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Abstract:- In serial production systems, storage may be provided between processes to
avoid interference due to lack of synchronization. In order to manufacture a product, a job
is divided into individual tasks, typically manufacturing or assembly processes. These tasks
are interdependent and should be coordinated. To reduce the interdependence between
downstream and upstream operations and to maintain the output of the production line, it
is common to introduce buffers between the operations. These buffers decouple operations
and eliminate the interdependency unless the buffer is emptied when a shutdown occurs
upstream. In this paper we study the buffered flows of matter in a flexible manufacturing
system considering only two machines. We develop procedures to compute some steady-
state performance measures, including the interference loss and some limiting distributions.
We use the Markov processes theory to obtain our results.
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1. Introduction

The dynamics of continuous systems are of-
ten modeled by a set of differential equations
that can express the relationships between
rates of changes in the values of system state
variables. Given an initial state and boundary
conditions, these equations completely specify
a model of the system’s dynamic behavior.
When this system of differential equations is
particularly simple or has some special pro-
perties, it can be solved analytically to find

the system’s path of motion (trajectory). Ho-
wever, many interesting models are too com-
plex to solve analytically and must be simu-
lated by numerically integrating the set of di-
fferential equations (Scruben1). If the system
is modeled using random processes, then the
simulations can be used to generate sample
paths for statistical analysis.
Flexible manufacturing systems (FMS) are an
important class of discrete event dynamic sys-
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tems.
Flexibility means to produce reasonably
priced customized products of high quali-
ty that can be quickly delivered to cus-
tomers. Flexible manufacturing systems are
computer-enhanced batch of repetitive pro-
cesses that facilitate the production of high
volumes of customized products on highly au-
tomated equipment that is responsive to soft-
ware instructions.
A FMS is a queueing network system where
different classes of products are processed con-
temporaneously. Each product has to perform
its own orderly sequence of operations, diffe-
rent for each class, in order to be comple-
ted. The same machine can perform opera-
tions on different product classes, eventual-
ly with different service times: the same ope-
ration can be performed on alternative ma-
chines. In this sense, flexibility is the capa-
bility of the FMS to cope in time with chang-
ing product class blend and production incon-
veniences such as buffer blockages and ma-
chine breakdowns, maintaining an optimum
production target, machine load balance and,
if required, an assigned production mix (Bal-
duzzi and Menga2 ).
Although numerous benefits are associated
with automated flexible manufacturing pro-
cesses, such as reduced labor cost, faster
throughput times and faster responses to de-
mand volume changes and to product design
changes, the optimization of such a process is
a difficult process. In practice, there is ma-
jor uncertainty about implementation costs,
date of on-line availability, and performance
characteristics once on line. Many of the ben-
efits typically associated with flexibility, such
as improved quality control, reduced work-in-
process inventories, and reduced lead times,
are not yet fully substantiated and may be
difficult to measure.
In this paper, we develop a set of performance
measures to evaluate the dynamic behavior of

a FMS considering the simplest form of the
system: two machines and a buffer for opera-
tions decoupling.

2. Background
Scheduling problems encountered in an FMS
can be separated into several distinct types
which encompass a wide range of resources
including parts, robots, machines, and AGVs.
Stecke and Solberg3 categorize different
scheduling problems and apply sets of dis-
patching rules to each problem in an effort
to evaluate the impact of various rules on the
system performance. Several researchers have
since evaluated different problems under di-
fferent sets of rules. Dar-El et al4, evaluated
the impact of a “good”schedule for a particu-
lar problem and the effect of any dispatching
rule has been found to vary with several fac-
tors such as system layout, system state, and
the desired performance measure.
Other researchers (Cho and Wysk5; Jones et
al6.) have suggested using neural networks to
identify candidate rules for multi-pass simula-
tion analysis.
Jones et al6 take into account multi-criteria
performance measures. When a new sched-
ule is desired, a neural net generates good
rules for each performance measure and then
simulation is used to predict how each rule
does against all performance measures simul-
taneously. In both cases, the neural network
is trained off-line by the simulation under a
variety of input conditions. They also exam-
ine the application of discrete-event simula-
tion for shop floor control of a flexible manu-
facturing system.
Cho7 defines five types of scheduling pro-
blems in the context of an automated work-
station. At each decision point, the neural net-
work generates candidate rules for each prob-
lem type and these rules are then evaluated
through simulation. The analysis of a single
lines that involves Markov models has been
suggested by Hongler8, and Bharucha-Reid9.
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3. Mathematical analysis

Our general model is defined following the
ideas developed by Hongler8. We suppose that
the dynamics of the system is given by the
simple production line schematically repre-
sented in Figure 1, and it is based on the fo-
llowing assumptions:
1) There are two machines in the system, and
they are similar with respect to the average
number of breakdowns which each experiences
in its unit working or running time.
2) The mean time to repair in both machines
is similar an it is exponentially distributed.
3) All random variables are independently dis-
tributed.
4) The queueing system (machines and repair-
men) is in a state of statistical equilibrium.

M
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M
2B

12
.... ....

Fig1: Two machine production line

Two failure prone machines M1 and M2 are
partly decoupled by the introduction of a
buffer B12 which has a maximum capacity
equals to ϕ [parts]. By assumption (1), the
mean time to failure and the mean time to
repair will be denoted respectively by λ−1

and µ−1 for both machines. In this model,
ρ = λµ−1 represents the indisposability fac-
tor of machine Mj , j = 1, 2. The produc-
tion rate of Mj is %j [parts/unit time]. The
time-dependent content of the buffer B12,
M(t), t ≥ 0 can be considered as a random
variable in the interval (−ϕ/2, ϕ/2). We de-
fine the derivative stochastic process:

M(t) = %1π1(t) − %2π2(t), (1)

where for j = 1, 2,

πj(t) =
{

1, if Mj produces in t
0, in other case

(2)

The waiting time intervals between transi-
tions from states {0} to {1} and vice verse

are characterized respectively by probability
distributions ψj(z) and φj(z) on positive ran-
dom variables. Thus we have
∫ ∞

0
zdφ(z) = λ−1, and

∫ ∞

0
zdψ(z) = µ−1,

In this model we are interested in the case
where ψ(z) and φ(z) are exponentially func-
tions distributed.

Theorem 1: Let {π(t), t ≥ 0} be the stochas-
tic process defined in (2). Since φ(z) and ψ(z)
have finite means, and φ(z) +ψ(z) has a con-
tinuous distribution, then

ĺım
t→∞

P[π(t) = 1] =
µ

µ+ λ
, (3)

ĺım
t→∞

P[π(t) = 0] =
λ

µ+ λ
, (4)

Proof: See Pérez-Lechuga et al.11, see also
Parzen 12 for a more widespread proof. �
Theorem 2: Let the stochastic process defined
in (2), then for any s, t ≥ 0, the transition
probability functions, pk(t) = P {π(t+ s) =
k | π(s) = } are given by

p00(t) = λ
µ+λ + µ

µ+λ e
−(µ+λ)t

p10(t) = λ
µ+λ

[
1 − e−(µ+λ)t

]

p01(t) = µ
µ+λ

[
1 − e−(µ+λ)t

]

p11(t) = µ
µ+λ + λ

µ+λ e
−(µ+λ)t





(5)

Proof: The transition probabilities of process
(2) can be obtained using the forward Kol-
mogorov differential equations

∂

∂t
pk(t) = −qk pk(t) +

∑

i 6=k

pi(t) qik, (6)

where q(t) and qk(t) are the homogeneous
intensity of passage and the homogeneous in-
tensity of transition respectively, and pk(t) is
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the transition probability function

pk(t) = P {π(t+ s) = k | π(s) = }.

Let the intensities of passage from 0 to 1 be
given respectively by q0 = µ and q1 = λ. It
follows that the transition intensities are given
by q01 = µ and q10 = λ.

The Kolmogorov differential equations (6)
then become

∂
∂t p00(t) = −µ p00(t) + λ p01(t)

∂
∂t p01(t) = −λ p01(t) + µ p00(t)

∂
∂t p11(t) = −λ p11(t) + µ p10(t)

∂
∂t p10(t) = −µ p10(t) + λ p11(t)

Since p01(t) = 1−p00(t) then, the first of these
equations can be rewritten (Parzen12)

∂

∂t
p00(t) = −(µ+ λ) p00(t) + λ, (7)

Equation (7) is an ordinary differential equa-
tion of the form (with g(t) = p00(t), v = µ+λ
h(t) = λ)

g
′
(t) = −v g(t) + h(t), a ≤ t <∞

whose general solution is

g(t) =
∫ t

a

e−v(t+s) h(s) ds+ e−v(t−a) g(a).

Then using the boundary condition p00(0) = 1
we obtain

p00(t) = λ

∫ t

0
e−(µ+λ)(t−s) ds+ e−(µ+λ)t. (8)

Using equation (8) it follows the proposed re-
sults. �

Corollary 1: Let p0 = P[π(0) = 0] then

E [π(t)] =
µ

µ + λ
−

(
p0 −

λ

µ+ λ

)
e−(µ+λ)t

(9)

To know the behavior of the zero-one process
{π(t), t ≥ 0} after it has been operating for a
long time, we evaluate the stochastic integral

R(t) =
1
t

∫ t

0
π(t

′
)dt

′
(10)

Equation (10) represents the fraction of time
during the interval [0, t] that the stochastic
process takes the value 1. Then, from (9) we
follows that, in the limit as t→ ∞

E [R(t)] =
1
t

∫ t

0

E
[
π(t

′
)
]
dt

′ → µ

µ + λ

Corollary 2: For the Markov process defined
in (1) we have:

ĺım
t→∞

E [M(t)] =
%1 µ1

µ1 + λ1
− %2 µ2

µ2 + λ2
(11)

Let us define the lost of production due to the
period the machines have to wait for service
as the machine interference (Palm13).

Let the random variable W(t) denote the
number of machines not working at time t and
let

Πw = ĺım
t→∞

P [W(t) = w], w = 0, 1, . . . , m

where m is the number of machines in the
system (2 in this case). Using (3) and (4) as
estimators of the limiting distribution, and
by the independence hypothesis between ma-
chines we have

Π0 = ĺım
t→∞

P [(π1(t) = 1) ∩ (π2(t) = 1)]

=
µ2

(µ+ λ)2
(12)

and

Π1 = ĺım
t→∞

P [(π1(t) = 0)∩ (π2(t) = 1) +

(π1(t) = 1) ∩ (π2(t) = 0)] =
2µλ

(µ+ λ)2
(13)
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Let α, β, and γ denote the average number
of machines working, being serviced, and wai-
ting to be serviced, respectively. We have the
following identities (Barucha-Reid9):

α + β + γ = m, (14)
α

β
=
µ

λ
, (15)

β = r −
r−1∑

w=0

(r− w)πw (16)

where r denotes to the number of repairmen
assigned to the system.

Equation (16) relates to the equality of the
number of engaged repairmen and the num-
ber of machines being serviced. From (14) we
obtain

γ = m−
(
µ+ λ

λ

) [
r −

r−1∑

w=0

(r − w)Πw

]
(17)

Thus, for m = r = 2, and using (12) and (13),
γ = 0.
Similarly, for the case of one repairman and
m = 2,

γ = 2 −
(
µ + λ

λ

)
(1− π0) = 2 −

(
2µ+ λ

µ+ λ

)
.

Equation (17) give the average number of ma-
chines in the waiting line, i.e., the interference
loss.
Other quantities of interest are the following
ones (Bharucha-Reid9). For m = 2 and r ∈
[0, 2], the average number of idle repairmen
given by

I = r − β = r

[
1− λ2

(µ+ λ)2

]
− 2µλ

(µ+ λ)2
,

and the coefficient of loss for repairmen (for
r > 0)

L =
r− β

r
=

[
1− λ2

(µ+ λ)2

]
− 2µλ
r(µ+ λ)2

.

The operative efficiency that is defined as the

ratio of the number of machines waiting to
be serviced to the number of repairmen (for
r > 0)

η =
β

r
=

λ2

(µ+ λ)2
+

2µλ
r(µ+ λ)2

.

The coefficient of normal loss due to repairs

Nr =
β

2
=
λ(rλ+ 2µ)
2(µ+ λ)2

.

The coefficient of normal loss due to machine
interferences

Nm =
γ

2
=
λ(1− r

2)
2 (µ+ λ)

.

The combined coefficient of loss equals

NI =
β + γ

2
= 1 − µ

2

[
rλ+ 2µ
(µ+ λ)2

]
.

Finally, the machine efficiency (or machine
availability) of the system is given by

A =
α

2
= β

µ

2λ
=
µ (rλ+ 2µ)
2 (µ+ λ)2

.

Conclusions
The dynamics of the population level of a
buffer, when approximated by a continuous
variable, can be described by stochastic di-
fferential equations and Markov processes. In
this document we only have considered a mo-
deling in which the noise source is a continuo-
us Markov Chain. We develop a set of per-
formance measures in a single case of FMS.
Some of our results were based on the classic
work of Palm13 about the machine interfer-
ence problem. In our proposal it is only re-
quired to know the intensities λ and µ as well
as the number of repairmen in the system.
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