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Abstract

Most of the objective (cost) functions in op-
timization techniques utilize norms especially
when dealing with signals, vectors, or matri-
ces. In this work, three norms were studied,
namely matrix One norm, Infinity norm, and
Frobenius (Euclidean or Two) norm. The ef-
fect of noise on these matrix norms was stud-
ied with the aid of a generalized eigen equa-
tion. Basic analysis of the effect of noise on
matrix norms is provided, which is also com-
plimented with a computer simulated results.
It turns out that the Frobenius norm is the
least sensitive norm to noise.

Key-Words: Optimization, Noise, 1-norm,
Infinity-norm, Frobenous-norm, Eigenequa-
tion.

1 Introduction

In optimal control theory many of the goals
a controller needs to achieve maybe expressed
interms of the size of various signals, for an
example in a tracking problem the error sig-
nals should be made small, while the actuator
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signals should be bounded. Signal sizes are
best captured using norms, because of their
nice geometric properties, which is mainly ex-
pressed in the framework of a vector space [1].
Matrices, which may be thought of as vectors
in a higher dimensional spaces, sizes are of con-
cern in optimization and cost function mini-
mization. Norms of matrices maybe thought
of as a generalizations of Eulidean length. Also
different acceptable norms maybe more or less
convenient in various situations [2].
Adetailed list of matrix norms applications in
engineering was compiled by G. Belitskii and
Y. Lyubich [3]. They had showed the impor-
tance of matrix norms in different engineering
problems. For example in the control theory
performance indices in the time domain hinge
on norms, good examples maybe found in H∞
, LPV, and LMI designs [4][5].

2 Norms Overview[2][6]

It is interesting to know that a significant
portion of linear algebra is infact geometric
in nature, which stemmed from the need of
generalizing higher dimensional spaces. Ac-
tually, questions of size and proximity in a
two dimensional or three dimensional vector
spaces usually refer to Euclidean distance, but
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what we can say about vectors in infinite-
dimensional spaces! or what about the size
of matrices (vectors in a higher dimensional
space)! One way to quantify these concepts is
by using norms, which may measure the size
and proximity of vectors and matrices. Basi-
cally, norms are defined for signal functions,
vectors, and matrices. Nevertheless, in this
work we concentrate on norms of matrices.
Matrix norms definition and their properties
are provided as an overview.

Definition 1 A matrix norm is a function
k∗k from the set of all complex matrices (fi-
nite orders) into R that satisfies the following
properties

kAk ≥ 0 and kAk = 0⇔ A = 0
kαAk = |α| kAk ∀α ∈ R
kA+Bk ≤ kAk+ kBk
kABk ≤ kAk kBk A,B ∈ Rn×n

The most used matrix norms in optimization
problems are the 1-norm, 2-norm, Frobenous
norm, and the ∞-norm. Please note that
older texts refer to the Frobenous norm as the
Hilbert-Schmidt norm or Schur norm. A sum-
mary of the definitions of these norms is pro-
vided here for reference.

Definition 2 Frobenous Matrix Norm of A ∈
Rm×n is defined by the equations

kAk2F =
X
i,j

|aij |2 = trace(ATA)

Definition 3 Matrix 2-norm A ∈ Rm×n in-
duced by the Euclidean vector norm is

kAk2 = max
kxk2=1

kAxk2 =
p
λmax Ä |A| 6= 0

Definition 4 Matrix 1-norm and Matrix ∞-
norm induced by a vector 1-norm and Matrix

∞-norm are as follows

kAk1 = max
kxk1=1

kAxk1 = maxj
X
i

|aij |

kAk∞ = max
kxk∞=1

kAxk∞ = maxi
X
j

|aij |

3 Problem Formulation

To illustrate the effect of noise on matrix
norms we will consider the generalized eigen
equation [7] as a case study. The eigen equa-
tion is widely used in mechanical structures, so
lets consider an n dimensional (DOF) Finite
Element (FE) model of a mechanical struc-
ture, which maybe given by the following equa-
tion of motion,

Mq̈(t) +Cq̇(t) +Kq(t) = f(t) (1)

where M , C, and K ∈ Rn×n are the analyt-
ical mass, damping, and stiffness matrices re-
spectively, and q ∈ Rn×1 is the displacements
vector. Hence, the corresponding matrix eigen
equation maybe given as

KV −MV Ω2 = 0 (2)

where Ω ∈ Rn×n is a diagonal matrix of the
eigen frequencies (eigenvalues) for the system
and V ∈ Rn×n is the corresponding eigen
mode shapes (eigen vectors or modal matrix).
The stiffness matrix K maybe written in a
parametrized matrix form as follows

K =
nX
i=1

PiKi (3)

where Pi ∈ R are set of scalers (weights) and
Ki ∈ Rn×n are the individual stiffness matri-
ces. Now, the optimization problem is basi-
cally to estimate the weight scalers such that
it satisfies the aforementioned eigen equation
inspite of the presence of noise in the eigen
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vectors. It was evident from Modal Analysis
[8] that we can measure frequencies (eigen val-
ues) accurately but the eigen vectors (mode
shapes) tend to be more susceptible to noise
contamination. To illustrate the matrix norms
sensitivity to noise consider the following pa-
rameter optimization problem

min
Pi

°°KV −MV Ω2
°°
x

(4)

where x is a suffix that designates the consid-
ered norms (i.e. 1 one, F Frobenous, and ∞
infinity norms).

4 Noise Effect on Norms

The investigations of the aformensioned eigen-
problem using different norms and with mode
shapes noise contaminations had revealed the
folowing results.

Theorem 5 The effect of noise on the Frobe-
nous norm by solving the eigen equation is
quadratic and it preserves an extrema.

Proof. Consider the optimization problem
depicted by equation (4).

Let K̃ =
nP
i=2

PiKi ⇒ K = P1K1 + K̃

and let V = Ṽ + δ where δ is the noise vector°°°³P1K1 + K̃
´
V −MVΩ2

°°°2
F°°(P1K1V +KV −MVΩ2
°°2
F

Let B = KV −MVΩ2

kP1K1V +Bk2F ≤
hP1K1V,P1K1V i+ 2 hP1K1V,Bi+ hB,Bi
= kP1K1V kF + 2 hP1K1V,Bi+ kBkF
≤ (kP1K1V kF + kBkF )2

≤
³°°°P1K1Ṽ + P1K1δ

°°°
F
+ kBkF

´2
≤
³°°°P1K1Ṽ

°°°
F
+ kP1K1δkF + kBkF

´2

Theorem 6 The effect of noise on the 1-
norm and ∞-norm by solving the eigen equa-
tion is linear and it smears out any extrema.

Proof. For the One and the Infinity norms,
define

Ao =
³
P1K1 + K̃

´³
Ṽ + δ

´
−M

³
Ṽ + δ

´
Ω2

= P1K1Ṽ+P1K1δ+K̃Ṽ+K̃δ−MṼΩ2−MδΩ2

Taking

P1K1δ = [P1K1δ]ij = P1
nP

k=1

K1ikδkj

K̃δ =
h
K̃δ
i
ij
=

nP
k=1

K̃ikδkj

MδΩ2 =
£
M
¡
δΩ2

¢¤
ij
=

nP
k=1

[Mδ]ik ω
2
kj

Ã = P1K1Ṽ + K̃Ṽ −MṼΩ2

Ao = Ã+ P1K1δ + K̃δ −MδΩ2

and let
Ao = Ã+A

[A]ij = P1
nP

k=1

K1ikδkj +
nP

k=1

K̃ikδkj −
nP

k=1

[Mδ]ik ω
2
kj

=
nP

k=1

P1K1ikδkj + K̃ikδkj − [Mδ]ik ω
2
kj

But for the 1-norm

kAok1 = maxj
nP
i=1
|aij|

= max
j

nP
i=1

¯̄̄̄
[A]ij +

h
Ã
i
ij

¯̄̄̄
and for the ∞-norm
kAok∞ = maxi

nP
j=1
|aij |

= max
i

nP
j=1

¯̄̄̄
[A]ij +

h
Ã
i
ij

¯̄̄̄
The above theorems simply state the fact that
certain norms are good for certain applica-
tions, and further analysis should be taken into
account the noise effect. A numerical example
is provided to shed more light on this impor-
tant issue.
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5 Numerical Example

In order to demonstrate the analytical results
in the previous section we will consider a nu-
merical example. In this example it is needed
to minimize the eigen equation norm over the
value of P1. A simple searching technique re-
veals the correct value as depicted in Figure 1.
In the noise free case all the norms simultane-
ously revealed the correct answer.
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Fig. 1, Noise free case

Adding 5% noise to the eigenvectors (mode
shapes in structures lingo) and assuming the
eigenvalues (frequencies) are noise free (i.e.
the assumption is valid because we can always
measure frequencies accurately compared with
the mode shapes). Figure 2, illustrates the re-
sults, which shows clearly that the one-norm
and the infinity-norm are affected linearly by
the noise. These norms have smeared out the
minimum point, while the Frobenous norm
showed a quadratic behavior. The Frobenous
norm minimal point is still close to the actual
value inspite of the noise.
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Fig. 2, smear out effect, 5% noise

Finally, a 10% noise is added to the eigenvec-
tors and the results are summarized in Fig-
ure 3. Here the Frobenous norm is still point-
ing out to the minimal point neighborhood,
while the other two norms completely smear-
ing out the minimal point. It is evident that an
optimization problem with a Frobenous norm
objective function will suffer less under noise
from the other two considered norms
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Fig.3, smear out effect, 10% noise

6 Conclusions

A short study of matrix norm’s and their sen-
sitivity to noise was presented. The main
three types of matrix norms were examined
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namely: one-norm, infinity-norm, and Frobe-
nous norm. Noise effect on norm based op-
timization problems was illustrated using the
generalized Eigenvalue problem. A sketch of
Mathematical proofs for the problems were
presented, which were also supported by nu-
merical results. The Analytical and Numerical
analysis were in agreement and they have re-
vealed that the Frobenous norm was the least
sensitive norm to noise.
Further investigations are needed to be carried
out over the sensitivity of the 2-norm (Euclid-
ean norm) to noise. This norm is interesting
in particular because of its direct relation to
matrix eigen values.
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