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Abstract: The 3D Laplace equation is one of the important PDEs of Physics, describing among others
the phenomenology of electrostatics and magnetostatics. For various practical problems, very precise
and validated solutions of this PDE are required; but with conventional finite element or finite difference
codes this is difficult to achieve even without validation because of the need for an exceedingly fine mesh
which leads to often prohibitive CPU time. We present an alternative approach based on high-order
quadrature and a high-order finite element method. Both of the ingredients become accessible through
the use of Taylor model methods. The solution in space is first represented as a Helmholtz integral over
the two-dimensional surface. The latter is executed by evaluating the kernel of the integral as a Taylor
model of both the two surface variables and the three volume variables inside the cell of interest. Finally,
the integration over the surface variables is executed as a mere polynomial integration, resulting in a
local Taylor model of the solution within one cell. Examples of the method and the precision that can be

achieved will be given.
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1 Introduction

Many problems in physics and engineering require
the solution of the three dimensional (3D) Laplace
equation

A% (7) = 0 in the bounded volume Q C R* (1)

It is well known that under mild smoothness con-
ditions for the boundary 02 of €2, the Laplace
equation admits unique solutions if either ¢ or
its derivative normal to 02 are specified on the
entire boundary surface 9€2. In many typical ap-
plications, not only the normal derivative of ¥ but
indeed the entire gradient ﬁqb is known on the sur-
face; for example, in the magnetostatic case the
entire field B = 61/) is measured, and not merely
whatever component happens to be normal to the
surface under consideration. The corresponding
problem of determining v based on the knowledge
of the field Vip (7) = ? (7") on the surface 09 is

Taylor model, COSY INFINITY, PDE solver, Helmholtz method, differential algebra,

referred to as the Helmholtz problem.

Analytic closed form solutions for the 3D case
can usually only be found for special problems
with certain regular geometries where a separation
of variables can be performed. However, in most
practical 3D cases, numerical methods are the only
way to proceed. Frequently the finite difference or
finite element approaches are used to find the ap-
proximations of the solution on a set of points in
the region of interest. But because of their rela-
tively low approximation order, for the problem of
precise solution of PDEs, the methods have very
limited success because of the prohibitively large
number of mesh points required. For reference,
codes like the frequently used TOSCA [1, 2] can
usually solve 3D Laplace problems with a rela-
tive accuracy of 10™% with meshes of size about
1079[18]. Furthermore, direct validation of such
methods is often very difficult.



In the following we develop a new method
based on the Helmholtz theorem and the Taylor
model methods[10, 9] and the corresponding tools
in the code COSY Infinity [4, 6] to find a validated
solution of the Laplace equation starting from the
field boundary data. The final solution is provided
as a set of local Taylor models, each of which rep-
resents an enclosure of a solution for a sub-box of
the volume of interest.

2 Theory and Implementation

2.1 The Helmholtz Approach

We begin by representing the solution of the
Laplace equation via the Helmholtz vector decom-
position theorem [11, 12, 14, 17, 15, 16], which
states that any vector field B which vanishes at
infinity can inside an arbitrary boundary region {2
be written as the sum of two terms

B@)=Vx4(@)+Vu (@), (2
where
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Here 0 is the surface which bounds the volume
Q. Zs denotes points on the surface 02, and &,
denotes points within €2. 7 is the unit vector per-
pendicular to 9€) that points away from €2, and v
denotes the gradient with respect to Z,.

The first term is usually referred to as the
solenoidal term, and the second term as the ir-
rotational term. Because of the apparent similar-
ity of these two terms to the well-known vector-
and scalar potentials to E, we note that in the
above representation, it is in general not possible

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp139-144)

to utilize only one of them; for a given problem, in
general both ¢, and A, will be nonzero.

For the special case that B = 6\/, we have
VxB= 0; furthermore, if V' is a solution of the
Laplace equation V2V = 0, we have v - B = 0.
Thus in this case, all the volume integral terms
vanish, and ¢, (&) and Ay (Z) are completely de-
termined from the normal and the tangential com-
ponents of B on the surface 99 via

N 7 (Zs) - B (&)
(@) = — [ DI P WSy
on (7) = 1 /;,Q AN
1 SRR § N
A, (%) = iEs) x B ()

A oQ |Z — Zs|

For any point within the volume €2, the scalar
and vector potentials and consequently the solu-
tion of the Laplace equation depend only on the
field on the surface 0f).

Using the fact that if ¥ # Zs;, we have
V(1) |Z—Z|) = — (- &) /|&— 2|, and sim-
ilar relationships, it is possible to explicitly obtain
the gradient of the scalar potential, and with some
more work the curl of the vector potential; the re-
sults have the explicit form

Vb (&)
1 EeE) (7(@) B (@) o
T 4w Jon 17— &, s B
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From eq.(2) we know that the field in-
side the volume of interest is just a sum of
the irrotational(eq.(3)) and the solenoidal(eq.(4))
part. This is then the solution for the magnetic
field as surface integrals. But to numerically in-
tegrate the kernel and get the validated solution
as the local Taylor model we need a specialized
numerical scheme. In the next section we intro-
duce one such scheme based on the Taylor mod-
els of the code COSY Infinity[4, 6]. We quickly
introduce the definition of the Taylor model and
discuss briefly the anti-derivation operation on the



Taylor models which will be extensively used in
implementation of the scheme. We then proceed
to explain the numerical scheme to perform the
surface integration.

2.2 Solution of the Helmholtz Problem
using Taylor Models

In the following, we develop a validated method
based on Taylor model methods to determine
sharp enclosures of the field B and the potential v
utilizing the Helmholtz method.

Definition (Taylor Model) Let f: D C R¥ —
R be a function that is (n + 1) times continuously
partially differentiable on an open set containing
the v-dimensional domain D. Let xy be a point
in D and P the n-th order Taylor polynomial of f
around xg. Let I be an interval such that

f(x) € P(x —xo)+ I for all z € D

and that has the property that I scales with the
(n+1)st power of the width of D. Then we call the
pair (P, I) an n-th order Taylor model of f around
xo on D.

A full theory of Taylor model arithmetic for
elementary operations, intrinsic functions, initial
value problems and functional inversion problems
has been developed; see [9, 10] and references
therein. Details about the validated implementa-
tion of arithmetic operation in COSY can be found
in [13, 10]. For the purposes of the further discus-
sion, one particular “intrinsic” function, the so-
called antiderivation, plays an important role. We
note that a Taylor model for the integral with re-
spect to variable i of a function f can be obtained
from the Taylor model (P,I) of the function by
merely integrating the part P,,_; of order up to
order n — 1 of the polynomial, and bounding the
n-th order into the new remainder bound. Specif-
ically, we have

7P, 1) =
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(J5 Po—t1 () dxi, (B (P — Pp1) + 1) - (bi — as)) -

More details about the implementation of the anti-
derivation operation can be found in [5].

Utilizing Taylor model arithmetic, the follow-
ing algorithm now allows to solve the Laplace
equation for the Helmholtz problem.

(1) Discretize the surface 0f2 into individual sur-
face cells S; with centers s; and the volume ) into
volume cells V; with centers v;.

(2) Pick a volume cell V.

(3) For each surface cell S;, evaluate the integrands
in eq. (3) and (4), the so-called “kernels”, in Tay-
lor model arithmetic to obtain a Taylor model rep-
resentations in BOTH the surface variables of S;
AND the volume variables of V}, i.e. in a total of
five variables.

(4) Use the Taylor model anti-derivation operation
twice to perform integration over the surface vari-
ables of each cell S;.

(5) Add up all results to obtain a three dimen-
sional Taylor model enclosing the field B over the
volume cell Vj.

(6) If a validated enclosure of the potential ¢ to
B over the volume cell Vj is desired, integrate the
field B over any path using the anti-derivation op-
eration.

As a result, for each of the volume cells Vj, Tay-
lor model enclosures for the fields B and potentials
1 are obtained. All the mathematical operations
to evaluate these Taylor Models and surface inte-
gration are implemented using the Taylor Model
tools available in the code COSY Infinity[4, 6].

Apparently the computational expense scales
with the product of the number of volume elements
and the number of surface elements; of these, the
number of volume elements is more significant be-
cause of their larger number. In practice one ob-
serves that when using high-order Taylor models,
a rather small number of volume elements is re-
quired, in particular compared to the situation in
conventional field solvers discussed above.
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Figure 1: Geometric layout of the bar magnet, consisting of two bars of magnetized material (left), and
the magnetic field component B, on the center plane of the bar magnet (right).

3 An Example: the Bar Magnet

3.1 The Example Field

As a reference problem to study the behavior of
the method, we consider the magnetic field of rect-
angular iron bars of a uniformly magnetized ma-
terial with inner surfaces (y = =+yo) parallel to
the mid-plane y = 0 as shown in fig.1. The ge-
ometry of these uniformly magnetized bars, which
are assumed to be infinitely extended in the +y-
directions, is defined by: x1 < = < x9,|y| > o,
and z; < z < zo. From this bar magnet one can
obtain an analytic solution for the magnetic field
B (z,y, z) - see for example [8, 7, 3] - and the result
is given by

oy

By (51373/7 Z) =

S
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where X; = — 2, YL =yt y,Z; = 2 — 2;, and
1
Ry = (XZ-2+YJ.2+Zi)2.

3.1.1 Results and Analysis

As a first step in the analysis of the influence of
the discretization of the surface and volume on the
result, we study the contributions of the surface el-
ements towards the remainder interval part of the
total integral. The volume expansion point is cho-
sen as 7 = (.1,.1,.1), and the size of the volume
box around it is chosen zero. Thus after the surface
integration, the polynomial part of the dependence
on volume vanishes except for the constant term,
and the accuracy is only limited by the width of
the surface element, which after integration over
the surface variables influences the width of the
remainder bound. We plot the width of the re-
mainder interval versus surface element length for
the scalar potential Fig.2. The center of the sur-
face element is chosen as 75 = (.034,.011,.5). It is
observed that for high orders, the method quickly
reaches an accuracy of around 10716 for about 2°
surface subdivisions, which correspond to about
210 ~ 1000 surface element cells per surface. Un-
der the assumption that each of these surface cells
brings a similar contribution, the accuracy due to
the surface discretization will be in the range of
approximately 6 - 1000 - 10716 < 10712,
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Figure 2: Remainder interval width versus surface element length for integration over a single surface
element and vanishing volume size.
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Figure 3: Remainder interval width vs length of volume element for y component of the magnetic field.

We now study the dependency of the polyno- orders of computation. The other components of
mial part and width of the remainder interval of the magnetic field exhibit a similar behavior.
the magnetic field on the volume element length.
In all these plots the surface element length is kept
fixed at 1/128. Figure 3 shows the remainder in-
terval width for the y component of the magnetic
field versus volume element lengths for different

We see that a validated accuracy in the range
of 10~ can be achieved for a volume element width
of around 107!, corresponding to a total of around
1000 volume elements. This number compares
very favorably to the above-mentioned numbers for



the commercial code TOSCA [1, 2]. An accuracy
in the range of 10~7 can be achieved for a width of
around 10~%4, corresponding to a total of around
200, 000 volume elements.

Overall, we see that the method of simultane-
ous surface and volume expansion of the Helmholtz
integrals leads to validated tools for the solutions
of ODEs which when executed in Taylor model
arithmetic can lead to very sharp enclosures. It
is obvious that the method can be generalized to
other surface-integral based approaches to the so-
lution of PDEs.
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