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Abstract: - In this paper  it is described how chaotic dynamics could be generated by means of  fuzzy systems. 
The approach is based on a linguistic description of chaotic phenomena, that can be easily related to a fuzzy 
system design. It allows building chaotic generators,(useful in several industrial application in which 
randomness is needed) by means of few fuzzy sets and using a small number of fuzzy rules. Fuzzy 
descriptions of the well-known two dimensional discrete chaotic map is therefore introduced, denoting a good 
degree of approximation together with an easy design of the system obtained in a very intuitive way. 
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1. Introduction 

The possible interactions between fuzzy logic and 
chaos theory has been explored since the eighties, 
but these explorations has been carried on mainly in 
three directions: the fuzzy control of chaotic 
systems [1], [2], the definition of an adaptive fuzzy 
system by data from a chaotic time series [3], and 
the study of the theoretical relations between fuzzy 
logic and chaos [4]. We shall follow no one of these 
approaches, but, taking as starting point the work in 
[5], that of generating fuzzy systems which exhibits 
a chaotic behaviour via a linguistic descriptions of 
chaotic dynamics. 

By giving a linguistic description of a chaotic 
system and by translating this description in a fuzzy 
model we achieve two results. The first one is to 
obtain fuzzy chaotic systems with desired 
characteristics and denoting an improved 
robustness to parameters changes. The second is to 
show that a simple and clear fuzzy system with few 
fuzzy sets and few rules is able to be a good model 
of a complex and cryptic chaotic system.  

Another remarkable aspect to take in 
consideration is that there are several 
microcontrollers having a fuzzy core and therefore 
a fuzzy description of chaos can allow a deeper use 
of complexity techniques in several industrial 
applications without using expensive dedicated 
approaches. 

 
 
 

 

2. Fuzzy and Chaos 

During the last decade, the study of chaos has 
become increasingly important among physicist and 
engineers [6], due to the large number of its 
possible application. But what is “chaos”? Firstly 
were considered “chaotic” all those behaviours in 
some sense unpredictable due to the inadequate 
feature of measurement methodology (e.g. weather 
evolution). Nevertheless, technological 
improvements demonstrated that long term 
prediction of certain phenomena fails for their 
intrinsic complexity (highly non linear behaviour) 
and not for computational limitation. This quasi-
random behaviour has been observed even in 
simple nonlinear systems, which demonstrated to 
be very sensitive 

to changes of parameters. What was initially 
considered only as a “curious phenomenon”, 
nowadays is found everywhere in nature, showing a 
chaotic feature of our physical world. But the 
random behaviour of a deterministic system may 
also have some useful and surprising application in 
cryptography [7], signal processing [8] and, more 
generally, in most fields of industrial process 
control. 

The peculiarities of a chaotic system can be 
listed as follows: 

 
1. Strong dependence of the behavior from initial 

conditions 
2. Sensitiveness to the changes of system 

parameters 
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3.  Heavy presence of harmonics in the signals 
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5.  Presence of a stretch direction, represented by 
a positive Lyapunov exponent[9].   

For some values of parameters a and b, the 
discrete state space plot (or Poincarè map) denotes 
a fractal-like limit set typical of a chaotic system 
(see Fig. 2). The time evolution of the state variable 
x is depicted in fig. 3. The same behaviour can be 
observed for y, which is proportional to a one-
sample delayed sequence of x, as it can be seen 
from equation (2).   

 
The latter can be considered as an “index” who 

quantifies a chaotic behavior. 
Famous artificial chaotic systems are Chua’s 

circuit [10], the Duffing oscillator [11] and the 
Roessler system, which can be represented as third 
order nonlinear autonomous systems. However 
chaotic dynamics can also be generated by simple 
discrete maps, like the logistic map: An approach similar to that described in [14] 

could be attempted. In this case  a  function  F(x(k), 
dx(k), y(k), dy(k)) = (x(k+1), dx(k+1), y(k+1), 
dy(k+1))  should be modelled, taking into account 
uncertainties dx and dy for each one of the two 
variables. However this fact may lead to a quite 
complex definition of the qualitative fuzzy model, 
if compared with the analytical description of the 
system. In order to avoid these complications, we 
assume to have only the uncertainty dx, considering 
that it can influence also y through the second 
equation of (2) in a linear way. Being y(k+1) 
proportional to x(k), membership function of x and 
y could be chosen as identical. However the light 
influence of y(k) on x(k+1) with given parameters 
(a=1.4 and b=0.3)  suggest us to use fewer fuzzy 
sets for y(k), which acts only if its absolute value is 
high. The choice for x(k) is therefore similar to that 
adopted in the logistic map, because of a similar 
parabolic behaviour (but different range). Even in 
this case there are two equilibrium points        
(E1≡(-1.31,-0.34), E2≡(0.63, 0.19)), both of them 
unstable.  
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or the Henon map: 
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In [14] it has been described how the behaviour 

of the mono-dimensional map (1) can be modeled 
by means of four linguistic variables [12]: x(k), 
x(k+1), and the associated  uncertainty quantities 
d(k) and d(k+1), which play an important role in 
stretching and folding typical of chaotic 
phenomena. Membership functions of these 
variables are depicted in Fig. 1. 

In next section this approach will be extended to 
the two-dimensional map (2), avoiding some of the 
drawbacks related to the increasing of the order 
(e.g. high number of fuzzy sets and rules).   

 
The fuzzy sets associated to the linguistic values 

are shown in Fig. 3; they have been constructed in 
such a way that E2≡(0.63, 0.19) is between the 
fuzzy set M and the fuzzy set L of x and y, whose 
number is in this case different. In fact, for y only 
three fuzzy sets are adopted, being remarkable for 
the evolution of x (first equation of (2)) only small 
or large values of y (medium values, close to zero, 
are in this case neglected). Fuzzy sets of the 
uncertainty dx are exactly the same as considered in 
[14], but with different ranges.   

 

3. Fuzzy Modeling of the Henon Map 

To model the evolution of a chaotic signal x(.)  
two variables need to be considered as inputs: the 
‘center’ value x(k)   , which is the nominal value of 
the state x(k)   at the step k and the uncertainty d(k) 
on the center value. In terms of fuzzy description, 
this means that the model contains, as previously 
said, four linguistic variables. In the case of the 
logistic map model [14], it has been adopted a two 
inputs and two outputs fuzzy model 
([x(k+1),d(k+1)]=F(x(k),d(k))) with the Mamdani 
implication, the center-of-sums defuzzification 
method and the product as t-norm [13]. The Henon 
map, still introduced in section 2, can be considered 
in some sense the two dimensional extension of the 
logistic map.Here we rewrite again the state 
equations: 

Qualitatively x evolves similarly to the logistic 
map: x tends to move towards its value in E2 , until 
it begins to oscillate around that point. When 
oscillations reach the neighbourhood of E1, this 
perturbs the trajectory moving it again towards E2. 
To this aim, when the influence of y(k) on x(k+1) is 
light (approximately when  y(k) is M), it is possible 
to keep the same rules still used for the logistic map 
in [14] (see table 1).  

The influence becomes relevant when y(k) is L 
or S, even if limited to the transition L-VL and S-Z  
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of x. Therefore, when y(k) is S, the new rules that 
have to be added are the following: 

 
HS1 if x(k) is Z and d(k) is L and y(k) is S then 

x(k+1) is Z (instead of S) 
HS2 if x(k) is M and d(k) is VL and y(k) is S then 

x(k+1) is L (instead of VL) 
 

The complete set of rules for this case is reported 
in table 2. The differences with respect to table 1 
are underlined. The action of y decreases x(k+1) 
from S to Z or from VL to L.  

On the other side, when y(k) is L, only increasing 
transitions (from L to VL or from S to Z) take 
place.  Therefore, the new rules  to be added are the 
following:  
 

HS3 if x(k) is Z and d(k) is Z and y(k) is L then 
x(k+1) is S (instead of Z) 

HS4 if x(k) is Z and d(k) is S and y(k) is L then 
x(k+1) is S (instead of Z) 

HS5 if x(k) is Z and d(k) is M and y(k) is L then 
x(k+1) is S (instead of Z) 

HS6 if x(k) is Z and d(k) is VL and y(k) is L then 
x(k+1) is VL (instead of L) 

HS7 if x(k) is M and y(k) is L then x(k+1) is VL 
(instead of L) 

HS8 if x(k) is L and d(k) is VL and y(k) is L then 
x(k+1) is S (instead of Z). 

 
)(/)( kdkx  Z S M L VL 

Z Z/Z Z/M Z/M S/VL L/L 
S M/Z M/M M/M M/VL L/S 
M L/Z L/M L/M L/VL VL/S
L M/Z M/M M/M M/VL Z/S 

VL Z/Z Z/M Z/M Z/VL Z/L 

Table 1. The set of rules for the evaluation of 
x(k+1) and d(k+1) when  y(k) is M.  

)(/)( kdkx  Z S M L VL 
Z Z/Z Z/M Z/M Z/VL L/L 
S M/Z M/M M/M M/VL L/S 
M L/Z L/M L/M L/VL L/S 
L M/Z M/M M/M M/VL Z/S 

VL Z/Z Z/M Z/M Z/VL Z/L 

Table 2. The set of rules for the evaluation of 
x(k+1) and d(k+1) when  y(k) is S. The 
differences are underlined  

The complete set of rules for this case is reported 
in table 3. The changes made with respect to table 1 
are underlined even in this case.   

In order to complete the whole set of rules for 

this fuzzy system, the dynamic of y(k) has to be 
considered. Due to the second equation of (2), these 
simple rules can be added: 

 
HS9 if x(k) is Z then y(k+1) is S 
HS10 if x(k) is S then y(k+1) is S 
HS11 if x(k) is M then y(k+1) is M 
HS12 if x(k) is L then y(k+1) is L 
HS13 if x(k) is VL then y(k+1) is L 

 
These statements can be summarized in table 4. 
 

)(/)( kdkx Z S M L VL 
Z S/Z S/M S/M S/VL VL/L
S M/Z M/M M/M M/VL L/S 
M VL/Z VL/M VL/M VL/VL VL/S
L M/Z M/M M/M M/VL S/S 

VL Z/Z Z/M Z/M Z/VL Z/L 

Table 3. The set of rules for the evaluation of 
x(k+1) and d(k+1) when  y(k) is L. The 
differences are underlined  

 
)(/)( kykx  S M L 

Z S S S 
S S S S 
M M M M 
L L L L 

VL L L L 

Table 4. The set of rules which allows to 
evaluate y(k+1). It depends only on x(k).  

The so-designed fuzzy system is now completed 
and its dynamic evolution can be derived.  By 
choosing as initial condition [x(0)  y(0) d(0)] = 
[0.01 0.01 0.01], it is possible to obtain the 
behaviour of x(k)  (figure 5) and the space-state plot 
representing both variables x  and y (figure 6).  

 
 

4. Conclusions 

In this paper a qualitative approach for fuzzy 
modelling of chaotic dynamics has been discussed. 
This analysis has pointed out several facts 
regarding both fuzzy logic and chaos theory: 

 
1. Simple fuzzy systems are able to generate 

complex dynamics. 
2. The precision in the approximation of the time 

series depends only on the number and the shape of 
the fuzzy sets for the x. 
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Fig. 3. The chaotic time series generated by the 
Henon map (parameters a=1.4, b= 0.3) 

Fig. 6. Space-state plot of variables x(k) and y(k) 
generated by the fuzzy system  

 

 

 

 

Fig. 4. The fuzzy sets for x  (upper) and y (lower) in 
the qualitative Henon map. 

 
Fig. 5. Time evolution of state variable x(k)  
generated by the fuzzy system  
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