

A Parameterless Differential Evolution Optimizer

JASON TEO and MOHD. YUNUS HAMID
Artificial Intelligence Research Group

School of Engineering and Information Technology
Universiti Malaysia Sabah

Kota Kinabalu, Sabah
MALAYSIA

Abstract: - Although the Differential Evolution (DE) algorithm has been shown to be a simple yet powerful
evolutionary algorithm for optimizing continuous functions, users are still faced with the problem of preliminary
testing and hand-tuning of the evolutionary parameters prior to commencing the actual optimization process. As a
solution, self-adaptation has been found to be highly beneficial in automatically and dynamically adjusting
evolutionary parameters such as crossover rates and mutation rates. In this paper, we present a first attempt at self-
adapting the population size parameter in addition to self-adapting crossover and mutation rates. Firstly, our main
objective is to demonstrate the feasibility of self-adapting the population size parameter in DE. Using the F1-F5
benchmark test problems proposed by De Jong, we showed that DE with self-adaptive populations produced highly
competitive results compared to a conventional DE algorithm with static populations. In addition to reducing the
number of parameters used in DE, the proposed algorithm actually outperformed the conventional DE algorithm for
one of the test problems. It was also found that that an absolute encoding methodology for self-adapting population
size in DE produced results with greater optimization reliability compared to a relative encoding methodology.

Keywords: - Soft computing, Evolutionary computation, Differential evolution, Parameter encoding, Self-adaptation,
Evolutionary dynamics, Population dynamics.

1 Introduction
One of the current state-of-the-art evolutionary
algorithms is the Differential Evolution (DE)
algorithm [10]. It is a very simple population-based
stochastic optimizer for continuous domains. The
crucial idea behind DE is in the generation of trial
solutions where the weighted difference between two
population vectors is added to a third vector. The DE
algorithm has been successfully applied to a whole
host of engineering problems including the design of
digital filters, mechanical design optimization,
aerodynamic design and multiprocessor synthesis.

There are three critical steps when using
evolutionary algorithms to solve any problem:
choosing appropriate (i) representations, (ii) selection
processes, and (iii) parameter settings [3, 8]. This
paper focuses on the third issue, that is the parameter
settings required to run an evolutionary algorithm. In
this regard, while the use of evolutionary algorithms
for solving design and optimization problems is both
widespread and diverse, there is still the common
complaint voiced by end-users that there is the need to
first find a good combination of parameter settings for
running the evolutionary algorithms before their actual
optimization work can begin in earnest [4] and the DE
algorithm is no exception to this requirement.

The parameter settings in evolutionary algorithms

most commonly comprise of the (i) crossover rate, (ii)
mutation rate, (iii) population size, and (iv) number of
generations [3]. The number of generations can
usually be eliminated as a user-defined parameter by
simply determining an acceptable stopping or
convergence criteria and building this metric directly
into the evolutionary algorithm. In terms eliminating
crossover and mutation rates as user-defined
parameters, significant progress has been made
through adaptation and self-adaptation of crossover
and mutation rates [9, 12]. In fact, it has been found to
actually improve the quality of solutions resulting
from the search process [3]. Here, we make the
distinction between adaptation and self-adaptation
using Eiben’s definition [3]: (i) adaptation — where
changes are made to parameters during evolution
based on some feedback from the search and (ii) self-
adaptation — where changes are made to parameters
during evolution through inclusion of parameters into
the genetic encoding that is itself subjected to
evolutionary processes and pressures. In fact, it has
been pointed out that the usage of static parameters
that do not change over the course of the artificial
evolution may not give the best results [3].

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp330-335)

However, significantly less work has been done in
terms of adapting population size so as to render it as a
non-user defined parameter. It has been highlighted
that an appropriate population size is critical to both
run-time efficiency and optimization effectiveness [5,
7]. As such, the main objective of this research work is
to implement and investigate a dynamic approach to
the population sizing problem through self-adaptation,
thereby eliminating population size as a user-defined
parameter in working towards a parameterless
evolutionary algorithm.

This remainder of this paper is organized as
follows. Section 2 surveys the work that has been
previously conducted in the area of adaptation of
population size. Section 3 outlines our proposed
methodology of a dynamic population size through
self-adaptation. Section 4 presents the setup of the
experiments conducted. Section 5 presents the results
obtained and analysis conducted. Finally, Section 6
summarizes the main conclusions arising from this
work.

2 Adapting Population Sizes
The task of selecting an appropriate population size for
solving particular classes of problems has been known
to be a challenging and often puzzling question in and
of itself. A number of different approaches have been
used in adapting the sizes of dynamic populations.
Adaptation based on chromosomal age [1], probability
of selection error [7], competition among
subpopulations [6], generational improvement [13]
and exponential population growth [4] have been used.
However in all of the methods mentioned above, the
approach is based on adaptation and not self-
adaptation, that is the changes made to the population
size parameter are based on some form of feedback
from the search. Population size is not included as an
element of the genetic encoding that is subjected to
evolutionary processes and pressures as in self-
adaptation. Since self-adaptation has been shown to be
a very effective method for dynamically adjusting
evolutionary parameters [9, 12], we thus propose a
similar treatment for dynamically adjusting the
population size. In the next section, we outline our
methodology for implementing a dynamic population
size for the DE algorithm based on self-adaptation
using firstly an absolute encoding methodology and
secondly a relative encoding methodology.

3 Proposed Algorithms
Our proposed algorithm is called Differential
Evolution with Self-Adapting Populations (DESAP).
The main contribution of this proposed algorithm is

that the population size is automatically determined
from initialization right through the evolutionary
search process to completion. Therefore, the user does
not need to be concerned at all with regards to
determining the population size to be used for the
evolution. A self-adaptive strategy is also used for
controlling the crossover and mutation rates for both
our proposed DESAP as well as conventional DE
algorithms where the rates are encoded into the
chromose and subjected to evolution similar to the
search variables. We propose two different versions of
DESAP, where the first version utilizes an absolute
encoding methodology for population size, which we
shall refer to as DESAP-Abs, and the second version
utilizes a relative encoding methodology for
population size, which we shall refer to as DESAP-
Rel. A real-number representation is used in the
chromosome for each of the search variables as well as
the self-adapted parameters.

The initial population size for DESAP-Abs and
DESAP-Rel are both set at 10 times the number of
design variables as recommended by the authors of the
original DE algorithm [10]. For DESAP-Abs, the
population size of subsequent generations is taken as
the average of the population size attribute from all
individuals in the current population whereas for
DESAP-Rel, it is taken to be the current population
size plus a percentage increase or decrease according
to the population growth rate [11]. The formulation for
calculating the new population size parameter is as
denoted below, where π represents the evolvable
population size parameter that is encoded into the
chromosome:

It should be pointed out also that elitism and

culling are achieved naturally in both DESAP-Abs and
DESAP-Rel. Elitism is only executed when the
population size of the next generation exceeds the
population size of the current generation
(MM new >). In this case, all of the current population
will survive into the next generation and on top of that,
the best solution in the current population is copied
into MM new − individuals to make up the required
number of individuals in the next generation. In the
case where the population size of the next generation
is less than the population size of the current

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp330-335)

generation (MM new <), then only the best newM
individuals will survive into the next generation and
the remainder of the current population will be culled.
No elitism or culling will occur if the population size
of the next generation equals the population size of the
current population (MM new =).

4 Experimental Setup
To investigate the effects of a dynamic self-adaptive
population, both versions of our proposed DESAP
algorithm are compared against a conventional DE
algorithm, which is similar to DESAP in all aspects
except that the population size is static and non-
adaptive. Five different population sizes of 10, 20, 30,
50, and 100 were used for the conventional DE
algorithm. These algorithms were compared using the
widely used F1-F5 test functions proposed by De Jong
[2]. We treat these benchmark problems in their
original form, that is as function minimization
problems. Each evolutionary setup was run for 100
generations and repeated 50 times using different
seeds.

5 Results and Discussion

5.1 DESAP vs. Conventional DE
We present below the results obtained using both
versions of our proposed DESAP algorithm with
dynamic self-adapting population sizes against the
conventional DE algorithm with static population sizes
of 10, 20, 30, 50, and 100, which are denoted as DE-
10P, DE-20P, DE-30P, DE-50P, and DE-100P
respectively.

Table 1: Overall best solution found.

Table 1 lists the overall best solution found over 50
runs. Both versions of our proposed algorithm DESAP
produced highly similar results as the conventional DE
algorithm. In fact, the proposed DESAP algorithm
obtained the best overall solution for F4. It converged
to the best possible solution for F3 and F5 as did the
DE algorithm with different population sizes. DESAP

obtained slightly better solutions than DE for F1
except when DE was set to largest population size
(DE-100P). For F2, DESAP performed marginally
better than DE-30P and marginally worse against the
remaining setups for DE. Comparing between
DESAP-Abs and DESAP-Rel, the results were highly
similar between both versions except that the absolute
encoding produced marginally better results for F2 and
F4 and vice-versa for F1. Thus, in terms of the overall
best solution found, DESAP produced highly
competitive results compared to the conventional DE
algorithm.

Table 2: Average of best solutions found.

Table 2 lists the average of the best solutions found
over 50 runs. The results again indicate that across the
50 different evolutionary runs, DESAP was able to
perform better on average compared to DE with
smaller population sizes of 10, 20, and 30 for F1, F3
and F4 and better than DE with population sizes of 10
for F2 and F5. Again, DESAP produced the most
favorable average best solution for F4. DE with the
larger population sizes of 50 and 100 were able to
produce slightly better solutions on average compared
to DESAP with the exception of F4 where DESAP
outperformed all configurations of the conventional
DE. Comparing between DESAP-Abs and DESAP-
Rel, both versions had the same average of the best
solutions for F1 but was better using the absolute
encoding for F2, F3 and F5, whereas the opposite held
true for F4.

Table 3: Standard deviation of best solutions found.

Table 3 lists the standard deviation of the best
solutions found over 50 runs. These results indicate

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp330-335)

that the performance of DESAP is quite stable
compared to the conventional DE algorithm. The
dynamic nature of the population size does not appear
to adversely affect the stability of the evolutionary
search process and was in fact more stable than DE
when DE was set to use the smaller population sizes.
For DE with the larger population sizes, the standard
deviation of the best solutions of DESAP were not
very different compared to DE. Comparing between
the two different methodologies of self-adapting the
population size parameter, the absolute encoding
appeared to generate less variation in terms of the best
solutions found in all the test functions except for F4.
This suggests that the evolutionary search process is
more stable using the absolute encoding compared to
the relative encoding.

Table 4: Worst of the best solutions found.

Table 4 lists the worst of the best solutions found
over 50 runs. Except for F5 where DE-100P was able
to find the optimal solution in all runs, the worst of the
best solutions generated by DESAP were highly
similar to those generated by DE. Again what this
shows is that the dynamic self-adapted population
sizes in DESAP does not negatively affect the
optimization process. Moreover, the dynamic sizing of
the population was able to generate better solutions in
the run which produced the least optimal results
compared to static populations with small sizes.

Comparing between DESAP-Abs and DESAP-Rel,
the absolute encoding again appeared to have slightly
better results in terms of the worst of the best solutions
found for three of the five test functions. However, the
relative encoding generated a better result for F4. Both
algorithms produced the same worst of the best
solutions of 12.6705 for F5.

Table 5: Final population sizes for absolute encoding.

Table 6: Final population sizes for relative encoding.

Table 5 and 6 provides an analysis of the dynamic
population size reached after 1000 generations for the
50 evolutionary runs of DESAP (P.S. refers to
population size and S.D. refers to standard deviation).
One clear observation that can be made here is that
there is a fair amount of dynamics present in DESAP
when attempting to solve these five problems. The
population size analysis for DESAP-Abs is discussed
first. There is a noticeable difference between runs that
achieved a smaller population size at the end of the
search process and those that achieved a higher
population size. For F2-F4, the final population sizes
appear to be limited within a much narrower range as
compared to F1 and especially F5.

Surprisingly, the problem with the most number of
design variables, F4, produced the least amount of
variation in terms of final population sizes with only a
standard deviation of 0.71 and a range difference of
only 3 individuals between the minimum and
maximum population size. As this was the problem in
which DESAP-Abs obtained the best solution
compared to the conventional DE algorithm for all
population settings, it may be an indication that
DESAP-Abs was able to self-adapt to the appropriate
population size for solving this problem. This figure is
very close to the recommended population size setting
of ten times the number of design variables advocated
by the authors of the original DE algorithm as
explained earlier [10]. It should also be pointed out
that although DESAP-Abs utilized a higher population
size than those used by the conventional DE algorithm
in the F4 experiment, in which it obtained superior
results, this supports our motivation in proposing a
parameterless evolutionary algorithm — an
evolutionary algorithm should be able to automatically
determine, adjust and self-adapt its population size
appropriately to the problem at hand, which is exactly
that achieved by our proposed DESAP-Abs algorithm.

Secondly for DESAP-Rel, it can be seen from the
standard deviation that there is a much larger variation
in terms of population size compared to DESAP-Abs

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp330-335)

except for F5. This observation corresponds to the
larger standard deviation that was also detected for the
best solutions found over 50 runs (refer to Table 3).
Therefore, running DESAP using the absolute
population size encoding provided more stability than
using the relative population size encoding. Coupled
with the fact that the best solutions obtained did not
differ significantly between the two types of encoding,
it would appear that using the absolute population size
encoding may be preferable from a stability point of
view.

5.2 Population Dynamics: DESAP-Abs vs.
DESAP-Rel

Fig. 1: DESAP-Abs vs. DESAP-Rel: Population
dynamics of run generating the best solution for F1
(top left), F2 (top right), F3(middle left), F4 (middle

right) and F5 (bottom).

 We now compare the population dynamics of
DESAP-Abs and DESAP-Rel for F1-F5 in terms of
the overall best solution found. Figure 1 plots the
progression of the dynamically self-adapting
population size for every generation in the run that
found the overall best solution for the five test
problems. Dark solid lines indicate the population size
of DESAP using absolute encoding while the gray
solid lines indicate the population size of DESAP
using relative encoding.

From these graphs which compare the population
dynamics of the absolute encoding against the relative
encoding, it can be seen that for some of the problems,
the self-adaptation of population size appear to follow
quite similar trends over time in both approaches. For
F2, the relative encoding did not change its population
size from initialization to termination and the absolute
encoding also remained very narrowly range-bound
between 18 and 20 individuals.

For F3, both versions of encoding could be seen to
decrease its population size over time whereas for F5,
both encodings could be seen to increase its population
size very rapidly in the early stages of evolution and
then stabilize somewhat after generations 40–50 with a
slight decrease towards the end for the relative
encoding. However in F1 and F4, the population size
remained quite stable in the absolute version compared
to the relative version where the population size
increasingly became larger over time. Moreover, the
overall fluctuations in population size over time was
greater in DESAP-Rel for F1, F3, F4 and F5 compared
to DESAP-Abs.

Perhaps the most interesting and revealing problem
for DESAP is the F5 test function, which has many
deep local minima surrounding the global minimum
and is known to be a challenging problem for function
optimizers to find the optimum solution. As such, it
may have presented the most difficult evolutionary
landscape in terms of finding the solution for DESAP.
For both DESAP-Abs and DESAP-Rel, the population
size which can be seen to increase from around 18
individuals to more than 30 individuals may have been
caused by the fact that a much larger population size
was required to solve this problem. Therefore, the
DESAP-Abs self-adapted the population size to higher
numbers of individuals as evolution progressed due to
the advantage provided by this fact. The largest change
occurred before generation 25 and 30 for DESAP-Abs
and DESAP-Rel respectively. This observation again
supports the fact that the algorithm is able to home in
on a suitably sized population while at the same time
solving the problem at hand.

Overall, the population dynamics analysis shows
that the preconception of larger population sizes
tending to improve the search results to be untrue,
which corroborates the findings of [5]. If it were true
then all the graphs would show an increasing trend in
terms of the growth of the population size over time.
Furthermore, as the results are highly similar to the
conventional DE and clear dynamics are occurring in
the population of the proposed algorithms, the elitism
and culling procedures inherent in the self-adapted DE

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp330-335)

optimizer do not appear to encourage premature
convergence and may have actually benefited the
search process for F4 where superior results were
obtained.

6 Conclusion
We have proposed a DE algorithm with a dynamic
population sizing strategy called DESAP based on
self-adaptation. Two versions of DESAP were
implemented using absolute and relative encoding
methodologies respectively for dynamically self-
adapting the population size parameter. The algorithm
was tested against a conventional DE algorithm with
different but fixed, static population sizes on five
benchmark test problems. The results show that
DESAP with dynamic self-adapting population sizes
performed similarly well when compared against the
conventional DE algorithm. It also outperformed the
conventional DE algorithm for one of the test
problems. Additionally, it was found that both types of
parameter encoding yielded highly similar results in
terms of the best solutions found. However, there was
significantly more variation in both the best solutions
found and final population sizes using the relative
encoding. Since no significant advantages could be
observed using the relative encoding, it is concluded
that the use of an absolute encoding for the self-
adaptation of population size may be more favorable
by virtue of providing more stability over the course of
the evolutionary search process compared to the
relative encoding. A population dynamics analysis
also showed that the overall trends in self-adapting the
population size parameter were quite similar for some
of the problems although there was significantly more
variation in population size over time using the
relative encoding methodology.

References:
[1] J. Arabas, Z. Michalewicz, and J. Mulawka.

GAVaPS - A genetic algorithm with varying
population size. In Proceedings of the 1st IEEE
Conference on Evolutionary Computation, pages
73–78, Piscataway, NJ, 1994. IEEE Press.

[2] K.A. De Jong. An Analysis of the Behaviour of a
Class of Genetic Adaptive Systems. PhD thesis,
Univesity of Michigan, 1975.

[3] A.E. Eiben, R. Hinterding, and Z. Michalewicz.
Parameter control in evolutionary algorithms.
IEEE Transactions on Evolutionary
Computation, 3(2):124–141, 1999.

[4] G.R. Harik and F.G. Lobo. A parameter-less
genetic algorithm. In W. Banzhaf, et al., editors,
Proceedings of the 1999 Genetic and
Evolutionary Computation Conference,

volume 1, pages 258–265, Orlando, Florida,
1999. Morgan Kaufmann.

[5] R. Sarker and M.F.A. Kazi. Population size,
search space and quality of solution: An
experimental study. In Proceedings of the 2003
Congress on Evolutionary Computation
(CEC2003), volume 3, pages 2011–2018. IEEE
Press, Piscataway, NJ, 2003.

[6] D. Schlierkamp-Voosen and H. Muhlenbein.
Strategy adaptation by competing subpopulations.
In Y. Davidor, H.-P. Schwefel, and R. Manner,
editors, Proceedings of the 3rd Conference of
Parallel Problem Solving from Nature, number
866 in Lecture Notes in Computer Science, pages
199–208. Springer-Verlag, Berlin, 1994.

[7] R. Smith. Population size. In T. Back, D. Fogel,
and Z. Michalewicz, editors, Handbook of
Evolutionary Computation, chapter E1.1, pages
1–5. Oxford University Press, New York, 1997.

[8] W. M. Spears, K. A. De Jong, T. Back, D.B.
Fogel, and H. de Garis. An overview of
evolutionary computation. In P.B. Brazdil, editor,
Proceedings of the 1993 European Conference
on Machine Learning, volume 667, pages 442–
459, Vienna, Austria, 1993. Springer-Verlag.

[9] W.M. Spears. Adapting crossover in evolutionary
algorithms. In J.R. McDonnell, R.G. Reynolds,
and D.B. Fogel, editors, Proceedings of the 4th
Annual Conference on Evolutionary
Programming, pages 367–384. MIT Press,
Cambridge, MA, 1995.

[10] R. Storn and K. Price. Differential evolution: A
simple and efficient adaptive scheme for global
optimization over continuous spaces. Technical
Report TR-95-012, International Computer
Science Institute, Berkeley, 1995.

[11] J. Teo. Differential evolution with self-adaptive
populations. In 9th International Conference on
Knowledge-Based Intelligent Information and
Engineering Systems (accepted), Melbourne,
Australia, 2005.

[12] J. Teo and H.A. Abbass. Elucidating the benefits
of a self-adaptive Pareto EMO approach for
evolving legged locomotion in artificial creatures.
In Proceedings of the 2003 IEEE Conference on
Evolutionary Computation, volume 2, pages 755–
762, Pistacaway, NJ, 2003. IEEE Press.

[13] N. Zhuang, M. S. Benten, and P.Y. Cheung.
Improved variable ordering of BDDS with novel
genetic algorithm. In Proceedomgs of the IEEE
International Symposium on Circuits and
Systems, volume 3, pages 414–417, Piscataway,
NJ, 1996. IEEE Press.

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp330-335)

