Nonetheless the last 
results in planetary  rovers    have  supplied  with  the tech-
nologic means needed for semi-autonomous robot navigation 
through relatively safe terrains [1,2]. For a conventional  
wheeled  rover,  this  usually  means mobility over continu-
ous natural surfaces having rock densities of 5-to-10%, mod-
est inclines (<30%), and an hard support base to guarantee 
the right operation conditions in terms of wheels pressure 
and traction. With the term semi-autonomous we refer to the 
operations executed by the rover and given remotely by an 
human expert (with extensive time delay, in planetary cases) 
and a series of actuations guided by onboard sensors, to be 
used in typical problems as obstacle-avoidance and path-
planning [3,4,5]. The  open  challenges  in  scientific  re-
search  and optimization of rover's operations tend to im-
prove their autonomy and operational safety , given the tight 
bind in terms of power consumption and safety-keeping of 
scientific data [6]. The main aim is to supply a robust plat-
form with fault-tolerance and graceful degradation character-
istics [7,8].  
This paper presents the SC-MER, Safety Control for Mars 
Exploration Rover, an innovative control system for wheeled 
space vehicles.  
This control system differs from the others because it has 
been created for terrains with  high dangerous access extend-
ing the autonomous navigation capability to achieve optimal 
performances on terrain with variable geometry  and chang-
ing geological characteristics. The need to supply new gen-
eration rovers with these peculiarities is motivated by scien-
tific studies which prove that water presence on Martian sur-
face Is to be found on narrow insets and obstacle-rich zones, 

making the exploration with a traditional approach un-
feasible. 
The reference vehicle used in the definition of the con-
trol  system  introduced  in  this paper is the Opportunity 
rover, recently employed by NASA in Mars Exploration 
Rover (MER) project (see Fig 1). This rover is supplied 
with fully independent wheels and a high definition cam-
era mounted on front.  
The target will be to guarantee the rover the safe explo-
ration of his surrounding environment, supplying accu-
rate information on safety conditions. The main compo-
nents of the control system are realized using fuzzy logic 
and artificial neural networks. Their use is motivated by 
the desire to deal with uncertainty and emulate human 
judgement based on heuristic reasoning on rough terrain 
driving experience. 
In the next sections the details of the proposed architec-
ture  will  be  pointed  out:  in  section  II motivations 
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for the new control system will be explained, in section III 
there will be an exhaustive description of the neural net-
work used for traction control, in section IV we will focus 
on fuzzy logic for balance control and finally in section V 
on the experimental results obtained during simulations.   

2  Terrain Adaptive Traction Control 
In the absence of some measure of control, wheeled vehi-
cles are prone to loss of traction under certain terrain con-
ditions. While on dry paved roads, traction performance is 
maximal for most wheeled vehicles due to the high coeffi-
cient of adhesion between the road and the tread, on off-
road terrain, with variable morphologic conditions, rover 
wheels are subjected to slippage, because of the minor ad-
hesion between wheel itself and the surface. Typical situa-
tions pointing out this kind of phenomenon include the 
presence of sand, gravel, mud and wet terrain. The loss of 
traction coming from these situations may lead to an exces-
sive vehicle's instability (sudden changes of traction situa-
tion may cause sharp  acceleration/deceleration which, to-
gether with movement inertia, may lower the general con-
trol hold), with serious consequences for position estima-
tion, power consumption and onboard equipment and de-
vices safety. 
The attitude of the vehicle chassis with respect to an iner-
tial reference frame can be measured in terms of his projec-
tion onto a three dimensional space (pitch, roll and yaw)  as 
shown in Fig. 2. Having the longitudinal axis direction 
equal to vehicle's movement vector, the angles to be moni-
tored in order to control traction repartition are pitch and 
roll. Recording these values in relation to the mentioned in-
ertial reference frame (which is stable by definition) a met-
ric on terrain travelling across can be associated and used 
on traction control [9]. 
To solve the problems depicted above, a new control sys-
tem is presented, namely the Terrain Adaptive Traction 
Control (TATC), shown in Fig. 3, and built upon two mod-
ules: the Safe Attitude Management (SAM) and the Trac-
tion Management (TM). 

The SAM's task is to provide information about current 
rover attitude. While for indoor mobile robots, mobil-
ity and  navigation problems can often be addressed in 
two dimensions (x and y) since the typical operating 
environments consist of flat and smooth floors, In 
sharp contrast, mobility and navigation problems for 
outdoor rough terrain vehicles are characterized  by  
significantly  higher  levels  of difficulty. This is due to 
the fact that complex motions in the third dimension 
(z) occur quite frequently as the vehicle traverses un-
dulated terrain, encountering multi-directional impul-
sive and resistive forces throughout. 
For monitoring chassis attitude, the vehicle is outfitted 
with  a  two-axis  inclinometer/tilt  sensor,  which 
measures pitch and roll angles relative to a Cartesian 
reference frame that is aligned with the rover chassis 
coordinate frame when the vehicle rests on a level sur-
face. The goal of the TM is to optimize traction bal-
ance throughout each single wheel, using a visual in-
spection of the terrain. Classic approaches to this prob-
lem make use of wheel mounted tachometer encoders 
to obtain the  traction  situation  on  line.  Unfortu-
nately nonlinearities and time-varying uncertainties 
due to wheel-ground  interactions  further  complicate  
the problem, making it difficult to use in critical mis-
sions as planetary navigation. In this work a soft-
computing approach is used instead, which is not based 
on this kind of sensor but identifies terrain characteris-
tics upon a real-time visual analysis of the terrain in 
front of the rover using statistical information extracted 
from it and finally used to establish the optimal selec-
tion of actuation for the navigation. 
 
3  Traction Management 
The approach used for the classification of terrain ty-
pology is based on a visual analysis of his texture, 
emulating human judgement and reasoning on general 
appearance of texture itself. The architecture of TM is 
presented in Fig. 4. 
The camera mounted on the front side of the vehicle 
frames and captures a snapshot of the terrain which lies 
in his field of view FOV. The monochromatic image is 
normalized  using ordinary  low-pass filtering (to re-
move the noise) and then under-sampled to produce a 

Fig. 2 Degrees of freedom during navigation  

Fig. 3 Terrain Adaptive Traction Control 
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64x64 pixel, 8 bit-per-pixel, version. From this image, statis-
tic     
information    summarizing    texture characteristics are 
drawn out using the co-occurrence matrix method. The result 
is a four-element column vector which embodies all the in-
formation needed to further classify the terrain kind. 
The classification is obtained using an LVQ (Learning Vec-
tor Quantization) Artificial Neural Network, which allows to 
define membership classes used to the comparison with the 
input images. 
At the final stage of this chain, the type of terrain is recog-
nized and, using some look-up tables known a priori, opti-
mal traction and navigation parameters are identified.  
 
3.1 Co-occurrence statistic extrapolator 
Given a translation integer t, a co-occurrence matrix CM of a 
region is defined for every couple of grey-level (a,b) by 
 
CM(a,b)=card{(s,s+t)∈R² | A[s] =a, A[s+t]=b } 
 
CM(a,b) is the number of sites couples (s,s+ t), separated by 
translation vector t with a the grey-level of s and b the grey-
level of s+t. 
Gray level co-occurrence matrix (GLCM)  is one of the most 
known texture analysis methods and estimates image proper-
ties related to second-order statistics using the co-occurrence 
matrix definition depicted above [10,11]. Unlike first-order 
statistic methods, which are based on the occurrences of 
each grey-level of the original image, second-order ones 
measure the simultaneous co-occurrence of the same grey-
level on two different pixels separated by a fixed value and 
along a direction vector. 
In order to estimate the similarity between different grey-
level  co-occurrence  matrices,  14  statistic features ex-
tracted have been proposed from them. To reduce the com-
putational complexity, only some of these features were se-
lected. The description of 4 most relevant features that are 
widely used in literature is given below in Tab.1 (P is a nxn 
matrix, n being the number of grey-level)[12,13].  
Energy is a measure of textural uniformity of an image; it 
reaches its highest value when grey level distribution has ei-
ther a constant or a periodic form. 

A homogenous image contains very few dominant grey  
image will have fewer entries of larger magnitude result-
ing in large value for energy feature. In contrast, if the P 
matrix contains a large number of small entries, the en-
ergy feature will have smaller value. 
Entropy measures the disorder of an image and it 
achieves its largest value when all elements in P matrix 
are equal. When the image is not texturally uniform 
many GLCM elements have very small values, which 
implies that entropy is very large. Therefore, entropy is 
inversely proportional to GLCM energy. Contrast is a 
difference moment of the P and it measures the amount 
of local variations in an image. Inverse   difference   mo-
ment   measures   image homogeneity. This parameter 
achieves its largest value when  most  of the  occur-
rences  in  GLCM  are concentrated near the main di-
agonal. Inverse difference moment is inversely propor-
tional to GLCM contrast. The statistical characterization 
of sample images is effective, having very low vector 
distance values for images with similar texture.  
 
3.2 Learning Vector Quantization 
In this context a LVQ, Learning Vector Quantization, 
method has been used for recognizing the type of ter-
rain. Fig.5 .  
This network has first a competitive layer and second, a 
linear layer. The competitive layer learns to classify in-
put vectors like the networks of previous section. The 
linear layer transform the competitive layer into target 
classification defined by the user. We refer to the classes 
learned by the competitive layer as subclasses and the 
classes of the linear layer as target classes. Both the 
competitive and linear layers have one neuron per class. 
LVQ networks have been successfully employed in user 
defined visual pattern classification area [14].To recog-
nize the type of terrain the networkhas been trained on a 
sample images set representing the common surface tex-
ture known on Mars.Given a 64x64 pixel images, statis-
tical information have been extracted using GLCM 
method. Ten subclasses have been defined for the com-
petitive layer (the number has been chosen via experi-
mental results), which are later projected onto the three 
main target classes of the linear layer. These classes rep-

Fig. 4 Traction Management  

Fig. 5  LVQ architeture 
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resent the type of terrain recognized by the system. The final 
output is one of the following column vector. 
 
4  Safe Attitude Management 
With a traditional approach the problem of stability in terms 
of rover's pitch and roll angles is solved by using safety 
thresholds; when these ones are reached the control signal 
that serve as reference for wheel motion is suddenly reset 
[15]. The great restriction in this strategy lies in the intrinsic 
non-linearity associated with the threshold, which does not 
take account of near-instability situations. Moreover the 
typical solution which consists in the attempt to stop the ve-
hicle, ignores kinetic forces of inertia, which could lead to 
instability and danger for vehicle safety. 
On the contrary in this study the monitoring of vehicle attitu-
de is based on a fuzzy system. The admissible pitch and roll 
angles range, as given by inclinometer sensors, has been par-
titioned into fuzzy sets to express the inner uncertainty of 
measurements. The pitch angle is represented by five fuzzy 
sets with linguistic labels {NEGHIGH,   NEGLOW,   ZE-
RO,   POSLOW, POSHIGH}, while the roll angle is repre-
sented by the labels {NEG, ZERO, POS}. Both values are 
used for two different purposes: to establish the suggested 
rover  
speed and to set the appropriate traction balance on wheels. 
Three outputs are defined, the first two to be used for trac-
tion balance (front/rear and left/right) and the last one for the 
suggested navigation speed.   
For the traction control a simple linear mapping between roll 
and traction_LR and between pitch and traction_FR mem-
bership functions are provided. The resulting rules are: 
IF pitch is NEGHIGH          THEN tractionFR is REAR-
WHEELDRIVE AND optimalspeed is SLOW 
IF pitch is NEGLOW           THEN tractionFR is REAR-
WHEELDRIVE 
IF pitch is ZERO       THEN tractionFR is ALLWHEEL-
DRIVE 
IF pitch is POSLOW            T H E N  t r a c t i o n F R  i s 
FRONTWHEELDRIVE 
IF pitch is POSHIGH           T H E N  t r a c t i o n F R  i s 
FRONTWHEELDRIVE AND optimalspeed is SLOW 
IF roll is NEG                      THEN tractionLR is BAL-
ANCELEFT 
IF roll is ZERO         THEN tractionLR is EQUALBAL-
ANCE_LEFTRIGHT 
IF roll is POS                       THEN tractionLR is BAL-
ANCERIGHT 

Defuzzification method is obtained using the bisector 
method. 
 
5  Implementation and experimental re-
sults  
The control system is implemented using MATLAB run-
ning on a Pc equipped with an Amd Athlon 2700+ cpu, 
512 Mb Ram and Windows Xp Professional operating 
system. 
The input for LVQ network is represented by the GLCM 
obtained from sampled images. The neural network is 
realized using the Neural Networks Toolbox 4.0.1; it ac-
cepts a 4-elements column  vector  as  input,  containing  
statistical characterizations of image obtained from 
GLCM matrix. For the computation of statistical fea-
tures the co-occurrence distance chosen is equal to 1 
(that is, the chromatic co-occurrence between a pixel 
and his 4-neighbourhood). 
The competitive layer recognizes 10 subclasses, which 
are later transformed into the 3 target classes by the li-
near layer. These classes represent the three types of ter-
rain known to the system and recognized by the neural 
network. A training set of 150 sample images has been 
used, having 50 images for each terrain type (Fig. 6).  
With regards to the neural network layers number, the 
choose has been determined by repeated simulation at-
tempts with the aim to lower the matching error. It 
emerged that the network ability to generalize over dif-

Fig. 6 Different terrain types 

 

 

Fig. 7 Matching error in competitive layer neurons 

Fig. 8 Control systems simulation 
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ferent inputs is directly influenced by the number of training 
epochs and competitive layer neurons, as briefly depicted in 
Fig. 7 which shows the plot of matching error on increasing 
training epochs (the error itself refers to the matching using 
inputs from training set). 
It emerges clearly from experimental results that two differ-
ent configurations have proved to obtain full texture recogni-
tion. For cost reason, the second choice was keep because, 
despite the learning phase was slower, the final implementa-
tion was realized using only ~0 competitive layer neurons 
instead of 50. From a more accurate inspection it results that, 
the lower is the learning rate coefficient, the better are the 
final results, and that is proven by the evidence that, using a 
learning rate coefficient equal to 1 (the highest possible 
value) the network behaves badly (over-learning). 
The  fuzzy  rules  used  in  traction  control  arc implemented 
using the FIS editor supplied by the Fuzzy Toolbox 2.1. 
The control system, after having defined fuzzy rules and 
trained the LVq network, is simulated using the Simulink en-
vironment supplied by MATLAB 6.5 using the block 
scheme shown in fig. 8. 

 
6  Conclusions 
A new advanced way to deal with traction control for rover 
navigation over rough and dangerous terrain (Terrain Adap-
tive Traction Control) has been exposed. While with a tradi-
tional approach the locomotion over slippery surfaces seri-
ous wheel slippage phenomenon occur, leading to a waste of 
power, position estimation errors and overall instability, the 
new soft computing one is based on fuzzy logic (Traction 
Management) to automatically balance the wheels traction 
and suggest the optimal speed, and an LVO neural network 
(Traction Management) that, using a visual inspection of ter-
rain images, establishes the optimal speed in terms of rover 
safety. The experimental results have been obtained using 
MATLAB simulations under Simulink. 
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