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Abstract: - Although the Differential Evolution (DE) algorithm has been shown to be a simple yet powerful 
evolutionary algorithm for optimizing continuous functions, users are still faced with the problem of preliminary 
testing and hand-tuning of the evolutionary parameters prior to commencing the actual optimization process. As a 
solution, self-adaptation has been found to be highly beneficial in automatically and dynamically adjusting 
evolutionary parameters such as crossover rates and mutation rates. In this paper, we present a first attempt at self-
adapting the population size parameter in addition to self-adapting crossover and mutation rates. Firstly, our main 
objective is to demonstrate the feasibility of self-adapting the population size parameter in DE. Using the F1-F5 
benchmark test problems proposed by De Jong, we showed that DE with self-adaptive populations produced highly 
competitive results compared to a conventional DE algorithm with static populations. In addition to reducing the 
number of parameters used in DE, the proposed algorithm actually outperformed the conventional DE algorithm for 
one of the test problems. It was also found that that an absolute encoding methodology for self-adapting population 
size in DE produced results with greater optimization reliability compared to a relative encoding methodology. 
 
Keywords: - Soft computing, Evolutionary computation, Differential evolution, Parameter encoding, Self-adaptation, 
Evolutionary dynamics, Population dynamics. 

1 Introduction 
One of the current state-of-the-art evolutionary 
algorithms is the Differential Evolution (DE) 
algorithm [10]. It is a very simple population-based 
stochastic optimizer for continuous domains. The 
crucial idea behind DE is in the generation of trial 
solutions where the weighted difference between two 
population vectors is added to a third vector. The DE 
algorithm has been successfully applied to a whole 
host of engineering problems including the design of 
digital filters, mechanical design optimization, 
aerodynamic design and multiprocessor synthesis. 

There are three critical steps when using 
evolutionary algorithms to solve any problem: 
choosing appropriate (i) representations, (ii) selection 
processes, and (iii) parameter settings [3, 8]. This 
paper focuses on the third issue, that is the parameter 
settings required to run an evolutionary algorithm. In 
this regard, while the use of evolutionary algorithms 
for solving design and optimization problems is both 
widespread and diverse, there is still the common 
complaint voiced by end-users that there is the need to 
first find a good combination of parameter settings for 
running the evolutionary algorithms before their actual 
optimization work can begin in earnest [4] and the DE 
algorithm is no exception to this requirement. 

 
The parameter settings in evolutionary algorithms 

most commonly comprise of the (i) crossover rate, (ii) 
mutation rate, (iii) population size, and (iv) number of 
generations [3]. The number of generations can 
usually be eliminated as a user-defined parameter by 
simply determining an acceptable stopping or 
convergence criteria and building this metric directly 
into the evolutionary algorithm. In terms eliminating 
crossover and mutation rates as user-defined 
parameters, significant progress has been made 
through adaptation and self-adaptation of crossover 
and mutation rates [9, 12]. In fact, it has been found to 
actually improve the quality of solutions resulting 
from the search process [3]. Here, we make the 
distinction between adaptation and self-adaptation 
using Eiben’s definition [3]: (i) adaptation — where 
changes are made to parameters during evolution 
based on some feedback from the search and (ii) self-
adaptation — where changes are made to parameters 
during evolution through inclusion of parameters into 
the genetic encoding that is itself subjected to 
evolutionary processes and pressures. In fact, it has 
been pointed out that the usage of static parameters 
that do not change over the course of the artificial 
evolution may not give the best results [3]. 
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However, significantly less work has been done in 
terms of adapting population size so as to render it as a 
non-user defined parameter. It has been highlighted 
that an appropriate population size is critical to both 
run-time efficiency and optimization effectiveness [5, 
7]. As such, the main objective of this research work is 
to implement and investigate a dynamic approach to 
the population sizing problem through self-adaptation, 
thereby eliminating population size as a user-defined 
parameter in working towards a parameterless 
evolutionary algorithm. 

This remainder of this paper is organized as 
follows. Section 2 surveys the work that has been 
previously conducted in the area of adaptation of 
population size. Section 3 outlines our proposed 
methodology of a dynamic population size through 
self-adaptation. Section 4 presents the setup of the 
experiments conducted. Section 5 presents the results 
obtained and analysis conducted. Finally, Section 6 
summarizes the main conclusions arising from this 
work. 

2 Adapting Population Sizes 
The task of selecting an appropriate population size for 
solving particular classes of problems has been known 
to be a challenging and often puzzling question in and 
of itself. A number of different approaches have been 
used in adapting the sizes of dynamic populations. 
Adaptation based on chromosomal age [1], probability 
of selection error [7], competition among 
subpopulations [6], generational improvement [13] 
and exponential population growth [4] have been used. 
However in all of the methods mentioned above, the 
approach is based on adaptation and not self-
adaptation, that is the changes made to the population 
size parameter are based on some form of feedback 
from the search. Population size is not included as an 
element of the genetic encoding that is subjected to 
evolutionary processes and pressures as in self-
adaptation. Since self-adaptation has been shown to be 
a very effective method for dynamically adjusting 
evolutionary parameters [9, 12], we thus propose a 
similar treatment for dynamically adjusting the 
population size. In the next section, we outline our 
methodology for implementing a dynamic population 
size for the DE algorithm based on self-adaptation 
using firstly an absolute encoding methodology and 
secondly a relative encoding methodology. 

3 Proposed Algorithms 
Our proposed algorithm is called Differential 
Evolution with Self-Adapting Populations (DESAP). 
The main contribution of this proposed algorithm is 

that the population size is automatically determined 
from initialization right through the evolutionary 
search process to completion. Therefore, the user does 
not need to be concerned at all with regards to 
determining the population size to be used for the 
evolution. A self-adaptive strategy is also used for 
controlling the crossover and mutation rates for both 
our proposed DESAP as well as conventional DE 
algorithms where the rates are encoded into the 
chromose and subjected to evolution similar to the 
search variables. We propose two different versions of 
DESAP, where the first version utilizes an absolute 
encoding methodology for population size, which we 
shall refer to as DESAP-Abs, and the second version 
utilizes a relative encoding methodology for 
population size, which we shall refer to as DESAP-
Rel. A real-number representation is used in the 
chromosome for each of the search variables as well as 
the self-adapted parameters. 

The initial population size for DESAP-Abs and 
DESAP-Rel are both set at 10 times the number of 
design variables as recommended by the authors of the 
original DE algorithm [10]. For DESAP-Abs, the 
population size of subsequent generations is taken as 
the average of the population size attribute from all 
individuals in the current population whereas for 
DESAP-Rel, it is taken to be the current population 
size plus a percentage increase or decrease according 
to the population growth rate [11]. The formulation for 
calculating the new population size parameter is as 
denoted below, where π represents the evolvable 
population size parameter that is encoded into the 
chromosome: 

 

 
 
It should be pointed out also that elitism and 

culling are achieved naturally in both DESAP-Abs and 
DESAP-Rel. Elitism is only executed when the 
population size of the next generation exceeds the 
population size of the current generation 
( MM new > ). In this case, all of the current population 
will survive into the next generation and on top of that, 
the best solution in the current population is copied 
into MM new −  individuals to make up the required 
number of individuals in the next generation. In the 
case where the population size of the next generation 
is less than the population size of the current 
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generation ( MM new < ), then only the best newM  
individuals will survive into the next generation and 
the remainder of the current population will be culled. 
No elitism or culling will occur if the population size 
of the next generation equals the population size of the 
current population ( MM new = ). 

4 Experimental Setup 
To investigate the effects of a dynamic self-adaptive 
population, both versions of our proposed DESAP 
algorithm are compared against a conventional DE 
algorithm, which is similar to DESAP in all aspects 
except that the population size is static and non-
adaptive. Five different population sizes of 10, 20, 30, 
50, and 100 were used for the conventional DE 
algorithm. These algorithms were compared using the 
widely used F1-F5 test functions proposed by De Jong 
[2]. We treat these benchmark problems in their 
original form, that is as function minimization 
problems. Each evolutionary setup was run for 100 
generations and repeated 50 times using different 
seeds. 

5 Results and Discussion 

5.1 DESAP vs. Conventional DE 
We present below the results obtained using both 
versions of our proposed DESAP algorithm with 
dynamic self-adapting population sizes against the 
conventional DE algorithm with static population sizes 
of 10, 20, 30, 50, and 100, which are denoted as DE-
10P, DE-20P, DE-30P, DE-50P, and DE-100P 
respectively. 

 

Table 1:  Overall best solution found. 

Table 1 lists the overall best solution found over 50 
runs. Both versions of our proposed algorithm DESAP 
produced highly similar results as the conventional DE 
algorithm. In fact, the proposed DESAP algorithm 
obtained the best overall solution for F4. It converged 
to the best possible solution for F3 and F5 as did the 
DE algorithm with different population sizes. DESAP 

obtained slightly better solutions than DE for F1 
except when DE was set to largest population size 
(DE-100P). For F2, DESAP performed marginally 
better than DE-30P and marginally worse against the 
remaining setups for DE. Comparing between 
DESAP-Abs and DESAP-Rel, the results were highly 
similar between both versions except that the absolute 
encoding produced marginally better results for F2 and 
F4 and vice-versa for F1. Thus, in terms of the overall 
best solution found, DESAP produced highly 
competitive results compared to the conventional DE 
algorithm. 

 

Table 2:  Average of best solutions found. 

Table 2 lists the average of the best solutions found 
over 50 runs. The results again indicate that across the 
50 different evolutionary runs, DESAP was able to 
perform better on average compared to DE with 
smaller population sizes of 10, 20, and 30 for F1, F3 
and F4 and better than DE with population sizes of 10 
for F2 and F5. Again, DESAP produced the most 
favorable average best solution for F4. DE with the 
larger population sizes of 50 and 100 were able to 
produce slightly better solutions on average compared 
to DESAP with the exception of F4 where DESAP 
outperformed all configurations of the conventional 
DE. Comparing between DESAP-Abs and DESAP-
Rel, both versions had the same average of the best 
solutions for F1 but was better using the absolute 
encoding for F2, F3 and F5, whereas the opposite held 
true for F4. 

 

Table 3:  Standard deviation of best solutions found. 

Table 3 lists the standard deviation of the best 
solutions found over 50 runs. These results indicate 
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that the performance of DESAP is quite stable 
compared to the conventional DE algorithm. The 
dynamic nature of the population size does not appear 
to adversely affect the stability of the evolutionary 
search process and was in fact more stable than DE 
when DE was set to use the smaller population sizes. 
For DE with the larger population sizes, the standard 
deviation of the best solutions of DESAP were not 
very different compared to DE. Comparing between 
the two different methodologies of self-adapting the 
population size parameter, the absolute encoding 
appeared to generate less variation in terms of the best 
solutions found in all the test functions except for F4. 
This suggests that the evolutionary search process is 
more stable using the absolute encoding compared to 
the relative encoding. 

 

Table 4:  Worst of the best solutions found. 

Table 4 lists the worst of the best solutions found 
over 50 runs. Except for F5 where DE-100P was able 
to find the optimal solution in all runs, the worst of the 
best solutions generated by DESAP were highly 
similar to those generated by DE. Again what this 
shows is that the dynamic self-adapted population 
sizes in DESAP does not negatively affect the 
optimization process. Moreover, the dynamic sizing of 
the population was able to generate better solutions in 
the run which produced the least optimal results 
compared to static populations with small sizes. 

Comparing between DESAP-Abs and DESAP-Rel, 
the absolute encoding again appeared to have slightly 
better results in terms of the worst of the best solutions 
found for three of the five test functions. However, the 
relative encoding generated a better result for F4. Both 
algorithms produced the same worst of the best 
solutions of 12.6705 for F5. 

 

Table 5:  Final population sizes for absolute encoding. 

 

Table 6:  Final population sizes for relative encoding. 

Table 5 and 6 provides an analysis of the dynamic 
population size reached after 1000 generations for the 
50 evolutionary runs of DESAP (P.S. refers to 
population size and S.D. refers to standard deviation). 
One clear observation that can be made here is that 
there is a fair amount of dynamics present in DESAP 
when attempting to solve these five problems. The 
population size analysis for DESAP-Abs is discussed 
first. There is a noticeable difference between runs that 
achieved a smaller population size at the end of the 
search process and those that achieved a higher 
population size. For F2-F4, the final population sizes 
appear to be limited within a much narrower range as 
compared to F1 and especially F5. 

Surprisingly, the problem with the most number of 
design variables, F4, produced the least amount of 
variation in terms of final population sizes with only a 
standard deviation of 0.71 and a range difference of 
only 3 individuals between the minimum and 
maximum population size. As this was the problem in 
which DESAP-Abs obtained the best solution 
compared to the conventional DE algorithm for all 
population settings, it may be an indication that 
DESAP-Abs was able to self-adapt to the appropriate 
population size for solving this problem. This figure is 
very close to the recommended population size setting 
of ten times the number of design variables advocated 
by the authors of the original DE algorithm as 
explained earlier [10]. It should also be pointed out 
that although DESAP-Abs utilized a higher population 
size than those used by the conventional DE algorithm 
in the F4 experiment, in which it obtained superior 
results, this supports our motivation in proposing a 
parameterless evolutionary algorithm — an 
evolutionary algorithm should be able to automatically 
determine, adjust and self-adapt its population size 
appropriately to the problem at hand, which is exactly 
that achieved by our proposed DESAP-Abs algorithm. 

Secondly for DESAP-Rel, it can be seen from the 
standard deviation that there is a much larger variation 
in terms of population size compared to DESAP-Abs 
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except for F5. This observation corresponds to the 
larger standard deviation that was also detected for the 
best solutions found over 50 runs (refer to Table 3). 
Therefore, running DESAP using the absolute 
population size encoding provided more stability than 
using the relative population size encoding. Coupled 
with the fact that the best solutions obtained did not 
differ significantly between the two types of encoding, 
it would appear that using the absolute population size 
encoding may be preferable from a stability point of 
view. 

5.2 Population Dynamics: DESAP-Abs vs. 
DESAP-Rel 

  

  

 

Fig. 1:  DESAP-Abs vs. DESAP-Rel: Population 
dynamics of run generating the best solution for F1 
(top left), F2 (top right), F3(middle left), F4 (middle 

right) and F5 (bottom). 

 We now compare the population dynamics of 
DESAP-Abs and DESAP-Rel for F1-F5 in terms of 
the overall best solution found. Figure 1 plots the 
progression of the dynamically self-adapting 
population size for every generation in the run that 
found the overall best solution for the five test 
problems. Dark solid lines indicate the population size 
of DESAP using absolute encoding while the gray 
solid lines indicate the population size of DESAP 
using relative encoding. 

From these graphs which compare the population 
dynamics of the absolute encoding against the relative 
encoding, it can be seen that for some of the problems, 
the self-adaptation of population size appear to follow 
quite similar trends over time in both approaches. For 
F2, the relative encoding did not change its population 
size from initialization to termination and the absolute 
encoding also remained very narrowly range-bound 
between 18 and 20 individuals. 

For F3, both versions of encoding could be seen to 
decrease its population size over time whereas for F5, 
both encodings could be seen to increase its population 
size very rapidly in the early stages of evolution and 
then stabilize somewhat after generations 40–50 with a 
slight decrease towards the end for the relative 
encoding. However in F1 and F4, the population size 
remained quite stable in the absolute version compared 
to the relative version where the population size 
increasingly became larger over time. Moreover, the 
overall fluctuations in population size over time was 
greater in DESAP-Rel for F1, F3, F4 and F5 compared 
to DESAP-Abs. 

Perhaps the most interesting and revealing problem 
for DESAP is the F5 test function, which has many 
deep local minima surrounding the global minimum 
and is known to be a challenging problem for function 
optimizers to find the optimum solution. As such, it 
may have presented the most difficult evolutionary 
landscape in terms of finding the solution for DESAP. 
For both DESAP-Abs and DESAP-Rel, the population 
size which can be seen to increase from around 18 
individuals to more than 30 individuals may have been 
caused by the fact that a much larger population size 
was required to solve this problem. Therefore, the 
DESAP-Abs self-adapted the population size to higher 
numbers of individuals as evolution progressed due to 
the advantage provided by this fact. The largest change 
occurred before generation 25 and 30 for DESAP-Abs 
and DESAP-Rel respectively. This observation again 
supports the fact that the algorithm is able to home in 
on a suitably sized population while at the same time 
solving the problem at hand. 

Overall, the population dynamics analysis shows 
that the preconception of larger population sizes 
tending to improve the search results to be untrue, 
which corroborates the findings of [5]. If it were true 
then all the graphs would show an increasing trend in 
terms of the growth of the population size over time. 
Furthermore, as the results are highly similar to the 
conventional DE and clear dynamics are occurring in 
the population of the proposed algorithms, the elitism 
and culling procedures inherent in the self-adapted DE 
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optimizer do not appear to encourage premature 
convergence and may have actually benefited the 
search process for F4 where superior results were 
obtained. 

6 Conclusion 
We have proposed a DE algorithm with a dynamic 
population sizing strategy called DESAP based on 
self-adaptation. Two versions of DESAP were 
implemented using absolute and relative encoding 
methodologies respectively for dynamically self-
adapting the population size parameter. The algorithm 
was tested against a conventional DE algorithm with 
different but fixed, static population sizes on five 
benchmark test problems. The results show that 
DESAP with dynamic self-adapting population sizes 
performed similarly well when compared against the 
conventional DE algorithm. It also outperformed the 
conventional DE algorithm for one of the test 
problems. Additionally, it was found that both types of 
parameter encoding yielded highly similar results in 
terms of the best solutions found. However, there was 
significantly more variation in both the best solutions 
found and final population sizes using the relative 
encoding. Since no significant advantages could be 
observed using the relative encoding, it is concluded 
that the use of an absolute encoding for the self-
adaptation of population size may be more favorable 
by virtue of providing more stability over the course of 
the evolutionary search process compared to the 
relative encoding. A population dynamics analysis 
also showed that the overall trends in self-adapting the 
population size parameter were quite similar for some 
of the problems although there was significantly more 
variation in population size over time using the 
relative encoding methodology. 
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