
A new Soft Computing based Controller for a Biped Robot

SALVATORE PENNACCHIO, ANTONIO LA MALFA,
LILIANA LO PRESTI, MARIANNA ROTOLO

University of Palermo
Viale delle Scienze, 90128 Palermo

ITALY
 http://www.dias.unipa.it

Abstract: - This paper presents a new controller, based on a soft computing approach, for a biped robot with two infrared
sensors. This control system permits the robot to move in an environment avoiding obstacles. The soft computing approach
enables the robot to move under unknown situations. The system has been realized in Matlab environment and it is composed
by: a fuzzy controller and an equivalent neural network. Results has been tested creating two applications, one running on
PC and the other on the robot, managing serial communication in the two directions.

Key-Words: - Basic Stamp, fuzzy, Matlab, neural network, neuro-fuzzy controller, serial communication

1 Introduction
Control systems based on a fuzzy logic approach differ
from the others because trough fuzzy logic it is possoble
making inferences even under uncertainty situations and
under unknow environmental conditions and accidental
causes.
In the last years the fuzzy logic approach has been chosen
by several researchers in the field of robotics [1,2,3]. Above
all the fuzzy logic controllers appear in those problems with
uncertain inputs and with unknown environments [4].
Fuzzy navigation systems are simpler to implement than
other navigation systems because they can handle infinite
navigation situations with a finite set of rules.
Trough the neural network it is possible, as in human life, a
period of learning . During this period the robot can learn
the best rules in a new environment [5].
This paper presents a new method, called E@syToddler,
which permits to conjugate the versatility of a non-
Aristotelian inferential system with the computational
power of a distributed system like a neural network . Aban-
doned Java, not specifically computing-oriented,
E@syToddler adopts Matlab development environment by
which we realized the neuro-fuzzy controller that permits
to manage robot motions; particularly the system
determines, beginning from the information detected by
sensors, the most adequate behaviour to move the robot in
the environment avoiding obstacles.
.
2 Platform and robot
During experimental proofs, we have used Toddler™ biped
robot, produced by Parallax Inc.
A couple of servomotors determines motion [10]; one
moves the centre of gravity to keep body’s balance, the
other

Fig. 1. Toddler™ Robot

moves legs forward and backward keeping feet parallel to
the plain.
A BASIC Stamp 2 module assembled in the upper part of
Toddler™ consents to control the servomotors and the two
infrared sensors.
Programs are written in a BASIC-like language; they are
realized on PC in a suitable development environment
named BASIC Stamp Editor; on the contrary, they are
executed on board after a preliminary storage on the robot’s
EEPROM.

3 Fuzzy controller
The Fuzzy Controller, realized by the Fuzzy Toolbox
available in Matlab, is a Sugeno controller and presents two
numerical inputs, correspondent to the distances taken by

Proceedings of the 6th WSEAS Int. Conf. on FUZZY SYSTEMS, Lisbon, Portugal, June 16-18, 2005 (pp73-78)

Fig. 2. The Fuzzy Logic Controller

the robot two sensors.
The output is a numerical value between 0 and 5. We have
chosen three membership functions in order to evidence the
presence of a low, medium or high danger respectively in
relation with possible values every input can assume. Input
can vary between 0 and 5.

Fig. 3 Input Membership Functions

The first membership function is “PericoloSxBasso” (a low
danger on the left) which assumes value 1, when the input
value is between 0 and 1, and decreases until reaching the
value 0 if input is greater than or equal to 3.
The second membership function is “PericoloSxMedio” (a
medium danger on the left); it is a symmetrical trapezoidal
function that assumes value 0 in the ranges (0,1) and (4,5),
value 1 in the range (2,3) and intermediate values in the
remaining ranges.
Finally, the third membership function is “PericoloSxAlto”
(a high danger on the left) that assumes value 0 if input is
lower than 2, has an increasing linear trend between 2 and 4
and assumes value 1 if input is greater than 4.
These functions are the same for both inputs; so in fig. 3, we
only present membership functions of the “PericoloSx”
input (input from the left sensor).
According to the definition of Sugeno fuzzy logic
controllers, output membership functions are simple
horizontal straight lines [2]; in this case they are nine, one
for each possible combination of inputs. Only a single
membership function is activated when the elaboration of
the controller, executing the inference described in the
following, terminates.
First, numerical inputs are fuzzified and then used in the
antecedent part of fuzzy rules that are in the form:

if antecedent1 and antecedent2 then consequent

In the consequent part there are fuzzy values that
output can assume: go on (Avanza), a little turn to the left
(GiraPocoSx), a turn to the left (GiraSx), a little turn to the
right (GiraPocoDx), a turn to the right (GiraDx) and draw
back (Indietreggia). The nine chosen rules for the inference
phase are those in Table I.
The nine values yielded by the inference phase are finally
defuzzified, i.e. become numerical values belonging to the
range [0,5], and returned by the controller

Table 1. Motion Table

4 Neural Network
After defining the fuzzy logic controller, we have realized
the equivalent neural network (Fig. 4) which reproduces the
behaviour of the controller [9].
In order to do this, we made use of the Neural Network
Toolbox, available in Matlab, and chose a feed-forward
structure characterized by two inputs, six different neural
layers and an only output.
Inputs are named “PericoloSx” (input from the left sensor)
and “PericoloDx” (input from the right sensor) and
correspond to data perceived by IR sensors during robot
motion; inputs are discrete and assume integer values
between 0, which corresponds to the absence of danger, and
5, corresponding to the highest danger.
Layers process inputs contributing towards the calculation
of the network global output which still is a value between 0
and 5.
The first three layers are directly connected to the inputs by
weighted unary connections and make fuzzification, that is
simulate the behaviours of the inputs membership functions
of the fuzzy controller [6].
 The first layer is composed by two neurons characterized
by a trapezoidal activation function corresponding to the
“PericoloBasso” membership function; so it assumes the
value 1 if the weighted sum of inputs is between 0 and 1
while it produces the value 0 if this sum is greater than 3;
moreover, if the input is between 1 and 3 the function has a
decreasing linear trend.
Also the second layer is composed by two neurons
characterized by a trapezoidal activation function which

AND PERICOLO
BASSOSX

PERICOLO
MEDIOSX

PERICOLOA
LTOSX

PERICOLO
BASSODX AVANZA GIRA

POCODX GIRADX

PERICOLO
MEDIODX

GIRA
POCOSX

GIRA
POCODX GIRADX

PERICOLO
ALTODX GIRASX GIRASX INDIETREG-

GIA

Proceedings of the 6th WSEAS Int. Conf. on FUZZY SYSTEMS, Lisbon, Portugal, June 16-18, 2005 (pp73-78)

Fig. 4 The neural network

corresponds to the “PericoloMedio” membership function;
but this time the function is symmetrical since it has to
assume the value 1 if the weighted sum of inputs is between
2 and 3, and the value 0 if this sum is lower than 1 and
greater than 4. Instead, in the rest of the range, the function
is between 0 and 1 and has a linear trend, increasing
between 1 and 2 and decreasing between 3 and 4. Finally,
inputs are also connected to the two neurons of the third
layer which activate only if the weighted sum is greater than
4. The output assumes the value 0 if this sum is lower
than 2 while it assumes values between 0 and 1 if input
values belong to the range (2,4). This time too, we have a
trapezoidal activation function which corresponds to the
“PericoloAlto” membership function. A step function
characterizes all nine neurons belonging to the fourth layer
which implements the fuzzy rules system so performing the
inference. Indeed, each neuron corresponds to one different
rule in the controller and produces a binary value: inputs of
each neuron are composed by a couple of values coming
from the previous layer and the output is 1 if the weighted
sum of these values is greater than 0, otherwise it is 0. The
correspondence between the neurons and the couples of in-
puts is summarized in the table II in which each input is
named Iij, with i being the layer and j being the neuron;
neurons are numbered from top to bottom from 1 to 9 in
fig 4.

Neuron Input Couple

1 ()1211, II

2 ()3211 , II
3 ()2211 , II
4 ()1221 , II
5 ()2221 , II
6 ()3221 , II
7 ()1231 , II
8 ()2231 , II
9 ()3231 , II

Table 2. Couple of inputs to fourth layer neurons

Last two layers perform defuzzification, that is they
simulate the behaviours of the output membership
functions. In particular, the fifth layer is a simple transducer
and each neuron in it is only connected to the processing
unit that occupies the same position in the previous layer;
all connections have unary weights and all neurons have the
same activation function which is a step function centred in
0. The weighted sum of the outputs of the fifth layer is the
input of the single neuron in the last layer: this neuron is
characterized by a purely linear activation function and, as
said, yields a value which is the network global output and
is between 0 and 5. After the conclusion of network design,
we have performed the training, i.e. we have put in input the
desired values and modified the weights of connections in
order to minimize the error between the desired output and
the values we got. We make use of the Widrow–Hoff
learning function, also called minimum squared error
(MSE), which calculates the variation of the given neuron
weights beginning from the weighted sum of inputs, the
error and the learning rate.
In particular, the learning rate is chosen in order to optimize
the learning process which is realized by the gradient
descent algorithm. We needed 5000 learning epochs and,
after their conclusion, we have obtained the minimum value
of error (fig. 5), which is equal to 0.1/5, i.e. about to 2%,
quite acceptable for prefixed purposes.

Fig. 5 The error function after 5000 learning epochs

5 Experiments and results
To move in the environment avoiding obstacles, the robot
has to cyclically repeat a definite sequence of actions, that is
the robot has to:

1. use the sensors to read its distance from obstacle,
2. transmit the obtained readings to the neural

network,
3. wait for the result of network computation,
4. select the behaviour corresponding to the obtained

result,
5. execute the requested movement.

Proceedings of the 6th WSEAS Int. Conf. on FUZZY SYSTEMS, Lisbon, Portugal, June 16-18, 2005 (pp73-78)

Fig.6 Basic walking movements of the robot

Obstacle detection is obtained using the readings of the
right and the left sensors at five different frequencies that
are 37.500 KHz, 38.250 KHz, 39.500 KHz, 40.500 KHz
and 41.500 KHz [10].
Indeed, the use of an only frequency supplies no
information about the distance of the robot from the object
since the sensor output is high or low and it can only
indicate the presence or the absence of an object. Instead,
valuing the sensor output at 5 different frequencies, it is
possible to know how far the obstacle is from the robot and
to act consequently; indeed, we have observed that sensors
are more sensible to low frequencies and then if the sensor
output is high for all the frequencies the object is very near,
if it is high only for lower frequencies the object is on
average distant, if it is low for all the frequencies there are
no obstacles in the neighbourhood.
Detection of each sensor produces a value between 0 and 5
representing both the number of frequencies to which sensor
as detected the object and a qualitative measure of the
distance of the obstacle from the robot.
This value is given in input to the neural network
establishing on the COM port, by a RS 232 cable, a serial
communication between PC and robot[10]. The network
processes the given value and supplies an output that is
transmitted to the robot which selects the motion
correspondent to these new data. We have chosen to move
the robot in the direction where danger is minimum, so
Toddler goes on in absence of obstacles, goes towards the
direction opposite to that where it has detected an object or
it draws back in front of too near obstacles.
Each behaviour is composed of a sequence of elementary
motions realized by sending a pulse to the servomotor we
want to control and leaving the other disconnected.
The elementary motions are 6 (Fig. 6) and are:

1. move the body to the right
2. move the body to the left
3. move the body to the central position
4. move the right leg
5. move the left leg
6. move the leg to the central position

We have chosen the correspondence between output of the
network and the behaviour to implement. In Fig. 7 we show
Movement 1 as an example.

Fig. 7 Example of Movement 1

6 Conclusions
In this paper has been presented a new controller for a biped
robot with a neuro fuzzy approach. Through a serial
communication between the Pc and the robot it has been
possible to optimize the control system because it is on the
PC. Experiments and results demonstrate the validation of
our E@sytoddler system. We believe that this kind of
robots will be used in the future for helping disable persons
and then our research will continue for a better
performance.

References:
[1] S. Pennacchio, F.M. Raimondi, E. Autiello, A.
 Senia, “Fuzzy Logic Controller for Behaviour-
 Based Navigation Systems”, WSEAS
 TRANSACTIONS on CIRCUITS and SYSTEMS,
 pp. 379-383, April 2004.

Proceedings of the 6th WSEAS Int. Conf. on FUZZY SYSTEMS, Lisbon, Portugal, June 16-18, 2005 (pp73-78)

[2] S. Pennacchio, F.M. Raimondi, “Fuzzy Motor
 Schema for Mobile Robots”, WSEAS
 TRASACTIONS on SYSTEMS, pp. 2211-2214,
 July 2004.
[3] T. E. Mora, E. N. Sanchez, “Fuzzy Logic Based
 Real Time Navigation Controller for a Mobile
 Robot”, IEEE Int. Conf.Intelligent Robots and
 Systems,Ottobre 1998.
[4] C. Barret, M. Benreguieg, H. Maaref, “Fuzzy
 Agents for Reactive Navigation of a Mobile
 Robot”, IEEE Int. Conf. Knowledge Based
 Intelligent Electronic System, 21-23 Maggio
 1997.
[5] T. L. Lee, C. J. Wu, “Fuzzy Motion Planning of
 Mobile Robots in Unknown Enviroments”,
 Journal of Intelligent and Robotic Systems 37,
 2003.
[6] Li, Harari, Wong, Kapila, “Matlab-Based Graphical
 User Interface Development for Basic Stamp 2
 Microcontroller Projects”, Settembre 2003
[7] Insop Song”, Fuzzy Logic and Neural Network
 Controller”, SD558 Project, Aprile 2002
[8] AA.VV.,” Advanced Robotics with the Toddler”,
 Student Guide, version 1.2, www.parallax.com
[9] Howard Demuth, Mark Beale, “Neural Network
 Toolbox”, The MathWorks, Inc., Gennaio 1998
[10] AA.VV.,” Fuzzy Logic Toolbox”, The MathWorks,
 Inc., Settembre 2002

Appendix a: Matlab code for the fuzzy logic
controller

ToddlerFLC.fis

[System]
Name='Toddler'
Type='sugeno'
Version=2.0
NumInputs=2
NumOutputs=1
NumRules=9
AndMethod='prod'
OrMethod='probor'
ImpMethod='min'
AggMethod='max'
DefuzzMethod='wtaver'
[Input1]
Name='PericoloSx'
Range=[0 5]
NumMFs=3
MF1='PericoloSxBasso':'trapmf',[0 0 1 3]
MF2='PericoloSxMedio':'trapmf',[1 2 3 4]
MF3='PericoloSxAlto':'trapmf',[2 4 5 5]
[Input2]
Name='PericoloDx'

Range=[0 5]
NumMFs=3
MF1='PericoloDxBasso':'trapmf',[0 0 1 3]
MF2='PericoloDxMedio':'trapmf',[1 2 3 4]
MF3='PericoloDxAlto':'trapmf',[2 4 5 5]

[Output1]
Name='Movimento'
Range=[0 1]
NumMFs=9
MF1='Indietreggia':'constant',[5]
MF2='Avanza':'constant',[0]
MF3='GiraPocoDx':'constant',[1]
MF4='GiraDx':'constant',[2]
MF5='GiraPocoSx':'constant',[3]
MF6='GiraSx':'constant',[4]
MF7='GiraSx2':'constant',[4]
MF8='GiraPocoDx2':'constant',[1]
MF9='GiraDx2':'constant',[2]
[Rules]
1 1, 2 (1) : 1
1 3, 6 (1) : 1
1 2, 5 (1) : 1
2 1, 3 (1) : 1
2 2, 8 (1) : 1
2 3, 7 (1) : 1
3 1, 4 (1) : 1
3 2, 9 (1) : 1
3 3, 1 (1) : 1

Appendix b: Matlab code for the neural
network

ToddlerNN.m

function [net] = ToddlerNN
close all;
% Definition of the network structure
net = network;
net.numInputs = 2;
net.inputs{1}.size = 1;
net.inputs{1}.range = [0 5];
net.inputs{2}.size = 1;
net.inputs{2}.range = [0 5];
net.numLayers = 6;
net.biasConnect = [0;0;0;0;0;0];
net.layers{1}.size = 2;
net.layers{1}.transferFcn = 'basso';
net.layers{2}.size = 2;
net.layers{2}.transferFcn = 'medio';
net.layers{3}.size = 2;
net.layers{3}.transferFcn = 'alto';
net.layers{4}.size = 9;
net.layers{4}.transferFcn = 'ToddlerHardlim';

Proceedings of the 6th WSEAS Int. Conf. on FUZZY SYSTEMS, Lisbon, Portugal, June 16-18, 2005 (pp73-78)

net.layers{5}.size = 9;
net.layers{5}.transferFcn = 'ToddlerHardlim';
net.layers{6}.size = 1;
net.layers{6}.transferFcn = 'purelin';
net.inputConnect = [1 1; 1 1; 1 1; 0 0; 0 0; 0 0];
net.layerConnect = [0 0 0 0 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0; 1 1
1 0 0 0 ; 0 0 0 1 0 0 ; 0 0 0 0 1 0];
net.outputConnect = [0 0 0 0 0 1];
net.targetConnect = [0 0 0 0 0 1];
net.IW{1,1}= [1; 0];
net.IW{1,2}= [0; 1];
net.IW{2,1}= [1; 0];
net.IW{2,2}= [0; 1];
net.IW{3,1}= [1; 0];
net.IW{3,2}= [0; 1];
net.LW{4,1}=[1 1; 1 0; 1 0; 0 1; 0 0; 0 0; 0 1; 0 0; 0 0];
net.LW{4,2}=[0 0; 0 0; 0 1; 1 0; 1 1; 1 0; 0 0; 0 1; 0 0];
net.LW{4,3}=[0 0; 0 1; 0 0; 0 0; 0 0; 0 1; 1 0; 1 0; 1 1];
net.LW{5,4}=[1 0 0 0 0 0 0 0 0;0 1 0 0 0 0 0 0 0;0 0 1 0 0 0
0 0 0;0 0 0 1 0 0 0 0 0;0 0 0 0 1 0 0 0 0;0 0 0 0 0 1 0 0 0;0 0
0 0 0 0 1 0 0;0 0 0 0 0 0 0 1 0;0 0 0 0 0 0 0 0 1];
net.LW{6,5}= [1 1 1 1 1 1 1 1 1];
net.layerWeights{4,1}.learnFcn = 'learnwh';
net.layerWeights{4,2}.learnFcn = 'learnwh';
net.layerWeights{4,3}.learnFcn = 'learnwh';
net.layerWeights{5,4}.learnFcn = 'learnwh';
net.layerWeights{6,5}.learnFcn = 'learnwh';
%Definizione delle funzioni della rete
net.trainFcn='traingd';
net.performFcn='mse';
% Choice of the training parameters
net.trainParam.epochs = 5000;
%Training set
X = [0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4
4 5 5 5 5 5 5;
 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
0 1 2 3 4 5];
Y = [0 0 1 1 2 2 0 0 1 1 2 2 3 3 3 1 2 2 3 3 3 1 2 2 4 4 4 4 5
5 4 4 4 4 5 5];
net.trainParam.lr = maxlinlr(X,'bias');
net = train(NET,X,Y);

Proceedings of the 6th WSEAS Int. Conf. on FUZZY SYSTEMS, Lisbon, Portugal, June 16-18, 2005 (pp73-78)

