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Abstract: - In this paper numerical and experimental analysis of long range guided waves for non destructive testing 
of pipes is carried out. Guided waves based NonDestructiveTesting (NDT) methods offer considerable advantages 
over conventional techniques because they allow the inspection of wide areas from a single point of measure; 
therefore they are currently being investigated by some researchers. The analysis of the measured data from guided 
wave propagation in pipes requires advanced processing data systems to extract the right information on defect size 
and location. Then, a full comprehension of the physical phenomena underlying this technique is fundamental for a 
successful and reliable use of this technique. Then combined numerical and experimental analyses are of 
fundamental importance. In this paper a finite element code is used to numerical simulate the guided wave 
phenomenon in pipes. Furthermore, an experimental set-up showing critical characteristics has been arranged for the 
testing of the numerical data. 
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1   Introduction 
In general numerical modelling of ultrasound can be 
used as a flexible tool for examining the generation, 
propagation and interaction of elastic waves in solid 
materials for nondestructive evaluation (NDE), and they 
can be also used in order to build the database required 
for defect classification and sizing. Finite element 
models have been developed that demonstrate 
qualitative [1] agreement with experimental 
measurements and quantitative [2] agreement with an 
analytical half-space line source model. In both cases, 
the numerical code solves for transient displacement 
fields in linear, isotropic, twodimensional plane strain 
media.  
The physical effect of anisotropy is included by 
specifying the material dependent elastic constants in 
the generalized stress-strain relationship known as 
Hooke's law. However, ultrasonic attenuation 
mechanisms are more difficult to incorporate in a 
numerical code since they are not only due to energy 
losses such as grain scattering and absorption or 
dissipation but also result from beam spreading of the 
elastic fields in the material [3]. Each of these 
mechanisms has been studied analytically and 
experimentally in the past. 
Scattering is caused by a re-orientation and mode 
conversion of acoustic energy at microstructural 
interfaces and plays a major damping role in materials 
far which microstructural dimensions and interrogation 
wavelength are of the same order [4]. Efforts have also 

been made to develop a generalized scattering model 
but the task is complicated by the number of parameters 
involved in the description of the attenuation 
characteristics of a given polycrystalline material [5]. 
Energy absorption, the second major attenuation 
mechanism, is primarily characterized by irreversible 
thermal processes [6]. A major contributing factor, for 
example, is thermoelastic attenuation due to conduction 
between alternating compression and rarefaction regions 
in the elastic waves. Modelling and measuring work on 
energy absorption can be found in recent publications 
[7].  
The numerical models [8], [9] are suitable for 
incorporating inhomogeneity, anisotropy and complex 
geometries, but they all suffer from the two-dimensional 
(2-D) nature of the code. The results, therefore, are not 
general enough to be useful far quantitative 
experimental verification studies. In a three-dimensional 
(3-D) code, the geometric factor is implicitly accounted 
for as part of the formulation , some theoretical and 
experimental results using FEM [10] [11], BEM [12], 
[13] have been presented and also FEM-BEM coupled 
schemes have been proposed [14].  
In this paper we have used the code CAPA, based on the 
formulation showed in [14] to investigate the guided 
wave propagation phenomenon for several defect 
geometries. The most significant results will be shown 
together with a critical test comparing numerical and 
experimental data measured on a set-up arranged on a 
practical dismounted pipe for gas transportation.  
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2   Numerical analysis 
Propagation and scattering of torsional elastic waves in 
a pipe with notch have been investigated varying the 
geometrical parameters of defect.  
The test geometry is shown in Fig. 1. The defect region, 
located in z=zd0=1.3 m, θd0=0°, is characterized by the 
axial length ∆zd, the circumferential extent ∆θd and the 
thickness parameter td=(Rb-Rd)/(Rb-Ra) where Ra is the 
pipe internal radius Ra whereas Rd, Rb are the external 
radius in the region with and without defect 
respectively. 
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Fig. 1 – Geometry. 

 
A transient numerical analysis has been carried out 
using CAPA, commercial software developed by 
WisSoft, Buckenhof, Germany. CAPA is a Finite-
Element-Boundary-Element program for the numerical 
solution of coupled field problems in mechanical, 
electric, magnetic and acoustic domain. 
A full 3D finite element analysis has been applied [15] 
on L=2.1 m long ideal steel pipe (ρ=7850 kg/m3, 
E=2.157⋅1011 N/m2, ν=0.3) with an 86 mm outside 
diameter and 5.5 mm thick wall. The pipe defect is 
located at z=zd0=1.3 m plane.  
The T(0,1) fundamental torsional mode is excited in the 
pipe by prescribing the circumferential displacements 
on the 36 external nodes belonging to z=0 plane. A tone 
burst excitation consisting of Nh=6 cycles at f0=55 kHz 
modulated by an Hanning window is applied; its time 
length is Tl=0.11ms.  
The incident and the reflected waves have been 
observed on the N=36 nodes Pn located in z=zobs=0.9 m 
plane, uniform distributed along the exterior 
circumference and identified by the angle θn=(n−1)10°, 
n=1, 2, …36.          
The torsional component of the displacement  
ut(Pn, t)= −sin(θn)⋅ux(Pn, t) + cos(θn)⋅uy(Pn, t),              (1) 
where ux, uy denote the Cartesian components, and its 
averaged value 
uta(t)=Σn ut(Pn, t)/N                                                       (2) 
are the most significant values of the displacement. 
Preliminary tests have verified that only the T(0,1) non-
dispersive mode propagates along the pipe with the 
theoretical group velocity cT=3250 m/s. Therefore the 
wavelength is λ= cT ⋅ f0≅60 mm and the size of the 
smallest defect that can be identified (spatial resolution) 
is lsr= cT⋅Tl/2=λNh/2= 180 mm. 

Finally small and large defects in axial, circumferential 
and radial extent have been considered in axisymmetric 
and non axisymmetric configuration. The numerical 
results are presented and discussed below. 
 
2.1 Scattering from axisymmetric defects 
Axisymmetric defects (∆θd=360°) have been considered 
with the following axial and radial extents:  
∆zd=3,60,210mm ≅0.05λ,λ,3.5λ; td=n⋅10%,n=1,2,..,9 (3) 
In the results the radial and axial components of 
displacement are null. As expected, with an incident 
torsional wave the reflected and transmitted waves are 
torsional too. 
Fig. 2a shows the incident wave xinc(t) whereas the 
variation of reflected signal yrefl(t; td) with defect depth 
td when ∆zd=3mm is shown in Fig. 2b. The incident 
pulse can be weakly or strongly attenuated from the 
defect but its shape doesn’t change as the Fast Fourier 
Transformation of incident and reflected signals 
confirms (see Fig. 3). The reflection coefficient 
(computed as R(td; f0)=|Yrefl(f0; td)|/ |Xinc(f0)|) has been 
compared with values computed and measured in [16]; 
the agreement shown in Fig. 4 is good. 

 
Fig. 2 – (a) Incident wave and (b) reflected wave vs. defect 

depth (∆zd=3mm).  

 
Fig. 3 – Spectrum of the incident and the reflected waves vs. 

defect depth (∆zd=3mm).  

 
Fig. 4 –Reflection ratio vs. defect depth (∆zd=3mm). 
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The effect of the defect axial extent is shown in Fig. 5 
when td=50%. If ∆zd is very small respect to the spatial 
resolution lsr (see Fig. 5a) there isn’t distortion in the 
reflected signal but only attenuation with respect to the 
incident signal. Otherwise when ∆zd is comparable to lsr, 
the reflected signal from defect is the result of the 
interaction between two distinct geometric 
discontinuities: the stepwise thickness located in 
zA=z0d−∆zd/2 (discontinuity A) and that other one 
located in zB=z0d+∆zd/2 (discontinuity B). This is 
evident in Fig. 5c where  ∆zd> lsr: in the reflected signal 
there are four distinct pulses related to the reflection 
from A and to the single, double and triply interaction 
between A and B. 
For the first pulse the theoretical arrival time and the 
reflection coefficient are 
tA=[zA+( zA−zobs)]/cT = 0.46 ms,                       (4) 
RA=(Z2− Z1)/(Z2+ Z1)=(A2− A1)/(A2+ A1)=−0.35        (5) 
rispectively. 
In (4) the acoustic impedance Zi=ρcTAi and the cross-
sectional area of the pipe Ai are evaluated [17], [18] in 
the section 1 (z<zA) for the incident wave and in the 
section 2 (z>zA) for the transmitted wave.   
For the interaction between A, B it is: 
tn= tA+n⋅2∆zd/cT= 0.59, 0.72, 0.85 ms,                         (6) 
Rn=(1+RA)(−RA)2n−1(1− RA)=0.31, 0.04, 0.005            (7) 
where n=1, 2, 3 for the single, doubly and triply 
interaction respectively. 
The numerical results shown in Fig. 5c agree with these 
theoretical values. 

 

 
Fig. 5 –Reflected signal vs. axial length: td=50%, (a) ∆zd=3 

mm, (b) ∆zd=60 mm, (c) ∆zd=210 mm. 
 
 

 
2.2 Reflection from non-axisymmetric defect 
The reflection of the incident T(0,1) mode from non-
axisymmetric defect has been investigated using the 
following values for defect parameters (see Fig. 1): 
td=10, 30, 50, 70, 90 %;    
∆θd=10, 20, 30, 40 °;           (8) 
∆zd=3, 6, 12, 18, 24 mm= 0.05λ, 0.1λ, 0.2λ, 0.3λ, 0.4λ. 
The results of the 3D analysis show that the non-
axisymmetric defect not only excites the torsional mode 
but the longitudinal and flexural modes too. As shown 
in Fig. 6a, related to the case td=50%, ∆θd=30°, ∆zd=12 
mm, the radial and axial component of the displacement 
can be comparable with the circumferential component 
when the reflected wave is evaluated in a single point.  

 
Fig. 6 – Cylindrical components of the displacement: (a) 
single point xP= yP=30.4mm, zP=0.9m and (b) averaged 

values.  

 

 
Fig. 7 –Reflected signal vs. (a) defect depth, (b) 

circumferential length, (c) axial length. Averaged values of 
the circumferential displacement component. 
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Nevertheless, if the average displacement is computed 
along the circumference the circumferential component 
is dominant (see Fig. 6b). Some significant results for 
the circumferential component (averaged values) are 
shown in Fig 7a, b, c where one of the three parameters 
td, ∆θd, ∆zd changes with respect to the reference values 
td=50%, ∆θd=20°, ∆zd=12 mm.  
The reflected signal sensitivity with respect to the 
geometrical parameters of the defect seems very strong. 
 
3  Experimental results 
Experimental data have been obtained using a 
dismounted steel pipe for gas transportation. The sample 
was 3.4 m long with 114 mm outside diameter and 8.3 
mm thick. The reflection from a patch (circumferential 
and axial length 0.19 m  and 0.43 m respectively, 
thickness 10 mm) arranged to repair the pipe has been 
investigated using MsSR – 2020 D instrument. The 
instrument, developed by SwRI South West Research 
Institute in San Antonio, Texas, is based on 
magnetostrictive sensor technology: by using 
appropriate probes it is able to generate and detect 
guided wave up to 250 kHz in pipes, plates, rods and 
cables [19]. 
The instrument has been arranged in pitch-catch 
configuration as shown in Fig. 8 to generate (TX probe) 
and detect (RX probe) torsional waves in the pipe under 
test. The distance between the two probes was zTR=0.4m 
and measured data have been obtained exciting in the 
pipe 1 cycle pulse of 64 kHz.  
 

 
Fig. 8 - Experimental setup. 

 
Initially the shear wave velocity cT =3240 m/s has been 
calculated by using the signals in the measured data 
related to known geometric features. In the sample the 

distance between the probes and the ends of pipe is 
known. Then the measured data related to the reflection 
from the patch have been acquired as Fig. 9 shows. In 
the figure the initial pulse and the reflected pulses from 
the patch can be recognized. As a matter of fact the 
reflected pulses are related to the pipe wall thickness 
change at zA = 0.4 m and  zB = 0.83 m distance from the 
RX probe. The theoretical arrival times  
tA = (zTR + 2⋅zA)/cT = 0.37 msec,          (9) 
tB = (zTR + 2⋅zB)/cT = 0.63 msec,         (10) 
agree with the experimental results shown in Fig. 9. 
In particular not only the geometrical discontinuities in 
the pipe are recognized but also the axial extent of the 
patch can be computed from measured data. It is  
∆zd =  cT⋅(tB−tA)/2 = 0.42 m,        (11) 
with good agreement with the real axial extent.  

 
Fig. 9 – Torsional measured component of the displacement. 

 
 
4  Combined numerical and experimental 
analyses 
A combined numerical and experimental analysis has 
been carried out using the test sample described in the 
previous section. The aim was to investigate how the 
right information on defect size and location can be 
extracted from measured/computed data. 
A finite element analysis of the dismounted pipe shown 
in Fig. 8 has been executed using the code CAPA. In 
particular the patch has been modelled as stepwise 
thickness change without the welds existing in the real 
pipe. Moreover in the model the circumferential 
location and extent of the patch was (see Fig. 1) θd0=0°, 
∆θd=220° respectively. Finally a torsional excitation of 
64 kHz has been applied and the reflected signal from 
the patch has been observed in 36 circumferential nodes 
at 0.4 m distance from the patch itself.  
Fig. 10 shows the averaged value of the circumferential 
component of the displacement. This figure can be 
compared with the experimental results shown in Fig. 9. 
In particular, the amplitude of the reflections from A 
and B have the same ratio both in fig. 9 and 10.  

TX probe 

RX probe 

0.40 m 

0.40 m 

0.43 m 
Patch 

0.19 m 
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Fig. 10 – Torsional  computed  component of the 

displacement 
 

The qualitative agreement between numerical and 
measured results is good confirming that the averaged 
value of the torsional component of displacement is able 
to detect the axial discontinuities in the pipe and the 
axial extent of the defect. Nevertheless this analysis is 
possible because the defect is known. In general the 
only torsional component of the displacement can be 
used to detect the defect but it is not sufficient to 
identify and to size the defects.  As shown in the section 
2 the torsional component is sensitivity with respect to 
the axial, circumferential and radial extent of the defect. 
So other displacement variables are needed to identify 
and to size a defect. In the following the circumferential 
extent of a strip is investigated by the numerical 
analysis with code CAPA. The strip is a geometrical 
simplification of the patch used above to simulate the 
pipe shown in Fig.  8. In particular the strip can be view 
as a patch with infinite axial length. So in the reflected 
signal shown in Fig. 11 there is only one pulse; in 
particular the reflection from the patch and the strip 
coincide until t<tB where the time tB (see (6)) is related 
to the reflection from the second discontinuity zB in the 
patch. 
The effect of the defect circumferential extent has been 
analysed with the following values ∆θd=120, 220, 320, 
360 °. 
Initially, the averaged value of the torsional component 
of the displacement has been evaluated. As already 
known (see Fig. 7b) and as shown in Fig. 12 the 
amplitude of this component increases when ∆θd 
increases. 
Then the new displacement variable 
ufa(t ; ∆θd, θ0)=Σn [ut(Pn, t ; ∆θd)⋅cos(θn−θ0)]/N         (12) 
has been defined. 
This variable is connected [19] to the circumferential 
component of displacement in a flexural wave. 
At first ufa has been evaluated with ∆θd=220° and 
θ0=(n−1)⋅30°,  n =1, 2, …12. The amplitude |ufa(t ; 220°, 

θ0)| is maximum when θ0=0, 180°: those values are 
related to symmetry plane of the defect (see Fig. 1). 

 
Fig. 11 –  Torsional computed  component of the 

displacement for the strip (solid line) and for the patch 
(dashed line). 

 

 
Fig. 12 –  Torsional computed  component of the 

displacement for the strip. 

 
Fig. 13 – Computed  component ufa of the displacement for 

the strip. 
 

Subsequently ufa has been evaluated with ∆θd=120, 220, 
320, 360° and θ0=θd0=0°. The results are shown in Fig. 
13: when ∆θd increases from 220° to 360° the amplitude 
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of ufa decreases; in particular ufa is null with  ∆θd=360° 
that is when the defect is axisymmetric.  
Therefore the variable ufa seems useful not only to size 
the circumferential extent of the defect but also to locate 
the defect on the pipe circumference.   
 
5  Conclusion 
A combined numerical and experimental analysis of 
non-destructive testing of pipes by Ultrasonic guided 
waves had been carried out. Numerical results had been 
validated with computed and measured data available in 
the literature and tested with an experimental set-up 
arranged on a practical dismounted pipe for gas 
transportation. A suitable combined numerical and 
experimental analysis carried out by defining an 
appropriate displacement variable has given appropriate 
information to detect size and location of a defect.  
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