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Abstract: - Most signal processing systems are based on discrete-time signals although the origin of many 
sources of information is analog. In this work we consider the task of signal representation by a set of basis 
functions. Presently, without prior knowledge of the signal beyond its samples, no bound on the potential 
representation error is available. The question raised in this paper is to what extent the sampling process keeps 
algebraic relations, such as inner product, intact. By interpreting the sampling process as a linear bounded 
operator, an upper bound on the representation error is derived and demonstrated. Based on our theorems, one 
can then determine the maximum representation error induced by the sampling process. We further propose a 
new approximation scheme for the calculation of the inner product, which is optimal in the sense of 
minimizing the maximum representation error. Our results are applicable to signal processing systems where 
analog signals are represented by their sampled versions. 
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1. Introduction 
Signal processing applications are concerned mainly 
with digital data, although the origin of many sources 
of information is analog. Such signals include for 
example speech and audio, optical signals, radar and 
sonar, biomedical signals and images. Representing a 
continuous-time (analog) signal by its samples has 
been widely used since Nyquist formulated the 
sampling theorem. It is also well known that applying 
this representation scheme to non bandlimited signals 
introduces approximation errors: the signal does not 
belong to Span{sinc(·)} and the samples do not 
correspond to its orthogonal projection. Indeed, 
according to the sampling theorem, these errors 
become smaller as the sampling interval shortens 
([13]). However, there are cases in which achieving a 
low approximation error requires high, unrealizable, 
sampling rates. For this reason, mainly, alternative 
basis functions such as Gabor functions, wavelets, 
Hermite functions, Legendre functions, Laguerre 
functions and the like are often used instead ([4], 
[5],[6],[9],[10],[11], [12]). 
Finding representation coefficients for these 
alternative bases involves inner-product calculations 
within the analog domain, rather than simply consider 
the sampled version of the signal itself as in the 
bandlimited case. When the signal is not given 
analytically, this in turn is somewhat difficult to 
implement. It is even impossible to perform in cases 
where the signal is already given by its samples only. 

To overcome this difficulty, it is acceptable to 
approximate the original inner product by the 
discrete-time approximation: 
 ( ) (∑ ⋅⋅≅

n
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where f(t) is the original signal and ϕ(t) is a known 
(basis) function. Here too, relying on the sampling 
theorem, the error of this approximation scheme 
becomes smaller as the sampling interval shortens. 
However, by having no prior knowledge of the 
original signal f(t), except for its samples, no bounds 
on the resulted approximation error are presently 
available. 
Keeping the basic approximation scheme, 
abovementioned, the question raised and considered 
in this work is whether the sampling process keeps 
algebraic relations, shared within the analog domain, 
intact. We consider the operation widely used in 
vector representation, the inner product, and propose a 
new discrete approximation scheme for this 
calculation, allowing an optimal approach to this 
widely used approximation. 
 
 
2. The Problem 
We address the following problem (Fig. 1): given a 
function ϕ (t)∈L2, how can one optimally 
approximate the inner product of 〈 f,ϕ 〉, by having 
only the samples of f(t)? Furthermore, if calculated 
this way, what is the approximation error? 
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Figure 1: Statement of the problem - given a function ϕ (t), 
how can one optimally approximate the inner product of  
〈 f ,ϕ 〉 , by having only the samples of f(t)? 
 
3. Sampling as a Linear Operator 
Blu and Unser [4] have shown that sampling a 
Sobolev function [2] of order one, i.e. f (t), f’(t) ∈L2, 
yields a finite energy sequence. The importance of 
this result resides in the fact that the sampling process 
can now be considered as a linearly bounded operator 
[7] acting on Sobolev functions of an arbitrary order, 
n, to obtain an l2 sequence. These functions are dense 
in L2, therefore, restricting our analysis to such 
functions still maintains generalization of the results. 

Figure 2: Intertwining relations of L2, l2 and W2 Inner 
Products. ϕ  is a known function of L2 and b is a known 
sequence of l2. f is an arbitrary function of W2 to be 
uniformly sampled. The inner product of L2 has a 
corresponding representation in W2, and the same holds for 
the l2  inner product. 
 
 

 
Lemma 1: The sampling operator ST is given by, 
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4. Sampling Effects on the Inner 
Product 

Theorem 1: Let ϕ (t)∈W2 be a known function. Given 
a sampling interval T, the following relation holds for 
any Sobolev function f (t)∈W2

n: 
where {en} is the standard basis of l2, and u(t) is the 
inverse Fourier transform of , 
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where ST is the uniform sampling operator with 
interval T,  B is given by, 

 
Lemma 2: The adjoint operator of ST, namely ST*, is 
given by, 
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and u(t) is given in Lemma 1. where u(t) is given in Lemma 1. 
  
The proof is given in [8]. Lemma 3: Let ϕ(t)∈ L2 be a known function, and let 

b[n] ∈ l2 be a known sequence. Then (Fig. 2), for any 
f(t)∈ W2: 
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Theorem 1 enables one to predict the maximum 
representation error induced by the sampling process. 
Furthermore, relying on the vector-like interpretation 
of Fig. 2, it can be shown that reducing the maximum 
potential approximation error to its minimum possible 
value is achieved by an orthogonal projection, thus 
optimal. This result suggests that the optimal discrete 
approximation scheme of the inner product does not 
necessarily require the sampled version of the basis 
function ϕ (t) itself. Instead, it involves yet another 

where ST is the uniform sampling operator given in 
Lemma 1, ST*  its adjoint as given in Lemma 2. 
ϕ*(t) = ϕ(t) ∗ u(t), and u(t) is given in Lemma 1 as 
well. 
The proofs of the above lemmas are given in [8]. 
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sequence, arising from the orthogonal projection, as 
depicted in the next theorem.. 

and applying Theorem 1, one can predict the 
maximum approximation error induced by the 
sampling process, shown in Fig. 4.  
 Theorem 2: Let ϕ (t)∈ L2 be a known function. Given 

a sampling interval T, one can find an optimal 
sequence b [n]∈l2 that minimizes B with respect to the 
inequality, 

 
2222 ,,, LlTL fBbfSgfWf ⋅≤−∈∀ , (8) 

 

Here ST is the sampling operator with interval T, b[n] 
is derived by finding the orthogonal projecting, in the 
Sobolev sense, of ϕ*=ϕ ∗ u onto Span{u(t-nT)}n (Fig. 
3) where u(t) is given in Lemma 1 and B is given in 
Lemma 1 by replacing ϕ (nT) with b[n].  
 
The proof is given in [8]. 
 
 

ϕ(t), T

Compute ϕ *(t),
ϕ *(t)= ϕ(t) ∗ u(t)

Find ϕ 0(t), the projection of ϕ *(t) 
onto Span{u(t-nT)} in W2

n sense.

Extract b[n], the representation coefficients 
of ϕ 0(t) according to {u(t-nT)}

 

Figure 4: Upper bounds on the approximation error of 
〈 f , ϕ 〉 by their corresponding sampled versions. Here ϕ  is 
a normalized Gaussian. The upper bound is given by 
B ·║f║L 2. Shown are upper bounds where the admissible 
functions, f, are Sobolev functions of several orders  
(n = 5,10,15,20 and infinity). 
 
 

 

Figure 3: Optimal approximation of 〈f,ϕ〉 within the digital 
domain. Extracting b[n] as shown here, and applying 
〈ST f ,b〉 would yield the minimum possible upper bound for 
the approximation error. 
 
Both Theorem 1 and Theorem 2 can be extended to 
images as described in [8]. Figure 5: The worst-case scenario for approximating 

〈f , ϕ 〉 by their sampled versions. ϕ  is a normalized 
Gaussian. The upper bound for the approximation error is 
B·║f║W 2 where the function f achieving it is shown as well 
(solid). Here, a sampling interval of T = 0.1 is considered as 
well as admissible Sobolev functions, f, of order n = 5. Also 
shown is the corresponding U(ω). 

 
5. Examples 
Example 1: Sampling a Gaussian. Suppose one 
wishes to find the inner product of a continuous-time 
signal with a normalized Gaussian. Having the 
sampled version of the signal, it is necessary to apply 
the discrete approximation scheme described herein. 
By setting, 

 
 

 ( )
2
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t

t eϕ π −−= , (9) 
For a given sampling interval, T, B corresponds to the 
worst-case scenario (i.e., the approximation error 
would be as large as possible). In such a case  
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f(t) = ϕ*(t)-ST
*{T·ϕ(nT)}. As evident from Fig. 4, 

smaller sampling intervals than a certain threshold 
give rise to an asymptotic value of B = 1. It so 
happens that ϕ(t) is effectively bandlimited for those 
sampling intervals, and the corresponding worst-case-
scenario function would be then orthogonal to ϕ (t) 
within the analog domain, which is not a practical 
situation. 
The worst-case scenario for admissible Sobolev 
functions of order n = 5 and for a sampling interval of 
T = 0.1 is shown in Fig. 5. 
 
Example 2: Suppose one wishes to determine 
whether two images are different or not. i.e., it is 
required to approximate the representation 
coefficients according to a set of basis images. 

Assuming that one of these basis images is the 
Gaussian, its representation coefficient can be 
calculated for various sampling intervals, as shown in 
Fig. 6. The key point, however, is that utilizing the 
abovementioned results; one can also extract the 
maximum potential approximation error induced by 
the sampling process in advance. Based on that 
information, a proper decision can then be made. It is 
evident from Fig. 5, that a sampling interval of T = 1 
is insufficient for approximating the representation 
coefficient of the original images with regard to the 
Gaussian image. T = 0.5 is however sufficient, and 
there is no need to consider smaller sampling intervals 
such as T = 0.1. 
 
 
 

Sampling 
Interval Images 

Discrete Approximation of 
the Inner Product with a 

Gaussian 

Maximum 
Potential 

Error 

Original 

  

  

T = 0.1 

  

15.18 vs. 16.18 ± 0.268 

T = 0.5 

  

14.64 vs. 15.73 ± 0.61 

T = 1 

  

14.89 vs. 15.68 ± 0.857 

 
Figure 6: An example, utilizing Theorem 1. It is evident, that a sampling rate of T = 1 is insufficient for 
approximating the representation coefficient of the original images with regard to the Gaussian image.
T = 0.5 is however sufficient, and there is no need to consider smaller sampling intervals such as T = 0.1. 
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The effect of sampling on non-bandlimited signals 
and images has been studied. In particular, the extent 
to which algebraic properties are preserved under 
sampling was investigated. The approach taken in this 
work arises from a signal representation point of 
view, in which an unknown continuous-time signal is 
to be represented by a set of continuous-time, 
analytically known, basis functions. In such a 
situation, both the sampled signal and the basis 
functions give rise to a discrete approximation 
scheme; the original inner product within the analog 
domain is approximated by an inner product of two 
sequences within the discrete domain. 
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