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Abstract: - In this paper the effectiveness of a procedure that allows the detection of a defect by the analysis of 
parameters of a two port equivalent of a NDT ultrasound guided waves system is investigated. A wavelet expansion 
of the input (transmitted) and output (reflected) signals has been carried out and a constant coefficient matrix 
behaving as a transfer function between the input and output port has been defined. The two port equivalent 
representation correctly simulates the complete system under a wide range of input waveforms in the actual operating 
condition. The effectiveness of this method to detect and locate defects in the pipes has been investigated. 
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1   Introduction 
In many industries pipe corrosion is one of the major 
problems for plant maintenance. Thus, non-destructive 
detection and classification of pipes integrity is of 
actual interest. Recently, the possibility to inspect large 
part of pipes from a single location by means of the so 
called “Lamb” guided waves has recalled interest from 
the potentiality of the method [1]-[3]. The Lamb guided 
waves are generated in the pipes via a piezoelectric or 
magnetostrictive transducer, called “transmitter” that is 
driven by proper electrical signals. Another transducer, 
called “receiver” is located at a proper distance from the 
transmitter and gives an electric signal when it detects 
the elastic wave that is traveling in the pipe. The defect 
within an incident guided wave path impacts the 
signature of the scattered fields by exciting all possible 
modes for the given frequency value. The study of the 
scattered field (reflected and transmitted) provides 
essential features for defect detection. By way of phase 
velocity and frequency tuning, defect detection 
sensitivity and location analysis can be good despite 
distance and environmental constraints. Techniques that 
are based on the Fourier Method are often used to 
perform the analysis of the signals involved in this 
procedure. 
The ability to go beyond detection and location to 
classification and sizing, however, is very difficult. The 
question of which mode and frequency should be 
selected to impinge onto a defect and have the best 
chance of classifying or sizing that defect is still a 
challenging problem. Indeed one of the difficult 
problems about this kind of nondestructive test (NDT) 
inspection is the multi-mode coexistence. The different 
modes cannot be distinguished by the waveforms in the 
time domain. However the Fourier methods need a 

large number of spatial samples of Lamb waveform. 
This requirement makes the Fourier methods difficult to 
be used in practice [4]-[6]. 
In this paper we have considered the transmitter and the 
receiver transducers respectively as the input and the 
output ports of the testing device. A two port 
representation, similar to those used to schematize 
electronic circuits, has been obtained for the above 
device. This method, not yet investigated for these 
kinds of applications, has been studied for detection and 
classification of defects. 
 
 
2   Problem Formulation 
Recently, Wavelet Theory [7], [8] has received a great 
interest in many areas of engineering. In particular 
Wavelet Expansion (WE) techniques have been used 
for the numerical solution of Multiconductor 
Transmission Lines [9] and have demonstrated to be a 
powerful tool especially in terms of simulation 
efficiency when fast transients are analyzed. As a 
matter of fact the main feature of wavelet bases is that 
the wavelet functions are compactly supported, hence 
they efficiently represent signals that are compactly 
supported; furthermore they self concentrate where the 
frequency content of the analyzed signal requires to be 
represented by a higher number of functions (self 
adaptive zooming).  
In particular WE is here used as a tool through which a 
transfer function represented by a matrix of constant 
coefficients is constructed. The identification of this 
matrix can be obtained from data in the time of 
frequency domain. Let us consider a two-port system, 
represented by its input and output signal, respectively 
defined as x(t) and y(t).  
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In the frequency domain we have the transfer function 
relation between the x and y phasors as: 
                                ( )Y W j Xω= ⋅                                    (1) 
where the transfer function W is a complex number 
representing the relation between input and output 
quantities. This transfer function in the considered 
problems is not a priori known but it can be obtained 
from the time domain impulse response of the studied 
system obtained either experimentally or by numerical 
simulation. 
Given a wavelet basis d(t)=[d1(t), d2(t), … , dn(t)] of 
dimension n with n power of two, the WE of x and y are 
a n-dimensional vector ( ) ( )y t t= ⋅d y , and 
( ) ( )x t t= ⋅d x , where y  and x  are vectors of 

coefficients in terms of wavelet basis. The relationship 
between input and output quantities can be written in 
the wavelet domain as a matrix–vector product, as 
follows: 
                                     xWy ⋅=                                     (2) 
where W is a matrix of constant coefficients relating 
WE of input and output quantities. 
In applications where a mathematical model of the 
studied system is known the matrix W is known, while 
in this case the matrix W has to be determined. The 
determination of W is then performed as follows: the ith 
column of W is equal to y in the wavelet domain when 

[ ]1 10,...,0 ,1 ,0 ,0,...,0 T
i i i i− += =x x . Therefore ix  is inverse 

transformed in the time domain obtaining x ( )i t ; then 
its Fourier transform Xi(jω), can be easily obtained by a 
FastFourierTransform and used as input for equation 
(1). Then, from the obtained Yi=W(jω)Xi, yi(t) is 
determined by InverseFastFourierTransform and 
successively by WE of yi(t) we get the i i= ⋅y W x  
corresponding to the i-th column of the matrix W . It 
has to be noted that the inverse transform of   ix  is 
actually the i-th element of the chosen wavelet basis. 
This scheme is performed for all the columns of W  
determining the complete representation of the two-port 
equivalent matrix in the wavelet domain for a given 
basis dimension n. 
To fully determine the matrix W   the previous 
explained operations must be performed for a number 
of times corresponding to the value n correspondent to 
the n-dimension of the WE of the x and y quantities. In 
the author experience this usually varies among 128 and 
1024 in most applications. However this number can be 
significantly reduced. Indeed, from the Multiresolution 
Analysis theory [7] the n functions di(t) (scaling 
functions or wavelets) composing the basis d(t) belong 
to different subspaces. A higher number of the above 
mentioned subspaces (in other words a higher 
dimension of the basis d(t)), is related to a better 
representation of a signal; this is referred to as 

“resolution” of the basis. The basis functions di(t) of 
each subspace are translated versions of a single 
function; hence in case of a time invariant system a 
single function of a subspace can be used to determine 
the output for all the functions of the subspace. This 
simple consideration allows a strong reduction of the 
number of simulations required for the characterization. 
Due to their good characteristics in terms of efficient 
representation of fast signals, Daubechies wavelets on 
the interval with N = 6 vanishing moments (see [7] for 
details about their construction) are chosen for this 
problem. Daubechies wavelets on the interval are 
characterized by having N (where N is the number of 
vanishing moments) functions defined on the left border 
and N on the right border of the interval. And this holds 
for each subspace of the Multiresolution Analysis. 
Furthermore the coarser resolution is also related to the 
number of vanishing moments N. In the case under 
analysis the lower resolution leads to 32 functions. 
Higher resolutions mean higher CPU times (and in this 
case also an higher number of 3D simulations in order 
to characterize the system) but, obviously, an higher 
accuracy. Dimensions of the basis of n = 128 and n = 
256 are a reasonable number of functions leading to low 
CPU times and desired accuracy. Furthermore the 
number of wavelet coefficients (the number of basis 
functions) is equal to the samples of the analyzed time 
domain function, hence the increase of n leads also to a 
better time representation of the input and output 
signals. 
Looking at a basis of 128 functions in detail, it has been 
found out that it is composed by 3 subspaces, 
respectively characterized by 32 scaling functions at 
resolution 32, 32 wavelets at resolution 32 and 64 
wavelets at resolution 64. Among those 128 functions 
the only independent ones for each subspace are the 12 
functions (equal to 2N) on the border and the central 
function (the one that is translated in order to form the 
basis). Hence referring to the basis of dimension 128 
the independent functions to simulate are 

393N23Nfun =+⋅= . In the same way for the basis 
composed by 256 functions the independent simulations 
to run are only 524N24Nfun =+⋅= . 
 
 
3   Problem Solution 
It has been evaluated the effects that different types of 
asymmetrical pipe defect have on the matrix W. For 
this purpose, it has been computed the norm of W 
corresponding to each singular defect. 
Table 1 shows the parameters (characteristics of each 
defect) involved in simulations. 
The incident wave used in the simulations is a torsional 
wave having the wavelength λ=0.059m. For the 
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evaluation it has been used the circumferential 
component only, as being the most representative. 
 

Table1 
Length   
(mm) 

Thickness 
(%) 

Solid angle 
(deg.) 

3 10 10 
6 30 20 

12 50 30 
18 70 40 
24 90 - 

 
The norms used to evaluate the wavelet matrix are: 
- Norm1(W)=max(sum(abs(W))), that is the 
largest column sum of W; 
- Norm2(W)=sqrt(sum(diag(W’*W))), i.e. the 
Forbenius norm; 
- Norm3(W)=max(svd(W)), i.e. the largest 
singular value of W. 
Figures 1 to 7 illustrate the behavior of norm1 of matrix 
W for different sets of defects. A result to be noted is 
that the larger the defect volume, the higher becomes 
the sensitivity of the W matrix. In addition, axial 
dimension (i.e. length of defect), show minor influence 
on the norm of W matrix at small solid angle or 
thickness (fig.2 to 5). Higher values of solid angle and 
thickness (fig.1, 6, 7) also bring to a different norm 
trend. 
Figure 8 summarizes the impact that each of the 100 
types of defect has on the wavelet matrix. It confirms 
once again that the W matrix is more sensitive at 
variation of solid angle and thickness of defects. 
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Fig.1 Behavior of W matrix at variations of length and 
thickness of defect 
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Fig.2 Behavior of W matrix at variations of solid angle 
and thickness of defect 
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Fig.3 Behavior of W matrix at variations of thickness 
and solid angle of defect. 
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Fig.4 Behavior of W matrix at variations of length and 
solid angle of defect 
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Fig.5 Behavior of W matrix at variations of solid angle 
and length of defect 
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Fig.6 Behavior of W matrix at variations of thickness 
and length of defect 
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Fig.7 Behavior of W matrix at variations of length and 
thickness of defect 
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Fig.8 Behavior of W matrix at different variations of all 
100 types of defect 
 
 
4   Conclusion 
In order to classify a particular pipe defect by the means 
of an NDT ultrasound guided waves system, a WE of 
the two waves (incident and reflected) has been 
performed. The resulted W matrix (treated as a transfer 
function between input and output) behaves different 
for each type of defect. 
The results show that W matrix can be a useful 
instrument in detecting the pipe defects. It can also 
inform about the volume of defect.  
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