

A Programming Method for Building Component-Based Commercial
Software for Image Processing

FERIEL BENHISSI*, SALEM NASRI**

*Faculté des Sciences de Monastir – Monastir - TUNISIA
**Ecole Nationale des Ingénieurs de Monastir – Monastir – TUNISIA

Feriel_Benhissi@yahoo.fr- salem.nasri@enim.rnu.tn

Abstract: - This paper discusses a consistent method for building component-based commercial software for
image processing. The resulting framework greatly facilitates the incorporation into the software of any
processing function without worrying about the memory storage and generalizing its usage to any image
format while focusing on the algorithmic behavior of the function. Also it allows the software to be
expandable, maintainable, understandable and stable. It implements handles and rep objects, and use templates
so a single version of the code will work with any type of pixel. Thanks to the handles, we are able to manage
the number of copies of a given image and so avoid memory leakage and fragmentation. The method deals
separately with the issues related to image processing problems such as memory management and memory
alignment. We also present a practical implementation of the method in which we demonstrate how to apply
C++ to solve the problems inherent in building commercial software for image processing. The method can be
easily applied to any object oriented language.

Keywords: - commercial software, component-based, interfaces, object oriented language, image processing

1 Introduction
Component-based [6] software is an emergent
discipline that is generating tremendous interest
due to the development of plug-and-play reusable
software [1]. Under this new setting, constructing
commercial software now involves the use of
prefabricated pieces, perhaps developed at
different times, by different people unaware of
each other, and possibly with different uses in
mind. The ultimate goal is to be able to have
software with the following characteristics:
expandable, maintainable, understandable, and
stable [8].
The expandability can be defined as the ability to
add new features quickly and extend existing
features in commercial software. Put simply, we
have to think ahead when designing and writing
code. Just implementing to a specification, with no
thought to future expansion or maintainability,
makes future changes much more difficult. A
further complication is that most software won’t
allow features to be deprecated once the product is
in use.
The goal of maintainability is to ensure through
rigorous testing and preparation that any post-
release bugs have minor consequences to the
product. What becomes crucial is that these bugs
be easily and quickly corrected for the next
release.
Commercial software often includes visible
software interfaces. If we are building an
embedded system library, it needs to be

understandable to the other members involved in
the application construction. If we are building a
software library, the interface we present must be
easily understood by the customers so that they
can use it to build their own applications. This
doesn’t just mean that naming conventions must
make sense, but more importantly that our design
and our use of language elements, like templates,
are clear and appropriate.
Finally, commercial software must be stable; that
is, it must be able to run for extended periods of
time without crashing, leaking memory, or having
unexplained anomalies.
On the other hand, many new algorithms in image
processing have emerged in the last decade due to
the great development in the domain of applied
mathematics especially in the applied statistics
field [7]. The inclusion of these algorithms in
given software is sometimes very difficult not
because they are still in the experimental stage, but
because their code is not written in an efficient
way to allow them to be easily embedded with
other algorithms in the same software. In fact the
code of the algorithm and that of memory access
are usually written in the same block, and the
resulting code is optimized in function of the
number of arithmetic operations performed leaving
the other issues such memory management and
memory alignment as well as the management of
image copies partially unresolved. These issues are
generally fully resolved when it comes to the
hardware implementation of the algorithm, which
is quite difficult to maintain and expand. Also, the

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp310-318)

algorithm generally applies to a restrained set of
image formats, because it is presented in the
context of a specific field of image processing such
as medical image or computer vision in which only
some well-known formats of image are available.
However thanks to the emergence of component-
based software along with many new object
oriented languages we are able to deal with all the
issues mentioned above separately, and to
incorporate them consistently in optimized
software.
Our work is about applying C++ to solve the
problems inherent in building commercial software
for image processing. Its aim is to discuss a
consistent method for building commercial
software for image processing based on the
implementation of components and interfaces. The
resulting framework greatly facilitates the
incorporation into the software of any processing
function without worrying about the memory
storage and generalizing its usage to any image
format while focusing on the algorithmic behavior
of the function. As a first step, we define the
requirements of a memory allocation object and
we describe its class hierarchy. Next, we present
the design of the components of our image
framework and its class hierarchy. In these
components, there is a separation of the image
storage classes from the image processing
functions, and the templates [12] are used so that
we will produce a single version of code that
works with any type of pixel. We will also address
the implementation of handles and rep objects as
memory alignment. Thanks to the handles, we will
be able to manage the number of copies of a given
image and so avoid memory leakage and
fragmentation. As to the memory alignment, it
boosts the performance of the software because
many image processing algorithms can be
optimized for particular memory alignments. We
will also tackle the locking with exception
throwing, necessary for a multithread functioning.
Software for image processing won’t be useful if it
doesn’t support any of the popular formats of
image storage. We have designed a simple file
delegate interface so new file formats can be added
with little difficulty. As an example, we have
extended this interface to the JPEG format which
is the most popular. But the idea is easily
applicable to any image format. After having
discussed the essentials of the components that
compose the image software, all that remains is to
add global processing functions. We concentrate
on the processing of single image. The principle
can be easily extended to the case of two images.
In the final section, we present the implementation
of image processing software. In the where an

image sharpening and texture enhancement of
JPEG color images are performed.

2 Memory Allocation Object
Images require a great deal of memory storage to hold
the pixel data. It is very inefficient to copy these
images, in terms of both memory storage and time,
as the images are manipulated and processed. We
can easily run out of memory if there are a large
number of images. In addition, the heap could
become fragmented if there isn't a large enough
block of memory left after all of the allocations.
Instead of designing an object that works only for
images, we create a generic object that is useful for
any application requiring allocation and
management of heap memory. Here's the list of
requirements for our generic memory allocation
object:
• Allocates memory off the heap, while also

allowing custom memory allocators to be
defined for allocating memory from other
places, such as private memory heaps.

• Uses reference counting to share and
automatically delete memory when it is no
longer needed.

• Employs locking and unlocking as a way of
managing objects in multithreaded
applications.

• Has very low overhead. For example, no
memory initialization is done after allocation.
This is left to the user to do, if needed.

• Uses templates so that the unit of allocation is
arbitrary.

• Supports simple arrays, [], as well as direct
access to memory.

• Throws Standard Template Library (STL)
exceptions when invalid attempts are made to
access memory.

• Aligns the beginning of memory to a specified
boundary.

2.1 Memory Allocator Object’s Class
Hierarchy
The class hierarchy for the memory allocator is
shown in Fig. 1.

Fig. 1 Class hierarchy of the memory allocator.

It consists of a base class, a derived class, and then
the object class, which uses the derived class as

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp310-318)

one of its arguments. All three classes use
templates.
The apAllocatorBase_<> base class contains the raw
pointers and methods to access memory. It
provides both access to the raw storage pointer,
and access to the reference count pointing to
shared storage, while also defining a reference
counting mechanism. apAllocatorBase_<> takes a
single template parameter that specifies the unit of
memory to be allocated. The full base class
definition is shown here.

template<class T> class apAllocatorBase_
{
public:
 apAllocatorBase_ (unsigned int n, unsigned int align)
 : pRaw_ (0), pData_ (0), ref_ (0), size_ (n), align_
 (align){}
 virtual ~apAllocatorBase_ () {}
 operator T* () { return pData_;}
 operator const T* () const { return pData_;}
 unsigned int size () const { return size_;}
 unsigned int ref () const { return ref_;}
 unsigned int align () const { return align_;}
 void addRef () { ref_++; }
 void subRef ()
 {
 --ref_;
 if (ref_ == 0) delete this;
 }
protected:
 virtual void allocate () = 0;
 virtual void deallocate () = 0;
 T* alignPointer (void* raw);
 apAllocatorBase_ (const apAllocatorBase_& src);
 apAllocatorBase_& operator= (const
 apAllocatorBase_& src);
 char* pRaw_;
 T* pData_;
 unsigned int size_;
 unsigned int ref_;
 unsigned int align_;
};

Memory alignment is important because some
applications might want more control over the
pointer returned after memory is allocated. Most
applications prefer to leave memory alignment to
the compiler, letting it return whatever address it
wants. We provide memory alignment capability
in apAllocatorBase_<> so that derived classes can
allocate memory on a specific boundary. On some
platforms, this technique can be used to optimize
performance. This is especially useful for imaging
applications, because image processing algorithms
can be optimized for particular memory
alignments.
The apAllocator_<> class, which is derived from
apAllocatorBase_<>, handles heap-based allocation
and deallocation. Its definition is shown here.

template<class T> class apAllocator_ : public
apAllocatorBase_<T>
{
public:
 explicit apAllocator_ (unsigned int n, unsigned int align
 = 0) : apAllocatorBase_<T> (n, align)
 {
 allocate ();
 addRef ();
 }
 virtual ~apAllocator_ () { deallocate();}
private:
 virtual void allocate () ;
 virtual void deallocate ();
 apAllocator_ (const apAllocator_& src);
 apAllocator_& operator= (const apAllocator_& src);
};

The apAllocator_<> constructor handles memory
allocation, memory alignment, and setting the
initial reference count value. The destructor deletes
the memory when the object is destroyed.
apAlloc<> is our memory allocation object. This is
the object that applications will use directly to
allocate and manage memory. The definition is
shown here.
template<class T, class A = apAllocator_<T> >
class apAlloc
{
public:
 static apAlloc& gNull ();
 apAlloc ();
 explicit apAlloc (unsigned int size, unsigned int
 align=0);
 ~apAlloc ();
 apAlloc (const apAlloc& src);
 apAlloc& operator= (const apAlloc& src);
 unsigned int size () const { return pMem_->size ();}
 unsigned int ref () const { return pMem_->ref ();}
 bool isNull () const { return (pMem_ ==
 gNull().pMem_);}
 const T* data () const { return *pMem_;}
 T* data () { return *pMem_;}
 const T& operator[] (unsigned int index) const;
 T& operator[] (unsigned int index);
 virtual A* clone ();
 void duplicate ();
protected:
 A* pMem_;
 static apAlloc* sNull_;
};

Parameter T specifies the unit of allocation.
Parameter A specifies how and where memory is
allocated. It refers to another template object
whose job is to allocate and delete memory,
manage reference counting, and allow access to the
underlying data.
The null allocation, an allocation with no specified
size, is of special interest because of how we

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp310-318)

implement it. We saw that the apAllocator_<> object
supported null allocations by allocating one
element. It is possible that many (even hundreds)
of null apAlloc<> objects may be in existence. This
wastes heap memory and causes heap
fragmentation.
Our solution is to only ever have a single null
object for each apAlloc<> instance. We do this in a
manner similar to constructing a Singleton object
[4]. Singleton objects are typically used to create
only a single instance of a given class. We use a
pointer, sNull_, and a gNull() method to accomplish
this:

template<class T, class A>
apAlloc<T,A>* apAlloc<T, A>::sNull_ = 0;

This statement creates our sNull_ pointer and sets it
to null. The only way to access this pointer is
through the gNull() method, whose implementation
is shown here.

template<class T, class A>
apAlloc<T,A>& apAlloc<T, A>::gNull ()
{
 if (!sNull_)
 sNull_ = new apAlloc (0);
 return *sNull_;
}

3 Implementation considerations
Here we present the design for the image
framework. The components of the framework are
shown in Fig. 2.

Fig. 2 Image Framework Components

They follow the following principles:
• Image storage should be separate from the

image processing functions. The image storage
classes are independent of the image
processing functions (but not vice versa).

• Templates should be used for a more efficient
design, allowing us to: produce a single
version of code that works with any pixel type;
optimize performance where needed by using
specialization; and adapt our image storage
component to use other memory allocators.

The details that we now address in the design
include:
• Handles and rep objects. Our final image

storage object encapsulates an apAlloc<> object
along with other storage parameters. Because
we aren't using handles, these storage objects
get copied as they are passed. Fortunately, the
copy constructor and assignment operators are
very fast, so performance is not an issue
because the pixel data itself is reference
counted. The complexity of the additional
layer of abstraction didn't provide enough of a
benefit to make it into the final design.

• Memory alignment. apAlloc<> supports the
alignment of memory on a user-specified pixel
boundary. Proper alignment can be critical for
efficient performance of many image
processing functions. As it turns out, it is not
sufficient to align the first pixel in the image as
apAlloc<> does. Most image processing
routines process one line at a time. By forcing
the first pixel in each line to have a certain
alignment, many operations become more
efficient. For generic algorithms, this savings
can be modest or small because the compiler
may not be able to take advantage of the
alignment. However, specially tuned functions
can be written to take advantage of particular
memory alignments. Many third-party libraries
contain carefully written assembly language
routines that can yield impressive savings on
aligned data. Our final design has been
extended to better address memory alignment.

• Image shape. We refer to the graphical
properties of the storage as image shape. For
example, almost all images used by image
processing packages are rectangular; that is,
they describe pixels that are stored in a series
of rows. In our final design, we explicitly
support rectangular images so that we can
optimize the storage of such images, but we
also allow the future implementation of non-
rectangular images. For example, we might
have valid image information for a large,
circular region. If we store this information as
a rectangle, many bytes are wasted because we
have to allocate space for pixels that do not
contain any useful information. A more
memory-efficient method for storing non-
rectangular pixel data is to use run-length
encoding.

3.1 Class hierarchy
According to the previous section, the design
partitions image storage into three pieces, as
illustrated in Fig. 3.

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp310-318)

Fig. 3 Class hierarchy of the image framework

We start by looking at apImageStorageBase. This
base class only has an understanding of the
boundary surrounding the image storage.

class apImageStorageBase
{
public:
 apImageStorageBase ();
 apImageStorageBase (const apRect& boundary);
 virtual ~apImageStorageBase ();
 const apRect& boundary () const { return boundary_;}
 int x0 () const { return boundary_.x0();}
 int y0 () const { return boundary_.y0();}
 int x1 () const { return boundary_.x1();}
 int y1 () const { return boundary_.y1();}
 unsigned int width () const { return boundary_.width();}
 unsigned int height () const { return boundary_.height();}
protected:
 apRect boundary_;
};

Once the rectangular boundary is specified in the
constructor, the object is immutable and cannot be
changed. It is designed this way because changing
the boundary coordinate information would affect
how this object interacts with other images that are
already defined.
apRectImageStorage is the most complicated object
in our hierarchy. It handles all aspects of memory
management, including allocation, locking, and
windowing. Here are the protected member data of
apRectImageStorage:

protected:
 mutable apLock lock_;
 apAlloc<Pel8> storage_;
 Pel8* begin_;
 Pel8* end_;
 eAlignment align_;
 unsigned int yoffset_;
 unsigned int xoffset_;
 unsigned int bytesPerPixel_;
 unsigned int rowSpacing_;

storage_ contains the actual pixel storage as an
array of bytes. apAlloc<> allows a number of
objects to share the same storage, but the storage
itself is fixed in memory. This allows us to create
image windows. An image window is an image
that reuses the storage of another image. In other
words, we can have multiple apRectImageStorage
objects that use identical storage, but possibly only
a portion of it. To improve the efficiency of
accessing pixels in the image, the object maintains
begin_ and end_ to point to the first pixel used by
the object and just past the end, respectively.
Derived objects use these pointers to construct
iterator objects, similar to how the standard C++
library uses them. bytesPerPixel_ and align_ store
the pixel size and alignment information passed
during object construction. rowSpacing_ contains
the number of bytes from one row to the next. This
is often different than the width of the image
because of alignment issues. By adding
rowSpacing_ to any pixel pointer, you can quickly
advance to the same pixel in the next row of the
image.
xoffset_ and yoffset_ are necessary for image
windows. Just because two images share the same
storage_ does not mean they access the same
pixels. Image windowing lets an image contain a
rectangular portion of another image. xoffset_ and
yoffset_ are the pixel offsets from the first pixel in
storage_ to the first pixel in the image. If there is
no image window, both of these offsets are zero.
lock_ handles synchronization to the rest of the
image storage variables, with the exception of
storage_ (because it uses apAlloc<>, which has its
own independent locking mechanism).
We also use a number of locking functions to
synchronize access to both the image storage
parameters and the image storage itself, as shown.

 bool lockState () const { return lock_.lock();}
 bool unlockState () const { return lock_.unlock();}
 bool lockStorage () const { return storage_.lockStorage ();}
 bool unlockStorage () const { return storage_.unlockStorage
();}
 bool lock () const { return lockState() && lockStorage();}
 bool unlock () const { return unlockState() &&
unlockStorage();}

Locking is not a difficult feature to add to an
object, but it is important to consider where to use
it effectively. In our design, for example, several
instances of apRectImageStorage can use the same
underlying pixel storage. There is no need to lock
access to this storage if we are only manipulating
other member variables of apRectImageStorage.
lockState() is best used when the state of

apImageStorageBase

apRectImageStorage

apImageStorage<T>

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp310-318)

apRectImageStorage changes. lockStorage() is used
when the actual pixel data is accessed. lock() is a
combination of the two, and is useful when all
aspects of the image storage are affected. These
functions are used by derived objects and non-
member functions, since locking is a highly
application-specific issue.
apImageStorage<T>, however, is a template class
that defines image storage for a particular data
type. Most apImageStorage<> methods act as
wrapper functions by calling methods inside
apRectImageStorage and applying a cast.

3.1.1 Exception-Safe Locking
Most functions that operate on apImageStorage<>
objects require some form of record locking. This
is true for functions that modify both the state of
the object and the underlying pixels. Writing a
function that calls lock() and unlock() is not difficult,
but we need to consider how exceptions influence
the design; otherwise, it is quite possible that when
an exception is thrown, the lock will not be cleared
because the function does not terminate properly.
One solution is to add a try block to each routine to
catch all errors, so that the object can be unlocked
before the exception is re-thrown [10].

template<class T> class apImageStorageLocker
{
public:
 apImageStorageLocker (const apImageStorage<T>& image)
: image_ (image) { image_.lock();}
 ~apImageStorageLocker () { image_.unlock();}
private:
 const apImageStorage<T>& image_;
 // No copy or assignment is allowed
 apImageStorageLocker (const apImageStorageLocker&);
 apImageStorageLocker& operator= (const
apImageStorageLocker&);
};

Our apImageStorageLocker<> implementation locks
only apImageStorage<> objects, although it
wouldn't be hard to create a generic version. Here
is how it works. When an apImageStorageLocker<>
object is created, a reference to an
apImageStorage<> object is stored and the object is
locked. When the apImageStorageLocker<> object is
destroyed, the lock on apImageStorage<> is
released. You can see how powerful this simple
technique is when it is used within another
function.

3.3 Finalizing Interfaces to Third-Party
Software
A decade ago, most software solutions were
completely proprietary, in that all aspects of the
application were developed in-house. There were

plenty of software libraries available for purchase,
but they were usually expensive or were
considered inferior — not because they didn't
perform the intended function, but because they
were not developed in-house. This "not invented
here" syndrome created large in-house
development groups that often duplicated
functionality available elsewhere. The actual
expense of developing these packages was
enormous, especially considering that all
maintenance was performed by the organization.
Most of these issues vanished due to shrinking
budgets and the advent of open-source software.
Modern software takes advantage of existing
libraries to speed development and minimize the
maintenance issues. It is now considered good
design practice to design applications with
interfaces that leverage existing code. We use the
word delegates to refer to third-party software
packages to which we delegate responsibility.

3.3.1 File Delegates
We have created a very flexible and extensible
image processing framework. However, it still
lacks the capability of interacting with the outside
world. Unless our package can import and export
images using many of the popular image formats,
our framework is of little use.
There are many image storage formats, including
JPEG, GIF, PNG, and TIFF. They all have their
advantages and disadvantages, so supporting a
single format is of limited use. We will design a
simple interface so new file formats can be added
with little difficulty. This design can be used by
most image formats, although it may not take
advantage of all the features of an individual
format. Fig. 4 provides an overview of the file
delegate strategy.

Fig. 4 File Delegate Interface Design

We create a base class, apImageIOBase, that defines
the services we want and then we derive one class
from apImageIOBase for every file format we want
to support. apImageIOBase defines three essential
methods, info(), read(), and write(), that check the file
format and handle the actual reading and writing of
each file format, respectively, as shown.

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp310-318)

class apImageIOBase
{
public:
 virtual apDelegateInfo info (const std::string& filename) = 0;
 template<class T, class S>
 void read (const std::string& filename, apImage<T,S>&
image);
 template<class T, class S>
 void write (const std::string& filename, apImage<T,S>&
image,const apDelegateParams& params = sNoParams);
protected:
 apImageIOBase ();
 virtual ~apImageIOBase ();
 static apDelegateParams sNoParams;
};
info() determines whether a file is of the specified
format and, if known, can provide the size. The
read() function reads an image into the specified
apImage<> object. This is an excellent example of
using templates inside a non-template object. The
user can specify an image of any arbitrary type,
and read() returns an image of that type. Most
applications would use info() to determine the
image type before using read() to read the image
data from a file. write() takes an apImage<> object
and saves it in a particular image format.

3.3.2 JPEG File Delegate
One of the most common file formats is Joint
Photographic Expert's Group (JPEG). JPEG can
store both monochrome and color images at
various levels of compression.
apJPEG is our file delegate object that creates an
interface between our apImageIOBase interface and
the JPEG library. Its definition is shown here.

class apJPEG : public apImageIOBase
{
public:
 static apJPEG& gOnly ();
 virtual apDelegateInfo info (const std::string& filename);
 virtual apImage<apRGB> readRGB (const std::string&
 filename);
 virtual apImage<Pel8> readPel8 (const std::string&
 filename);
 virtual bool write (const std::string& filename, const
apRectImageStorage& pixels,const apDelegateParams&
params = sNoParams);
private:
 static apJPEG* sOnly_;
 apJPEG ();
 ~apJPEG ();
};

3.4 Adding Global Functions
Our apImage<> class does not include the image
processing functions. We decided that the image
class should only contain the absolute essentials.

3.4.1 Processing Single Source Images
Single source image processing operations take a
single source image and produce a single
destination image. We provide a general class,
apFunction_s1d1, which you can use to easily add
your own single source image processing
functions.
apFunction_s1d1 lets us logically divide the
processing operations, each as a separate method.
We have made some of those methods virtual so
that we can derive new classes from
apFunction_s1d1 to handle custom requirements.
The apFunction_s1d1 class is shown here.

template<class R, class T1, class T2,
class S1=apImageStorage<T1>, class
S2=apImageStorage<T2> >
class apFunction_s1d1
{
public:
 apFunction_s1d1 () : function_ (0) {}
 typedef void(*Function) (const R&, const
 apImage<T1,S1>& src1,apImage<T2,S2>& dst1);
 apFunction_s1d1 (Function f) : function_ (f) {}
 virtual ~apFunction_s1d1 () {};
 void run (const apImage<T1,S1>& src1,
 apImage<T2,S2>& dst1) { execute (src1, dst1);}
protected:
 Function function_; // Our process function, if any
 apImage<T1,S1> roi1_; // roi of src1 image
 apImage<T2,S2> roi2_; // roi of dst1 image
 virtual apIntersectRects intersection(const
 apImage<T1,S1>& src1,apImage<T2,S2>& dst1)
 { return intersect (src1.boundary(), dst1.boundary());}
 virtual void execute (const apImage<T1,S1>& src1,
 apImage<T2,S2>& dst1);
 virtual void createDestination (const apImage<T1,S1>&
 src1,apImage<T2,S2>& dst1);
 virtual void process ();
};

apFunction_s1d1 has five template parameters. Four
of these parameters are present because there are
two images, each requiring two parameters. The
parameter R is for intermediate computations.
apFunction_s1d1 can be used in two different ways,
depending on how you want to specify the actual
image processing operations. We can either
override process() to define your processing
function, or we can pass a function pointer to the
constructor. We recommend the latter option
because it means that there will be no changes to
apFunction_s1d1, and no need to derive objects
from it. It also encourages us to write stand-alone
image processing operations that potentially have
other uses in our application. We pass a function
pointer to the constructor, as shown:

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp310-318)

typedef void(*Function) (const R&, const apImage<T1,S1>&
src1,apImage<T2,S2>& dst1);
apFunction_s1d1 (Function f) : function_ (f) {}

The run() method is the main entry point of
apFunction_s1d1, but it only calls the virtual
function, execute(). The execute() method constructs
the intersection and performs the image processing
operation. execute() is only overridden if the
standard rules for computing the image windows
changes. The intersection() method does nothing but
call a global intersect() function. We added
numerous intersect() functions to the global name
space to encourage developers to use them for
other purposes. We provide the process() function
to allow derived classes to define their own
processing behavior, if necessary.

3.5 Practical Results
After having discussed all the steps required for
building a component-based commercial software
for image processing, we present an example of
implementation with Visual C++6.0 and API
Windows. All the code that we have explained for
the components and interfaces has been written
along with adequate API functions necessary for
the creation and view management of the different
windows of the software. Fig. 5 shows a dialog
box for opening images, while Fig. 6 shows a
display of a cytological sample of a malign breast
cancer image, on which we will do an image
sharpening and texture enhancement operation.

Fig. 5 Dialog box for opening images.

Fig. 6 A display of a cytological sample of a

malign breast cancer image

3.5.1 Image Sharpening and Texture
Enhancement
As an example of functions for processing single
source images we decide to implement the image
sharpening and texture enhancement processing.
This processing is one of the most important
especially in the medical imaging field. For
example it can be helpful to delimit the edges of
organic cells in order to count them or to identify
some malign cancer zones in a given tissue. The
processing of color images is nowadays a thriving
field of research because there is no consistent
method for comparison between vector data [3]
and because the images are multi-components, and
the components are processed either separately or
after being mapped by a nonlinear map [11]. The
aim of this operation is to emphasize those image
regions or ordered image point patterns, whose
spectrum mostly contains higher spatial
frequencies. The aim is to emphasize details,
edges, fine textures etc. without emphasizing
noise.

3.5.2. Adaptive Contrast Enhancement at Edges
There are many methods for doing an image
sharpening and texture enhancement [5]. However,
we have chosen the one that gives an adaptive
contrast because it takes into account the effect of
light reflectance. This is how comes in the case of
a gray image. The measure of contrast
enhancement is locally adaptively controlled by an
opportunely defined edge gray value E. The value
E represents a weighted average of all edge pixels
inside the given picture window. The local contrast
C is defined by the relative deviation between E
and the gray value F(i,j) of the current point. The
algorithm of the processing is shown below for a
picture window nxn.

S:=0;
Q:=0;
for j:=2 to n-1 do

for i:=2 to n-1 do begin
dij:=max{|F(i1,j+1)+F(i,j+1)+F(i+1,j+1)-F(i-
1,j-1)-F(i,j-1)-F(I+1,j-1)|,|F(i-1,j+1)+F(i-
1,j)+F(i-1,j-1)-F(i+1,j+1)-F(i+1,j)-F(i+1,j-
1)|};
S:=S+dij.F(i,j);
Q:=Q+dij;

end{for}
E :=S/Q ;
C:=[|F(k+1,k+1)-E|/(F(k+1,k+1)+E]^r;
if(F(k+1,k+1)<=E) then

w:=E(1-C)/(1+C);
 else
 w:=E(1+C)/(1-C);
 H(x,y)=adjust(w);

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp310-318)

end{for}

Where r is an input parameter less than 1, and
adjust() is a function that adjusts the value of w to
the domain [0,255]. This method produces a
contrast enhancement because the gray values
close to the edges are decreased if they are inferior
to the weighted edge gray value E. On the other
hand, the gray values are increased if they are
larger than E. The local contrast C as defined
above represents a measure of deviation between
the value E and the gray value F(x,y) which has to
be transformed. The increase in contrast can be
adjusted by the parameter r. Fig. 7 shows a
window displaying the result of the operation on
the image of Figure 6. We have applied the
algorithm on each image component separately
with a picture window 7x7.

Fig. 7. A window displaying an adaptive contrast
enhancement of a cytological sample of a malign
breast cancer image on each image component.
Top left: the original image. Top right: the result
of the operation on the red component. Bottom
left: the result of the operation on the green
component. Bottom right: the result of the
operation on the blue component.

4. Conclusion
In this paper, we have discussed a method for
building component-based commercial software
for image processing. It implements handles and
rep objects, and use templates so a single version
of the code will work with any type of pixel.
Thanks to the handles, we are able to manage the
number of copies of a given image and so avoid
memory leakage and fragmentation. The method
deals separately with the issues related to image
processing problems such as memory management
and memory alignment. This will enable us to
enforce our focus on the algorithm. Also, thanks to
file delegate the software can deal with any image
format. Our work enabled to explore such issues
as: What’s the best way to design this application,

using inheritance or templates [2]? Should we do
everything at static initialization time or use a
Singleton object? Does explicit template
instantiation give us any syntactic or functional
advantages? Does reference counting using rep
objects and handles add to design? How do we
partition functionality between global functions
and objects? What kind of framework makes sense
for handling exceptions? Does template
specialization help us?

References:
[1] Bastide R., and Sy O., Towards components
that plug AND play. In Vacillo A., Hernander J.,
Troya J. M. (eds), Proc. ECOOP’2000 Workshops
on Object Interoperability (WOI’00), pp. 3-12.
Extremadura University Press, Cannes, France.
[2] Canal C., Pimentel E., and Troya J. M.,
Compatibility and inheritance in software
architectures, Science of Computer Programming,
2000..
[3] Chanussot J., Approches vectorielles ou
marginales pour le traitement d’images multi-
composantes. PhD, Thesis, Université de Savoie,
1998.
[4] Gamma E., Helm R., Johnson R. and Vlissedes
J. M., Design Patterns. Reading, MA: Addison-
Wesley, 1995.
[5] Klette R., Zamperoni P., Handbook of Image
Processing Operators. John Wiley and Sons, 1996.
[6] Leavens G. T., Sitaraman M. (eds) 2000.
Foundations of Component-Based Systems,
Cambridge University Press, Cambridge, UK.
[7] Pratt W. K. Digital Image Processing, Third
Edition, Indiapolis, IN: Wiley, 2001.
[8] Romanik P., Mutz A., Applied C++ Practical
Techniques for Building Better Software, Addison-
Wesley, 2003.
[9] Stroustrup B., The C++ Programming
Language, Special Edition, Boston: Addison-
Wesley, 2000.
[10] Sutter H., More Exceptional C++. Boston:
Addison-Wesley, 2002.
[11] Trémeau A., Fernadez_Maloigne C., Bonton
P., Image numérique couleur – De l'acquisition au
traitement, Dunod, Collection Sciences Sup, 2004.
[12] Vandevoode D., Josuttis N. M., C++
Templates, Boston: Addison-Wesley, 2003.

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp310-318)

