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Abstract: - The design of Non-Destructive Testing systems for fault detection in long and not accessible 
pipelines is an actual task in the industrial and civil environment. At this purpose the diagnosis based on the 
propagation of guided ultrasonic waves along the pipes offers an attractive solution for the fault 
identification and classification. The authors studied this problem by means of suitable Artificial Neural 
Network models. Numerical techniques have been used to model different kinds of pipes and faults, and to 
obtain several returning echoes containing the fault information. Two kinds of excitation waves have been 
used: longitudinal and torsional wave modes. The obtained signals have been processed in order to filter the 
noise, to reduce the data dimensionality, and to compute suitable features. The features selected from the 
signals can be further processed in order to limit the size of the Neural Network models without loss of 
information. At this purpose, the Principal Component Analysis has been investigated. Finally, the selected 
features have been used as input for the Neural Network models. In this paper, traditional feed-forward, 
Multi Layer Perceptron networks have been used to classify position, width, and depth of the defects. 
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1 Introduction 
The presence of flaws and corrosion in pipes is one 
of the major problems in industrial and civil plants, 
as water, oil, steam, and gas pipelines. The Non-
Destructive Testing (NDT) with ultrasonic guided 
waves in the pipe wall provides an interesting 
solution to the fault inspection problem because it 
allows to inspect long pipes, positioning a ring 
transducer in only one point, usually accessible for 
inspections, without dismantling and interrupting 
the service, favoring the least uneasiness and 
economic loss [1] [2]. At this purpose, particular 
ultrasonic guided waves, called Lamb Waves [3], 
can be excited at the edge of the pipe and will 
propagate many meters, returning echoes 
indicating the presence of faults, such as corrosion, 
cracks, etc.  

In this work, several testings have been 
performed using longitudinal and torsional wave 
excitations. In contrast to longitudinal mode, the 
torsional mode propagation characteristics are not 
affected by the presence of fluid in the pipes and 
there is no other axisymmetric torsional mode in 
the frequency range. However, providing suitable 
preprocessing, both the excitations permit to obtain 
comparable results. 

The diagnostic system proposed in this paper is 
based on Artificial Neural Networks (NNs), for 
their ability of generalization and for the 
characteristic of not requiring any fault physical 

model. In particular, fault diagnosis has been 
modeled as a pattern recognition process in which 
the classifier is a neural network. Classically, a 
pattern recognition system is composed of three 
modules [4]: a transducer that acquires data on a 
physical device; a feature extractor, whose purpose 
is to reduce the data dimensionality that the 
transducer produces, to filter the noise, and to 
compute significant features or properties; a 
classifier that makes a decision on the class whose 
the fault belongs to.  

In the diagnostic system we propose in this 
paper, the transducer is made up of mechanically 
independent dry-coupled piezo-electric elements 
distributed around a circumference; the feature 
extractor may be Wavelets, Blind Separation, Fast 
Fourier Transform (FFT), Principal Component 
Analysis (PCA), or other statistics based on time or 
frequency analysis; the classifier is a Multi Layer 
Perceptron (MLP) neural network. 

Two main phases can be recognized in the 
diagnostic task: the training phase and the defect 
detection phase. During defect detection 
operations, the signals acquired on the actual pipe 
have to be preprocessed and used as inputs to the 
neural network that has been previously trained 
using a numerical model of the pipe. This choice 
decreases the developing time and permits to 
automatically create the training, validation and 
test sets needed to build the neural network 
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diagnostic system. Theoretically, it may be 
possible to use actual measurements in the training 
phase, but this is not practical. In fact, the data to 
feed - the NNs during the training phase are the 
waves reflected by the defects. These signals can 
be obtained by a large amount of experimental 
tests, which consist in building artificially several 
faults of different dimension and position in a 
certain number of pipes. This process is very 
expensive, complex and time consuming, 
especially if various and numerous datasets are 
required. Thus, the alternative way consists of 
obtaining the required signals by using numerical 
analysis, e.g., the Finite Element Method (FEM) 
[5]. Also in this case the data will be few numerous 
and will have a large dimensionality. In fact, the 
solution of the numerical models requires a large 
amount of memory space and CPU time, as the 
pipelines to be studied are several meters long and 
many features characterize each signal. However, 
real acquisitions can be used in particular cases, 
e.g., to estimate the magnitude of the measurement 
noise. 

The use of a finite element code can substitute 
the experimental tests, providing signals, which are 
as close as possible to the real data.  

In this paper, two kinds of excitation have been 
examined: 

 
• Longitudinal wave mode. 
• Torsional wave mode. 
 
In a first task, several pipes with different defects 
have been modeled and a longitudinal mode has 
been used as excitation signal. A sensitivity 
analysis has been performed to set up the model 
that guarantees to obtain signals with the highest 
informative content.  

The obtained synthetic signals have been 
preprocessed with Discrete Wavelet Transform 
(DWT) [6] and Blind Separation techniques [7] to 
filter the noise, and then passed to a feature 
extraction system in order to reduce the data 
dimensionality.  

The number of the features has been further 
reduced by using the Principal Component 
Analysis. 

In a second task, further analysis has been done 
by using a torsional mode as excitation signal. In 
this case, the resort to the DWT and Blind 
Separation was unnecessary, because the mode 
shape of the torsional mode is not frequency 
dependent and it is completely non dispersive. In 
fact, as specified in [8], no other torsional mode is 
present in the used frequency range for both finite 
element models and experiments. The database 

which refers to the torsional waves has been 
provided by the research group of the University of 
Pisa and it has been achieved by using the 
commercial simulation code CAPA [9]. PCA and 
Fast Fourier Transform (FFT) have been used to 
preprocess the signals and to obtain the features to 
feed the neural network models.  

In particular, Multi Layer Perceptron (MLP) 
networks have been used to act as pattern 
classifiers, trained by using back-propagation 
learning with Levenberg-Marquard rule. This 
choice is corroborated by most of the literature, as 
reviewed in [10]. Basically, the main feature of a 
MLP resides in its intrinsic ability to perform 
extremely complex tasks in a very short time, once 
the learning phase ends. The networks have as 
many nodes in the input layer as the number of 
significant features extracted from the signals, 
while the number of output nodes depends on the 
fault coding chosen by the designer. In this paper 
different codings are tested to code the different 
geometrical parameters characterizing the faults. 

 
 

2 Neural Network Architecture 
The use of non-conventional approaches for NDT, 
such as neural networks, is justified by the 
difficulty of finding a proper solution to this 
problem by using standard methods. The most 
widely used neural classifier is the Multi-Layer 
Perceptron (MLP). A MLP neural network is 
constituted by an input layer, one or more hidden 
layers, and one output layer of neurons. The 
neurons of each layer are connected with all the 
neurons of the previous layer. The connection 
weights are the free parameters of a learning 
process. They are determined by presenting to the 
network a set of actual input-output values (the 
training set). 

During the learning process the network output 
and the desired output are compared through the 
error function. To evaluate the network 
performances the trained network is applied to a 
new set of examples (the test set).  

It can be noted that, if the number of examples 
in the training set is limited, as in the present 
problem, the network size (i.e., the number of 
connection weights) has to be limited, in order to 
avoid the overfitting of the network. This can be 
done by limiting the number of hidden layers, or 
the number of neurons in the hidden layers, or 
reducing the number of input neurons.  

In the present paper, an MLP with one hidden 
layer has been chosen. As in the most of 
applications presented in literature, the size of 
hidden layer has to be heuristically determined. 
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In particular, the growing method has been 
adopted. It consists on training a network having 
few neurons and then evaluating their 
performance. If such performance is satisfactory, 
the procedure ends, otherwise a new network 
having more hidden neuron is trained, and so on, 
until the network reaches the desired performance. 
In this way the training procedure avoids the 
overfitting, which derives from the excessive 
number of degrees of freedom.  

The overfitting can derive also by the 
overtraining. In order to avoid this problem, a set 
of examples, called validation set, is left out of the 
training set. During the training phase, the mean 
square error, evaluated on the validation set, gives 
us information regarding the overtraining. As the 
error on the validation set begins to rise, the 
training process terminates (early stopping).  

To increase the resolution power of the model, 
limiting, at the same time, the number of input 
neurons, feature extraction and data reduction 
strategies have been adopted, as described in the 
following. 

 
 

3 Longitudinal Wave Mode 
In the following, a detailed description of the 
bidimensional model used to generate our synthetic 
data is reported. Data have been generated by 
simulating axisymmetric defects using the 
commercial finite element code ANSYS [11]. 

The theory of the elastic wave propagation in a 
hollow cylinder is based on the Navier’s equations 
of motion in a cylindrical coordinate system [12]:  
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where u is the displacement field, E is the Young 
modulus of the material, ν is its Poisson’s modulus, 
ρ is its density and λ and µ are its Lamè constants, 
determined by (2) and (3).  

The differential equation (1) can be solved in 
boundary problems through a numerical approach. 

Finite element axisymmetric models have been 
built in order to simulate the wave propagation in 
the pipes. A mesh of identical quadrilateral linear 
elements with four nodes has been used. The 
structural module of the code ANSYS solves the 
(1) by applying the principle of the virtual works. 
This principle states that, by imposing a system of 
“virtual” displacements (small and compatible with 
the constraints) and by keeping constant the 
internal strains and the external forces, the 
comprehensive “virtual” work is equal to zero. 
Namely, the external applied loads make a work 
equal to that made by the internal strains. This can 
be mathematically expressed by the following (4): 

 U Vδ δ=  (4) 

where U and V are the internal and the external 
work respectively, while δ is the virtual operator. 
By following the analytical procedure described in 
[13] and expressing the term δU and δV as a 
function of the strains σ and the deformations ε, 
the following is found:  

 [ ] [ ]th pr nd
e e e e eK u F M u F F− = + +&&  (5) 

where [Ke] is the element stiffness matrix which 
depends on the geometry and on the material 
properties of the used elements; u is the nodal 
displacement vector; [Me] is the element mass 
matrix and ü is the acceleration vector; Fe

th
 

represents the element thermal vector load, Fe
pr is 

the element pressure vector and Fe
nd

 is the vector 
that represents the nodal forces applied to the 
element. By assembling the terms that represent 
the external loads, the (5) can be simply written: 

 [ ] [ ] AM u K u F+ =&&   (6) 

where [M] is the structural mass matrix, [K] is the 
structural stiffness matrix and FA is the applied 
load vector. The Newmark time integration method 
[14] has been used for the solution of the (6). This 
method uses finite difference expansions in the 
time interval ∆t, in which it is assumed that: 

 ( )( )1n+1 n n n+1u u u u tδ δ= + − + ∆& & && &&   (7) 

and 
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where α and δ are the Newmark integration 
parameters. By choosing δ=1/2 and α=1/4 the 
system is stable [5] and can be integrated.  

The key problem associated with the 
measurement of the propagating Lamb waves 
characteristics is that more than one mode can exist 
at any given frequency. In NDT inspection system, 
selection and exploitation of a single mode is very 
important. In fact, generally, an excitation source 
can excite all the modes, which exist within its 
frequency bandwidth, resulting in a signal, which 
is much too complicated to interpret. Even with a 
single mode, great care is needed for correct 
identification of the echoes reflected by the defects 
and by normal pipe features such as welds. So, it is 
essential to design the transducers and to choice 
the forcing signal in order to excite only the chosen 
mode. In fact, theoretical and experimental results 
show that suitable mode and frequency can be 
chosen to produce a better penetration power and 
good results. In this paper, the axial (or 
longitudinal) symmetric mode at 70 kHz has been 
chosen according to bibliography [1]. This mode is 
very attractive for testing for several reasons:  
• it is practically non-dispersive over a wide 

bandwidth around this frequency (its velocity 
does not vary significantly with frequency), so 
that the signal shape and amplitude are retained 
as it travels;  

• it is the fastest mode so that any unwanted mode 
converted signal arrives after it has been 
received;  

• its mode shape makes it equally sensitive to 
internal or external defects at any circumferential 
location.  

Thus, an excitation tone burst with a narrow band 
has been selected, in order to obtain good signal 
strength and to avoid dispersion over long 
propagation distances. The excitation is a force 
signal applied in the extremity node of the model, 

it is a five-cycle tone burst enclosed in a Hanning 
window as described by (9) and reported in Fig.1 
[15]: 

 
22sin(2 )sin

10
fty ft ππ ⎛ ⎞= ⎜ ⎟

⎝ ⎠
 (9) 

The parameter f is the excitation frequency 
chosen by the previous considerations. The 
Hanning windowing is largely used to reduce the 
leakage, which occurs when the signals are not 
periodic in the temporal and spatial sampling 
window. The aliasing has been avoided by 
sampling the data with a suitable high frequency. 

In the examined cases, the piezo-electric 
transducer has been simulated as made up of 
mechanically independent dry-coupled elements 
distributed around a circumference, located at the 
edge of the pipe. The generated wave propagates in 
the pipe walls until it is reflected by a defect or a 
discontinuity. The returning echo is received by the 
same excitation transducer, which also works as a 
survey probe. 

A test pipe has been considered. It has been 
represented by an axisymmetric model; the mesh 
has been built throughout identical four nodes 
quadrilateral linear elements (PLANE 42 in 
Ansys). The model dimension and the material 
properties are listed in Table 1.  

A sensitivity analysis of the pipe model without 
defects has been performed. The purpose of this 
test is to set the simulation parameters, i.e., the 
dimensions of the elements in the FEM model, and 
the sampling time (see Table 2). Decreasing the 
sampling time (or the element length) the precision 
of the results increases, on the other hand, the 
simulation process time increases. A compromise 
has to be found between these contrasting 
requirements. The sampling time identifies the 
instants in which the solution is calculated; 
moreover a sub-sampling has been done, namely 
only one sample data every two has been stored; in 
fact, this operation allows reducing the storage 
memory, preserving the informative content of the 
signals. 
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Fig. 1. Exciting waveform signal 

Table 1: Geometric dimensions and material 
properties of the modelled pipe 

Length of the pipe 15 m 

Outer radius 0.11 m 

Thickness 0.005 m 

Young’s modulus  219 GN/m2 

Poisson’s coefficient 0.286 

Density 8000 kg/m3 
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3.1 Fault diagnosis 
The second part of the numerical study concerns 
the simulation of a pipe with a notch in the external 
wall. Varying the position and the dimension of the 
defect several simulations has been performed. In 
order to reduce data to be stored, the returned echo 
has been surveyed only during prefixed time 
windows. The fault position have been varied 
within the range [0.5 m ÷ 7 m], with a step of 0.5 
m. For each position the notch width and depth 
have been varied as reported in Table 3. The 
resulting data set is composed by 100 signals, 
which are divided in two sets: the training set is 
composed by 86 signals, and the test set is 
composed by the remaining 14 signals. The limited 
number of simulations is due to the high CPU time 
needed for each of them. 

3.2 Preprocessing 
The reflected waveform is deformed, if compared 
with the exciting one, due to both the defect and 
the residual oscillations in the pipe. The DWT [16] 
and the Blind Separation [17] techniques have 
been used to denoise this reflected wave. In fact, 
the reflected signal is the sum of two contributes, 
one due to the fault, and one due to a residual 
oscillation at the resonance frequency of the 
structure. This residual wave is characterized by 
some low-frequencies components, which do not 
provide any information about the defect.  

The DWT allows removing this second 
component of the signal, performing a multilevel 
decomposition in approximations and details. 

The approximations are the high-scale, low-
frequency components of the signal, while the 
details are the low-scale, high-frequency 

components. The decomposition of the signal into 
different frequency bands is simply obtained by 
successive high-pass and low-pass filtering of the 
time domain signal.  

In the present paper, each waveform achieved 
by the finite element simulation has been 
decomposed in three levels by using the DWT 
technique; then the details components at high 
frequency have been reconstructed to obtain the 
reflected wave due only to the fault in the 
modelled pipe.  

In fact, in most cases, the signal received by a 
sensor is the sum of a certain number of 
elementary contributions named sources. These 
sources are usually unknown, and a separation of 
sources is needed.  

In this paper, a blind identification procedure is 
used to extract the different sources received by the 
sensor, by using an adaptive system, the SOBI 
(Second Order Blind Identification) algorithm, 
available on the ICALAB Package for Signal 
Processing Toolbox of Matlab [18].  

Results obtained by using the DWT and Blind 
Separation are very similar. Fig. 2 represents an 
example of signal before ad after the preprocessing 
phase, performed by SOBI.  

3.3 Features extraction  
Different features have been considered in order to 
reduce filtered signal dimensionality. The feature 
extraction method is based on both time and 
frequency analysis. The choice of the feature 
extraction technique depends on the fault 
characteristics. The selected features have been 
chosen according to literature [19]. In particular, 
39 features are calculated in the time domain and 7 

Table 2: Element dimensions and sampling time 

Element length [mm] 3 

Number of axial subdivisions 5000 

Number of radial subdivisions 5 

Sampling time [ms] 1/700 
 

Table 3: Geometric fault characteristics 

 Range Step 

Position [m] 0.5-7 0.5 

Depth [mm] 1-4 1 

Width [mm] 12-30 6 
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Fig. 2. Signal before (a) and after (b) pre-

processing phase
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in the frequency domain. All these features present 
significant variations for the 100 simulations 
considered. 

3.4 Data Reduction 
As previously highlighted, the number of 
significant features suggested by the literature is 
too large, compared to the limited number of 
available simulations. Thus, different methods of 
data reduction have been tested. The best results 
are obtained using the PCA. 

This method consists of orthogonalizing the 
components of the input data in such a way that 
they are uncorrelated one to each other, ordering 
the resulting orthogonal components (principal 
components) and finally eliminating those that 
contribute the least to the variation in the data set. 
The Signal Processing Toolbox of MatlabR12 has 
been used. This routine employs singular value 
decomposition to compute the principal 
components [13].  

The PCA procedure eliminates the principal 
components that contribute less than a prefixed 
percentage to the total variation in the data set (1% 
in the present paper). The remaining Principal 
Components (6 in this case) have to be selected. 
By projecting the training defect vectors on the 6 
Principal Components, the training input matrix 
has been reduced from 46x100 to 6x100, with a 
very limited loss of information. Note that 46 are 
the significant features originally extracted by the 
previous feature extraction module, and 100 are the 
number of defect simulations. A further problem to 
manage is the exiguity of the defect simulations. In 
order to increase the training set, three further 
matrices have been generated from the original 
database. Each matrix element has been obtained 
by adding to the original matrix element a value 
randomly chosen in a range between -1% and 1% 
to take into account the noise. The new training 
input matrix, whose dimension is 6x400, has been 
built by joining the 4 matrices. The output matrix 
has been generated by repeating the original output 
matrix four times. Finally, these new matrices have 
been used to train a MLP neural network. One 
matrix column each seven has been extracted to 
form the test set which has 14 fault cases. The 
remaining columns have been used to form the 
training and the validation sets. 

3.5 Neural Networks 
As previously noted, the neural network structure 
depends on the number of input features, namely 

on the data reduction method. The number of input 
neurons is imposed by the features selection 
procedure; the number of output neurons is 
imposed by the code of the predicted values, while 
the number of hidden neurons has to be 
experimentally determined.  

The following MLP architecture has been used, 
in case of PCA: 
• Six 6 input nodes corresponding to the 6 

selected principal components; 
• One hidden layer with 40 nodes and hyperbolic 

tangent (tansig in matlab) as activation 
function; · 

• Two output nodes corresponding to the 
dimension of the defect (width and depth), 
decimal coded. The output nodes activation 
function is linear. 

The stopping criteria consist of a maximum 
number epochs equals to 500, and a minimum 
mean square error equal to 10E-5.  

The training phase reached a mean square error 
equals to 4.09E-5 after 100 epochs. The defect 
position has not been considered in the neural 
network models because a preliminary analysis 
showed that this value could be determined by the 
knowledge of the return time of the reflected wave. 
In fact, the return time is linearly dependent only 
from the defect position, while it is not influenced 
by the other geometrical characteristics. 

3.6 Results 
After the training phase, the network performances 
have been tested with a test set composed by the 14 
defect cases, which correspond to the 
configurations (position, width, and depth) listed in 
Table 4. The use of the PCA technique provides 
good classification accuracy. In Fig. 3 and 4 the 
percentage errors are shown versus the defect 
width, and depth respectively. The percentage 
errors of the neural network trained for the fault 
classification are always less than 7%. The 
smallest errors are related to faults faraway the 
transducer. In this case the received signal is 
almost free from the residual oscillation due to the 
applied force. The easiest parameter characterizing 
the faults to be classified is its width: the biggest 
percentage error is less than 5%. 
 In both cases, the performance of the neural 
network models for the fault classification is very 
encouraging, offering good classification accuracy. 
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4 Torsional Wave Mode 
The second type of signals has been provided by 
the research group of the University of Pisa and 
they have been simulated by the finite element 
code CAPA. 

These signals have been obtained by building 
three-dimensional models of pipes with defects 
symmetric respect to the axis and by using a 
torsional mode as excitation. The dimensions and 
the geometric characteristics of the pipes are 
shown in Table 5.  

The dimensions of the elements in the FEM 
model, and the sampling time are shown in Table 
6. 

4.1 Fault diagnosis 
The simulated defects have different depth and 
width and they are located at the same distance 
from the edge of the pipe, equal to 1.3 m.  

For the fixed position, the notch width and 
depth have been varied as reported in Table 7.  

The resulting data set is composed by 95 defect 
cases, which are divided in two sets: the training 
set is composed by 80 cases, while the test set is 
composed by 15 defect cases, which correspond to 
the configurations (depth and width) listed in Table 
8. 

The excitation signal is a six-cycle tone 
displacement enclosed in a Hanning window, 
applied at the extremity of the model. 
The received waveforms represent the 
circumferential displacement of 36 equispaced  

Table 4: Test Set 

Conf. Position[m] Width[mm] Depth[mm] 

1 0.5 30 1 

2 1 30 4 

3 2 12 1 

4 2.5 12 1 

5 3 12 2 

6 3 24 1 

7 3 30 4 

8 3.5 30 4 

9 4.5 12 1 

10 5 12 1 

11 5 30 4 

12 5.5 12 4 

13 6.5 18 2 

14 7 30 4 

Table 5: Geometric dimensions and material 
properties of the modeled pipe 

Length of the pipe 2.1m 

Outer radius 0.043 m 

Thickness 0.0055 m 

Young’s modulus  219 GN/m2 

Poisson’s coefficient 0.286 

Density 8000 kg/m3 

Table 6: Element dimensions and sampling time 

Number of axial subdivisions 1420 

Number of radial subdivisions 1 

Number of circumpherential 
subdivisions 36 

Sampling time [ms] 3.03 10-4 

Excitation frequency [kHz] 55 
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Fig. 3. Neural Network fault width percentage errors 

on the 14 test set cases. 
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Fig. 4.  Neural Network fault depth percentage errors 

on the 14 test set cases
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points located in a section at a distance of 0.6 m 
from the edge of the pipe. Because of the 
axisymmetric defect model, the displacement in 
each node is the same. Therefore it is sufficient to 
consider just one signal for each defect to train the 
network. 
 

4.2 Data reduction 
For this new set of data, FFT and PCA have been 
sequentially applied to the temporal signals 
without extracting the previously mentioned 
features. The temporal signals have been firstly 
processed by FFT. Then PCA has been used to 
reduce the number of the inputs. 

It has been demonstrated that the defect depth 
influences the FFT amplitude, while the defect 
width influences the shape of the waves, and, 
consequently, the FFT phase [8] [20]. Thus, PCA 
has been applied to the FFT amplitude components 
obtaining 8 inputs to be used to predict defect 
depths, with a loss of information of 1%. The PCA 
has been applied to the FFT phase components 
obtaining 4 inputs to be used to predict defect 
width, with a loss of information of 1%. 

4.3 Neural Networks 
The following MLP architecture has been used to 
predict the defect depth: 
• Input: 8 input nodes; 
• One hidden layer with 10 nodes and logarithmic 

sigmoid transfer function (logsig in matlab) as 
activation function;  

• One output node corresponding to the dimension 
of the defect depth, decimal coded. The output 
node activation function is linear. 
The stopping criteria consist of a maximum 

number equals to 300 epochs, and a minimum 
mean square error equal to 1.0E-4.  

The training phase reached a mean square error 
equals to 4.7E-4 after 20 epochs.  

The following MLP architecture has been used 
to predict the defect width: 
• Input: 4 input nodes; 
• One hidden layer with 10 nodes and logsig as 

activation function;  
• One output node corresponding to the dimension 

of the defect width, decimal coded. The output 
node activation function is linear. 
The stopping criteria consist of a maximum 

number of epochs equal to 300, and a minimum 
mean square error equal to 1.0E-4.  

The training phase reached a mean square error 
equals to 9.5E-5 after 20 epochs.  
4.4 Results 
The network performances have been tested on the 
test set in Table 8. 

In particular, the percentage errors of the neural 
network trained for the depth fault classification 
are less than 6.1%, with an average error of 5.4%. 

The percentage errors of the neural network 
trained for the width fault classification are less 
than 5.9%, with an average error of 1.5%. 
Also for torsional mode excitation, the 
performance of the neural network models for the 
fault classification is very encouraging, offering 
good classification accuracy.  
 
 
5 Conclusions 
A diagnostic system based on Neural Networks for 
Non-Destructive Testing with ultrasonic waves in 
not accessible pipes has been implemented. The 
signal database for the training, validation and test 
set has been obtained by using the finite element 
method. The signals are preprocessed with DWT, 
Blind Separation, FFT, and PCA techniques to 
obtain input data suitable to be fed to neural 
networks.  

Table 7: Geometric fault characteristics 

 Range Step 

Depth [mm] 0.55-4.95 1.1 

Width [mm] 3-210  variable 
 
 

Table 8: Test set 
Depth [mm] Width [mm] 

0.55 63 
0.55 123 
0.55 210 
1.65 60 
1.65 120 
1.65 180 
2.75 45 
2.75 105 
2.75 165 
3.85 30 
3.85 90 
3.85 150 
4.95 15 
4.95 75 
4.95 135 
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Two kinds of excitation have been examined: 
Longitudinal wave mode and Torsional wave 
mode. 

The preliminary analyses of the numerically 
simulated defects shows that the return time of the 
reflected signal linearly depends on the defect 
position, while it is independent on the entity of the 
fault. The flaw position is therefore determined 
with precision only from the knowledge of this 
value.  

Although the obtained results are encouraging, 
this paper represents only a preliminary 
contribution in testing the neural network 
suitability to perform non-destructive defect 
detection. In fact, the training, validation and test 
sets have been synthetically generated by 
numerically simulating the defects.  

Recently, the present research received a grant 
by the Italian Ministry for Research, to realize a 
real diagnostic system.  The research is carried out 
by five research groups from Italian universities 
and it  is coordinated by University of Pisa.  

Future work will be devoted to improve the 
neural network performances and to test them with 
data measured on real pipes by means of an 
instrumentation that has been recently purchased 
by the University of Pisa.  
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