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Abstract: This work considers the problem of reducing the accumulated pose error in a grid-based SLAM
system using a stereo vision sensor. It is shown that by periodically estimating the heading change by vision it
is possible to recover most of the heading error with respect to dead reckoning, while 2D positional error can be
efficiently recovered by map correlation. Experimental results confirm the validity of the approach.
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1 Introduction
A critical factor for autonomous robot navigation in a
partially or totally unknown environment is its abil-
ity to use suitable sensing devices for tracking its
pose relative to the environment, while incrementally
building a map of the environment itself. ThisSimul-
taneous Localisation And Mapping(SLAM) problem
has therefore been a highly active research topic for
more than a decade.

Existing approaches to SLAM differ either in the
kind of sensing devices used (sonars, laser scanners,
vision systems), in the way they treat sensor data, and
finally in the way they represent the acquired knowl-
edge. With regard to the latter, 2D occupancy grids
[1, 2, 3] have been quite popular, at least for indoor
applications, as they provide an easy way for fusing
data from very different sensors.

As concerns the problem of translating sensor read-
ings into pose data, most proposals are based on the
Extended Kalman Filter (EKF) (e.g. [4, 5, 6, 7]).
These approaches reformulate the problem in terms
of estimating the state of the system (robot and land-
mark positions) given the robot’s control inputs and
sensor observations, which are assumed affected by
Gaussian noises. Other stochastic approaches do not
make the latter assumption but directly estimate distri-
butions conditioned on sensor data, as e.g. the particle
system proposed in [8].

Both EKF and particle-system based SLAM, how-
ever, need a model of robot motion and of sensor mea-
surement. In contrast, there are approaches that can
estimate directly the robot’s egomotion from sensory
data. This is the case e.g. when using vision sen-
sors. Indeed, even using a single onboard camera, it
has been shown [9] that localisation and map building
can be achieved by standard Structure-from-Motion
methods.

In any case, it must be remarked that the SLAM
concept implies that map building should beincre-
mental. However, estimates are typically affected by
errors, and the latter have the bad habit of accumulat-
ing; this leads to the loop-closure problem, where the
robot, on return to a previously visited place, thinks
it’s somewhere else. Though solutions to this problem
have been proposed, it is nevertheless worth investi-
gating methods able to reduce the localisation error at
each step, so automatically reducing the accumulated
global error as well.

In this paper we present some results from a SLAM
algorithm which uses a stereo head, mounted on a
pan-tilt unit, as sensor, and an occupancy grid to store
the acquired map. At more or less regular inter-
vals along its trajectory, the robot stops and “looks
around”, i.e. acquires a set of stereo pair images, cov-
ering a field of view of more than 180◦, by panning its
head. Point and line features extracted in the left and
right image of each pair are then matched and their
3D estimated positions are used to build a local occu-
pancy grid map.

Local maps are then merged into a global map af-
ter being registered to the global reference frame, us-
ing the current estimate of the robot pose. In this
work we assume that an odometric estimate of robot
pose is available; however, the long-term accuracy of
the latter is often not sufficient. A possible way of
tackling this problem consists in correcting the odo-
metric estimate of the change in robot pose by cross-
correlating the local map with the current global one
[10, 11]. This method can yield very good results,
but is quite computation-intensive, especially since
the search space is three-dimensional(x, y, θ) and the
search inθ requires rotation of the local map. Some
speed-ups have been proposed [11], but in our experi-
ence they are not reliable enough.
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Our proposal is to restrict correlation search to
(x, y), while the heading change is estimated by reg-
istration of 3D point clouds obtained by vision during
the robot motion. Indeed, 3D registration could be
used on its own, as proposed in [12]; however, while
this method yields a rather good estimate of rotation,
the translation accuracy is often quite inferior to that
obtainable by map correlation.

Combining the visual heading estimate with the
translation estimate from map correlation, yields a
good compromise between speed and accuracy, as
confirmed by the experimental results in Sec. 5.

2 The algorithm
As said above, at regular intervals along its path the
robot stops and acquires a set of stereo pair images, by
panning its head (panning stop). Features extracted in
the left and right image of each pair are then matched
and their 3D estimated positions are used to build a lo-
cal occupancy grid map. The reason for this behaviour
is that the field of view of the stereo rig is rather lim-
ited, and using a single stereo pair cannot yield a local
map with enough structure.

We assume that the robot starts with a panning se-
quence as described above, and the so obtained local
map becomes the starting global map. The world ref-
erence frame (WF) is defined as the robot frame at its
starting pose.

After each panning stop, a stereo pair is acquired,
features are detected and left-right matched, and a 3D
cloud of points is reconstructed and transformed to
the WF using the current pose estimate. The robot
then moves along its planned path towards the next
panning stop. Along the path, stereo pairs are ac-
quired at maximum allowable speed, and features are
tracked. Everym (saym = 3) frames (i.e. atkey
frames), a 3D reconstruction is performed, and the so
obtained point cloud is registered against the previ-
ous one, so allowing to get a visual estimate of the
change in robot heading (which will generally be dif-
ferent from the one predicted by dead reckoning). Af-
ter that, new features are also extracted and left-right
matched; this prevents the number of tracked features
to become too low, especially in the case of fast head-
ing changes, which would prevent getting a reliable
estimate of robot motion.

At the next panning position, the robot pose esti-
mate is updated by taking into account both the odo-
metric data and the accumulated visual corrections
computed as above. A panoramic set of stereo pairs is
grabbed, and 3D reconstructed points/lines from this
set, after transformation into the WF, are used to build
a local map. The latter is then registered against the

global one by correlation inx andy, and used to up-
grade the global map.

3 Features
3.1 Point features
The current implementation uses Shi-Tomasi features
[13], i.e. small textured image patches, whose cen-
ters yield pointwise measurements. A significant ad-
vantage of Shi-Tomasi features is that their definition
implicitly provides an efficient frame-to-frame track-
ing algorithm, provided that the image-plane displace-
ment be small, i.e. well within the size of the patch.
Using the same algorithm for stereo matching, where
the displacement (disparity) may be rather large, espe-
cially for near objects, is still possible, provided that
some coarse initial estimate of disparity be available.
In our implementation, such an estimate is provided
by a standard stereo correlation algorithm. Notice that
the latter may be run on lower resolution images, so
substantially lowering computational load.

Matched point pairs are then backprojected to a
3D point estimate, in the camera reference, using the
method in [14].

3.2 Line features
Edge contours are extracted in both the left and right
images using a standard second-directional-derivative
method [15]. Contour lines are then segmented into
quasi-rectilinear pieces, augmented with photometric
attributes (namely, the average luminances on either
side of the segment). Since we use a binocular stereo
pair with horizontal baseline, horizontal or nearly hor-
izontal segments cannot give reliable depth informa-
tion, and are therefore discarded by imposing a thresh-
old on the angle of the segment with the imagey axis;
the remaining segments are then left-right matched.
This latter step is accomplished by first ordering the
segments, in the left and right images, by increasing
x coordinate of their midpoint and then performing,
for each segment in the left image, a search for seg-
ments in the right image within thex range delimited
by the minimum and maximum allowed disparity. For
each putative match a score is computed, which takes
into account both the similarity of photometric seg-
ment parameters and the fraction of overlap in they
direction, and the best scoring match is kept.

The same matching procedure is repeated in the
opposite direction (right to left), and only consis-
tent matches are kept. They-overlapping portions of
matched pairs are then backprojected so obtaining 3D
segment estimates in the camera frame.
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3.3 Tracking and motion estimation
The features detected at a key frame are tracked along
the sequence, separately for left and right image fea-
tures, up to the next key frame. At this point, a new
3D reconstruction is made from the tracked left/right
features, and registered against the previous one in or-
der to get an estimate of the robot motion between the
two key frames.

At present, only point features are tracked and re-
constructed (though both point and line features con-
tribute to the map). As said above, the frame-to-frame
tracking algorithm expects limited feature displace-
ments between subsequent frames. This is seldom the
case, especially when the robot is rotating. However,
since each feature has attached to it an estimate of the
corresponding 3D position relative to the robot, com-
bining the latter with the known planned robot motion
the image position of the feature in the new image can
be predicted with sufficient accuracy to allow reliable
tracking.

At this point, we have a set ofN featuresFi, left-
right matched and tracked from key framek to the
next onek + 1, to which are attached pairs of 3D po-
sition estimates, namelyX′

i from the initial recon-
struction at key framek andX′′

i from the last one.
An estimate of robot motion fromk to k + 1 is then
obtained as the rototranslation(Rk, tk) that minimises
a suitable fitting criterion

J =
N∑

i=1

fi(‖di‖2)

with
di = X′′

i − (RX′
i + t)

and the vertical component of the rotationR yields
the visual estimate of heading change. With regard to
the choice of fitting criterion, we are currently using a
Lorentzian cost function, i.e.

fi(‖di‖2) = log(1 +
‖di‖2

σ2
i

)

which makes the estimate more robust against out-
liers. Theσi allow to take into account the different
accuracy of point estimates, e.g. as a function of the
distance from the sensor. However, a more sound ap-
proach, which is currently under study, would be to
perform a full bundle adjustment of point coordinates
and relative robot pose, using as fitting criterion the
image-plane backprojection error in the four images
of the two stereo pairs.

4 Map building and updating
2D occupancy grids [1, 2, 3] are 2D metric maps of
the robot’s environment, where each grid cell con-

tains a value representing the robot’s subjective belief
whether or not it can move to the center of the cell.
Occupancy grids are a popular way of representing
acquired geometrical evidence about the environment,
as they allow easy integration of measurements from
different sensor types.

Since vision yields full 3D measurements, how-
ever, it is possible to build a layered map, where each
layer corresponds to some range of height above the
ground plane. The map building approach used in our
test is similar to the FLOG (Fuzzy Logic-based Oc-
cupancy Grid) approach proposed in [16]. For each
grid cell (x, y) in layer l several fuzzy set member-
ship functions are defined, namelyµE(x, y, l) for the
emptyfuzzy setEl, µO(x, y, l) for the occupiedset
Ol, plus aconfidencemeasureµK(x, y, l). Adding a
measurement (3D point) to the map is performed by
suitably modifying the membership functions of cells
traversed by the rays going from the stereo head to the
estimated 3D points. As concerns line features, each
estimated 3D segment is subdivided into parts of pre-
determined image-plane length, and the midpoint of
each part is treated as a point measurement.

Depending upon the purpose, a synthetic mapM
can be defined as a suitable combination ofEl, Ol and
Kl [17]. In particular, for the purpose of correlating
local/global maps, we adopt the following definition:

M = ∪l(Ol ∩Kl)

Each local map is built after transforming the 3D
points into the WF, using the best current estimate of
the robot pose, which incorporates the visual head-
ing correction. A new estimate of robot pose is then
obtained by searching for a maximum of the corre-
lation between the membership functionsµML

(x, y)
andµMG

(x, y) of the local and global synthetic maps
ML andMG as defined by the equation above.

At this point, the global map is updated by weighted
averaging with the registered local one as in [16].

5 Experimental results
This section presents some results obtained by pro-
cessing sequences of images acquired with our Activ-
Media Pioneer 3-DX robot, equipped with a Videre
Design STH-MDCS stereo head (Fig. 1). The latter is
a low-cost commercial product nominally capable of
yielding pairs of1280× 960 colour images at7.5 fps,
or lower resolution images (640×480 and320×240)
at higher speeds, up to 30 fps. A serious limitation of
this device is its small stereo baseline (88 mm, non-
adjustable).

In the experiment described here, the robot wan-
dered through a large (about 14m×9m) laboratory
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room with several desks and various instruments (see
Figs. 2 and 3). Along its trajectory (about 60m to-
tal), the robot stopped for looking around either af-
ter covering a path length of 1 m, or after a heading
change of 45◦. About 7000 stereo pairs were acquired
at640× 480 resolution.

Fig. 4a shows the final global map built using for
the robot pose the raw odometric data, without apply-
ing the correction proposed above. Comparing the lat-
ter with the CAD model of the environment shown in
Fig. 2, it is evident that the odometric trajectory accu-
mulates a rather large heading error (about 20◦). As
can be seen in Fig. 4b, not much is gained by correct-
ing only the translation estimate by map correlation.

By contrast, Fig. 5a shows the result of the pro-
posed approach. Fig. 5b shows that the result is not
significantly improved by performing also an angular
search for best correlation around the visual heading
estimate. Fig. 6 shows the cumulative heading cor-
rection for the two latter cases, i.e. with and without
angular search.

It must be remarked that all correlation computa-
tions are done with the robot stopped, while the vi-
sual heading algorithm runs during the robot’s move-
ment. Therefore, eliminating the need for angular cor-
relation search in the registration step greatly reduces
dead times.

Figure 1: The mobile robot with stereo head.

6 Concluding remarks
In this work we have considered the problem of reduc-
ing the accumulated pose error in a grid-based SLAM
system using a stereo vision sensor. It has been shown
that periodically estimating the heading change by vi-
sion it is possible to recover most of the heading error
with respect to dead reckoning, while 2D positional
error can be efficiently recovered by map correlation.
Further work on this topic is needed, particularly for

Figure 2: Approximate CAD model of the environ-
ment. The asterisk marks the point of view of the
panorama in Fig. 3.

improving the visual heading algorithm, e.g. by using
bundle adjustment techniques.
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Figure 3: Panorama of the robot environment.
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Figure 6: Cumulative heading correction without (a)
and with (b) angular search.
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