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Abstract: The analysis and optimization of electronic circuits are some of the main applications for the art
of computer programming. It is mainly caused by problematic convergence of a certain class of the circuits
and by extreme differences among the values of the circuit parameters. In the paper, a very flexible algorithm
for analyzing the electronic circuits is described with a novel reliable method for suppressing the divergence.
Moreover, an efficient algorithm for optimizing the electronic circuits is also characterized with a new method
for ensuring the numerical stability using a reliable normalization of the system matrix. The new features of the
analysis and optimization algorithms are tested using practical tasks of electronics.
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1 Introduction

For analyzing the electronic circuits in the static do-
main, the Newton method is mostly used in the pro-
grams of the PSpice type. Similarly, the Gear method
is mostly used for analyzing the circuits in the time do-
main. However, the Gear method needs the Newton one
for solving the circuit equations in one time step. There-
fore, the convergence properties of the algorithm for
solving the nonlinear algebraic equations have funda-
mental influence to the robustness of the program. In the
following section, a more flexible algorithm for solving
the system of algebraic-differential equations is defined
with a very reliable method for suppressing possible di-
vergence.

For optimizing the electronic circuits, the Levenberg-
Marquardt algorithm is frequently used. However, this
algorithm should be modified due to potential numeri-
cal instability that is caused by enormous differences
among the magnitudes of the circuit parameters. That
instability is emphasized by multiplying the Jacobian
matrices in the Levenberg-Marquardt algorithm. In the
third section, a normalization procedure is described,
which is used for the vector in the right side and for the
matrix product in the left side of the method equation.
The normalized Levenberg-Marquardt method is char-
acterized by the enhanced robustness.

2 The Algorithm for the Analysis
The system of algebraic-differential equations of a cir-
cuit is generally defined in an implicit form

f (x(t), ẋ(t), t) = 0. (1)

Let us assume now that the firstn steps of a numeri-
cal integration of (1) have finished. To make equations
simpler, let us markx(tn) by xn, and define backward
scaled differences by the recurrent formulae

δ(0)xn = xn,

δ(i)xn = δ(i−1)xn − α(i−1)
n δ(i−1)xn−1,

i = 1, . . . , kn + 2, (2)

wherekn is the order of a polynomial interpolation used
in the last integration step and

α(0)
n = 1,

α(i)
n = α(i−1)

n

tn − tn−i

tn−1 − tn−1−i
, i = 1, . . . , kn + 1. (3)

The predictor of the variables for the next chosen
time (i.e., fortn+1) marked byx(0)

n+1 is determined by
the extrapolation using the backward scaled differences
(2) in theexplicit form [1]

x
(0)
n+1 =

kn+1∑

i=0

α
(i)
n+1δ

(i)xn. (4)
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By differentiating (4) with respect totn+1, the predictor
of derivatives with respect to time can also be expressed

ẋ
(0)
n+1 =

kn+1∑

i=0

β
(i)
n+1δ

(i)xn, (5)

where theβ multipliers can simply be derived from the
recurrent form (3) in terms of theα ones

β(0)
n = 0,

β(i)
n =

α
(i−1)
n + (tn − tn−i)β

(i−1)
n

tn−1 − tn−1−i
, i = 1, . . . , kn.

(6)

(Using (6) in (5) needs replacing the subscriptn by
n + 1, of course.)

The corrector of the variablesxn+1 := x
(jmaxn)
n+1 for

tn+1 is determined using the modified Newton itera-
tions (the symbolx marks an element of the vectorx)

[(
∂f

∂x

)(j)

n+1

+
(

∂f

∂ẋ

)(j)

n+1

(
dẋ

dx

)

n+1

]
∆x

(j)
n+1 =

[(
∂f

∂x

)(j)

n+1

+ γn+1

(
∂f

∂ẋ

)(j)

n+1

]
∆x

(j)
n+1 =

− f
(j)
n+1, j = 0, . . . , jmaxn < MAXIT (7)

(MAXIT is maximum allowable number of iterations in
one integration step), i.e., by repeated solving the lin-
ear system (7) with applying theimplicit form of the
derivatives approximation [2]

ẋ
(j)
n+1 = lim

tn+2→tn+1

x
(j)
n+2 − xn+1

tn+2 − tn+1

=
kn+1∑

i=1

1
tn+1 − tn+1−i

δ(i)x
(j)
n+1

⇒ γn+1 =
kn+1∑

i=1

1
tn+1 − tn+1−i

,

(8)

that gives a standard formulaγn+1 = 1/(tn+1 − tn) =
1/∆tn+1 if the first order (i.e., Euler) method is used.

After resolving the linear system (7), the vectors
x

(...)
n+1 andẋ

(...)
n+1 are updated in the standard way

x
(j+1)
n+1 = x

(j)
n+1 + ∆x

(j)
n+1, (9a)

ẋ
(j+1)
n+1 = ẋ

(j)
n+1 + γn+1∆x

(j)
n+1. (9b)

However, if an indication of divergence is detected dur-
ing the iterations, then the logarithmic damping1 (again,
the symbolx marks an element of the vectorx)

∆x
(j)
n+1 := sgn

(
∆x

(j)
n+1

) ∣∣∣x(j)
n+1

∣∣∣ ln

(
1 +

∣∣∆x
(j)
n+1

∣∣
∣∣x(j)

n+1

∣∣

)

(10)
can be used2 for all the elements of the vector∆x

(j)
n+1

before updating to the subsequent values by (9).
The logarithmic damping of divergence is a valuable

tool ensuring the numerical stability. However, it is of-
ten insufficient from the point of view convergence, es-
pecially in the static domain (although a modification
for the dynamic domain has also been implemented).
Therefore, a novel way has been developed for sup-
pressing possible divergence of the static variant of (7)

(
∂f0

∂x0

)(j)

∆x
(j)
0 = −f

(j)
0 , x

(j+1)
0 = x

(j)
0 +∆x

(j)
0 ,

j = 0, . . . , jmax0
. (11)

It uses the modification (m marks the dimension ofx0)

if j = 0 then

x′ := x
(0)
0 ,

∆x′ := ∆x
(0)
0 ,

f ′ := f
(0)
0 ,

iteration is accepted,

else

if
1
m

m∑

i=1

∣∣f (j)
0i

∣∣
|f ′i |+ FNULL

< 1 then

x′ := x
(j)
0 ,

∆x′ := ∆x
(j)
0 ,

f ′ := f
(j)
0 ,

iteration is accepted,

else

∆x′ :=
∆x′

2
,

x
(j)
0 := x′,

∆x
(j)
0 := ∆x′,

iteration is rejected,

(12)

1An idea of the logarithmic damping is based on the Maclaurin
seriesln(1 + x) = x− x2/2 + x3/3−+ · · · ≈ x for x → 0.

2More precisely,|x(j)
n+1| + NULL is used instead of|x(j)

n+1| to
avoid possible zero division (NULL is another algorithm controlling
parameter).
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which checks the residual value off
(j)
0 after each itera-

tion. The basic idea of handling the differences∆x
(j)
0

according to (12) is related to the fundamental property
of the Newton-Raphson method. If the average value
of the residues does not decrease then the difference is
halved and the iteration is repeated. The halving is ap-
plied until the average residual value does not decrease.
It is sure that the occurrence of the decreasing residue
will be found—the program does not even contain a
check for a possible infinite loop. As a result, only such
∆x

(j)
0 is used for updating the vectorx

(j)
0 that ensures

the decrease of the average value of the residues.

The parameterFNULL prevents possible division with
zero; x′, ∆x′, andf ′ are the auxiliary vectors of the
algorithm.

Using the Newton-Raphson method with the control-
ling procedure (12) leads to a very reliable convergence.
However, the number of iterations could be large in that
case.

After finishing the iterations (7), a new length of the
integration step∆tn+2 and a new order of the polyno-
mial interpolationkn+2 are to be chosen after converg-
ing the corrector (7) and (9)—the quality of the two pro-
cedures is very important for the overall efficiency of
the algorithm.

Firstly, an estimation of the interpolation error in the
last step must be determined. In general, theabsolute
truncation error for thekn+1 order caused by the deriva-
tives approximation (8) may be written as

en+1 =
∆tn+1

tn+1 − tn−kn+1

δ(kn+1+1)xn+1 (13)

for any elementxn+1 of the vectorxn+1. The relation
(13) for the elementen+1 of the absolute truncation er-
ror vectoren+1 must be modified in the following way:

• the absolute errors are replaced by the rel-
ative ones (to be comparable with one an-
other and with an algorithm parameter),

• the fraction ∆tn+1/(tn+1 − tn−kn+1) is
omitted (to give a preference to simpler and
more stable lower interpolation orders).

Consequently, therelative truncation error acquires

the simple form [2]3

εn+1 = max
∀xn+1∈xn+1

∣∣δ(kn+1+1)xn+1

∣∣
|xn+1|

= max
∀xn+1∈xn+1

∣∣xn+1 − x
(0)
n+1

∣∣
|xn+1| .

(14)

Therefore, the truncation error can simply be checked
using the difference between the corrector and the
predictor—the step may be rejected and halved even af-
ter thefirst iteration of the corrector if the truncation
error seems too big.

Secondly, the new step and order are determined by
means of the error (14). Generally, the truncation errors
of the ith interpolation order can be determined by the
formulae (consider a component ofe with the greatest
error)

e
(i)
n+1 = const.(i)n+1

(
di+1x

dti+1

)

n+1

∆ti+1
n+1,

e
(i)
n+2 = const.(i)n+2

(
di+1x

dti+1

)

n+2

∆ti+1
n+2.

The new step estimate is based on the assumption of a
similarity of neighboring steps

const.(i)n+1 ≈ const.(i)n+2,(
di+1x

dti+1

)

n+1

≈
(

di+1x

dti+1

)

n+2

,

which gives the relation

e
(i)
n+2

e
(i)
n+1

≈
(

∆tn+2

∆tn+1

)i+1

,
ε
(i)
n+2

ε
(i)
n+1

.

The truncation error in the following integration step
should be equal toε—prescribed relative truncation
tolerance, i.e., (∆tn+1 is already known when∆t

(i)
n+2

should be compared for all possiblei)

∆t
(i)
n+2 = ∆tn+1 i+1

√
ε

ε
(i)
n+1

, i = 1, . . . , kn+1+1, (15)

where all the possible truncation relative errorsε
(i)
n+1 are

computed directly by theδ(i+1)xn+1 (that is why the
differences (2) are defined up to thekn + 2 order—so
that the order of the polynomial interpolation can se-
quentially increase). However, the step increase is lim-
ited due to the stability conditions, especially for higher

3Similarly as that in the logarithmic damping,|x(j)
n+1|+ NULL is

used instead of|x(j)
n+1| to avoid possible zero division.
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orders of interpolation—see the valuable stability com-
parisons of the basic implicit integration methods in [2].
Thus, the relation (15) must be modified by a semiem-
pirical factor

∆t
(i)
n+2 =





∆tn+1 i+1

√
ε

ε
(i)
n+1

for
ε

ε
(i)
n+1

< 4,

∆tn+1
i+1
√

4 otherwise,

i = 1, . . . , kn+1 + 1, (16)

where the factori+1
√

4 may theoretically be derived un-
der special circumstances only; however, it has been
proven by thousands practical analyses, as well. In con-
clusion, the newkn+2 order (kn+2 ∈ {1, . . . , kn+1+1})
is chosen, whose step determined by (16) is the longest.

To summarize, the algorithm defined above has the
following advantages:

• it is also convenient for analyses of mi-
crowave (i.e., fast) devices—let us consider
that the very short time steps in (3) are di-
vided by one another (they arenot mul-
tiplied as those in standard interpolation
schemes which may cause underflow errors
for higher orders);

• the algorithm is more flexible than the Gear
method implemented in PSpice with respect
to quick step and order alterations—the or-
der of the interpolation may change in every
step, for instance;

• the algorithm is convenient for the enhance-
ment towards a time domain sensitivity
analysis—due to its efficiency, the results
are obtained in a reasonable time.

3 The Algorithm for the Optimization
Let us assume that some two circuit outputs are to be
monitored in three points as seen in Fig. 1. The cir-
cles mark user-specified requirements for the outputs
and the squares mark values of the outputs obtained af-
ter an analysis. The algorithm seeks to minimize the
sum of squares of differences between them

S (x1, . . . , xn) =
m∑

k=1

R2
k (x1, . . . , xn) , n 5 m, (17)

where the unknown optimized parameters of a circuit
are marked byx1, . . . , xn, andRk, k = 1, . . . , m are
the differences.

independent control variable
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Figure 1: A diagram of a typical optimization task.

An extreme of the function ofn variables (17) can be
found in the standard way, i.e.,

∇S =
m∑

k=1

2Rk∇Rk = 0. (18)

After a standard derivation [3], the generalized least-
squares procedure is obtained applying (18)

J tJ ∆x(l) = −J t r, x(l+1) = x(l) + ∆x(l),

l = 1, . . . , lmax, (19)

wherel is the iteration index and

rk = Rk

[
x(l)

]
,

∂rk

∂xi
=

∂Rk

∂xi

[
x(l)

]
,

J =




∂r1

∂x1
· · · ∂r1

∂xn
...

...
∂rm

∂x1
· · · ∂rm

∂xn




,

k = 1, . . . m, i = 1, . . . , n.

The generalized least-squares procedure is very fast, but
sometimes insufficiently stable. For this reason, the
method is combined with the gradient one

∆x(l) = −2J tr, l = 1, . . . , lmax

to the Levenberg-Marquardt modification of (19)

[
J tJ + λ(l)1

]
∆x(l) =−J tr, x(l+1) = x(l)+∆x(l),

l = 1, . . . , lmax, (20)

where1 is unit matrix andλ(l) is a scalar iteration-
dependent factor. There are many ways to optimally
determine that factor for each iteration—the most so-
phisticated ones use an estimation based on eigenvalues
of the Jacobian in (20) [4]. However, simpler empirical
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ways are mostly also successful [3]. The program also
contains a version of the empirical methods (however,
a way based on the eigenvalues is also possible) which
seeks to minimize theλ(l) factor sequentially (i.e., to
make the generalized least-squares method more influ-
ential at the end of the process, which is natural):

λ(1) = 1,

λ(l+1) =
λ(l)

5
. (21)

However, this monotone decay must be interrupted (and
therefore the gradient method must be sometimes made
more influential) when the method seems to diverge:

if l > 1 ∧ S(l) =
l−1
min
j=1

S(j) then

x(l) := x(l−1), λ(l) := λ(l)52,

where the first multiplication by5 compensates the di-
vision by 5 in (21) and the second multiplication by5
increases that scalar factor.

Unfortunately, the method described above is insuf-
ficient for the majority class of the circuit optimization
problems. Thus, an improved method has been imple-
mented to our software equipment.

The improvement consists in the following steps:

• The differences defined in (19)mustbe nor-
malized;

• These differences should also be weighted;

• The JacobianJ in (20) mustbe normalized
too;

• The Jacobian can quickly be evaluated by
sensitivities;

• Evaluating the Jacobian is not necessary in
each iteration;

• Possible divergence of iterations (20) can be
damped.

3.1 Normalization of the System of Equations

The models of circuit elements contain values of ex-
treme orders (tiny ones together with the huge ones).
For such systems, the standard optimization algorithms
are unstable. Therefore, a normalization of differences

is included to the algorithm as a new feature (together
with their weighting, of course)

R′
k

[
x(l)

]
,wk

y
(output)
k

[
x(l)

]− y
(input)
k∣∣y(input)

k

∣∣ + y
(null)
k

,

k = 1, . . . , m, (22)

where the superscipts(input) and(output) mark mea-
sured and optimized values if the optimization is used
for the identification purposes. However, many numeri-
cal experiments have proved that a normalization of the
Jacobian is also necessary:

∂R′
k

[
x(l)

]

∂xi
:=wk

∂y
(output)
k

[
x(l)

]

∂xi

x
(max)
i − x

(min)
i∣∣y(input)

k

∣∣ + y
(null)
k

,

k = 1, . . . , m, i = 1, . . . , n, (23)

where∂y
(output)
k

/
∂xi is a result ofsensitivityanalysis.

The equation (22) is a definition. However, the equa-
tion (23) represents an assignment. Therefore, a solu-
tion of the system (20) must be modified by the assign-
ment

∆x
(l)
i :=∆x

(l)
i

[
x

(max)
i − x

(min)
i

]
, i = 1, . . . , n

after each iteration, wherex(min)
i and x

(max)
i rep-

resent minimum and maximum allowable values,
respectively—they are specified by the user.

4 Testing the Novel Algorithm Features

4.1 Analysis

Consider the power operational amplifier in Fig. 2. The
standard Newton-Raphson method is not able to deter-
mine the operating point due to powerful negative feed-
backs in the circuit. However, if the modification (12) is
used, the operating point is found without any problem
using only 174 iterations.

4.2 Optimization

As known, the identification of the models of semi-
conductor devices can be considered demanding test of
the optimization. For this reason, the identification of
the model parameters for the original Czech MOSFET
KF521 has been performed with the results shown in
Fig. 3. The root mean square(rms) error of the identi-
fication was only4.06 %, and maximum absolute value
deviation(δmax) was only14.5 %—both numbers indi-
cate successful optimization.
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Figure 2: Power operational amplifier as an example of suppressing the divergence by means of the novel method.
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Figure 3: Forward DC characteristics of the N-MOSFET KF521.

5 Conclusion

A flexible analysis algorithm has been presented for
solving the system of algebraic-differential equations
with a novel robust method for suppressing divergence,
which enables analyzing strong feedback systems.

An optimization algorithm has also been presented
which is convenient for the robust identifications of
complicated tasks. The algorithm has been improved
using the normalization, which enables performing the
tasks with large differences among optimized variables.
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