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Abstract: - In this work, we present a Colored Petri Net (CPN) model used for prototyping and modeling a 
complex switching scheme for ATM switches based on the combined I/O buffering technique. The new 
scheme  is evaluated here within an overall setting that includes the traffic regulations enforced by the leaky 
bucket algorithm. It is based on splitting the traffic coming into input lines into two priority queues (High and 
Low) where traffic destined to busy ports is directed to the low priority queue. This scheme was compared 
against pure combined I/O buffering and simulation results showed that the new scheme pays back in 
decreasing transmission delay only when the traffic increases beyond a certain level. In addition the 
sensitivity analysis of the bucket size showed also that this latter affects the performance of the system only at 
high loads.  
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1. Introduction 
ATM networks offer solutions for various traffic 
demands supporting a wide range of traffic types 
such as voice, real-time video, images and data. In 
most ATM networks, the traffic is regulated at the 
source using the leaky bucket algorithm. A leaky 
bucket regulator consists of a bucket (buffer) of a 
certain depth (size) leaking at a specified smooth 
constant rate. This is achieved by storing temporary 
bursts of incoming cells in the buffer. The buffer 
size defines the maximum burst that can be 
accommodated. If the buffer is full, the incoming 
cells are in violation and are therefore discarded.  

There are two parameters associated with a 
leaky bucket regulator: the burst parameter and the 
leak rate parameter. The burst parameter, denoted 
by ß, is the size of the bucket. The leak rate 
parameter is denoted by ?. The number of cells that 
may be transmitted by a leaky bucket regulator in 
any interval of length I is bounded by  I.ρβ +  
[1]. 

ATM switches involve a number of input and 
output ports. Incoming cells on the input lines are 
switched to the appropriate output ports based on 
the addressing information embedded in the cells. A 
problem occurs when cells arriving at two or more 
input lines want to go to the same output port in the 
same cycle. Solving this problem is one of the key 
issues in the design of all ATM switches [2]. We 
can solve this problem using an input queue at each 
input port to store incoming cells, and in every cycle 

zero or one cell is taken from each input buffer and 
zero or one cell is sent to each output port. This 
solution is easy to implement and doesn’t require 
any memory speedup over the line speed. But it 
suffers from the head of line blocking, which 
degrades the throughput to 60% or less [3]. The 
head of line blocking occurs when some packets left 
at the front of the input buffer prevent other packets 
further back in the buffer from getting a chance to 
go to their chosen output, even though there may be 
no contention for those output [4]. 

As a solution for the head of line blocking 
problem in input queuing switches, many 
researchers proposed that each input port maintains 
a separate queue for all cells destined to each output 
port (virtual output queuing), thus completely 
eliminating the head of line blocking [5], and [6]. In 
virtual output queuing zero or one cell is taken from 
one of the input queues at each input port and zero 
or one cell is delivered to each output port. This 
requires a memory that runs at the same speed as the 
line rate. A scheduling algorithm is used to 
determine which cell to select from the different 
queues at each input port. The scheduling algorithm 
chooses the best match between the input ports and 
the output ports in order to optimize a certain 
criterion. Some of the criteria used are: maximizing 
the switch throughput, minimizing the delay, or 
emulating an output buffered switch. 

In [7] and [8] the authors addressed some of the 
issues in designing switches for very high-speed 
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networks. An algorithm that uses longest 
normalized queue first for scheduling input queuing 
switches to smooth the traffic shape in order to 
guarantee a faster delivery and a fair scheduling 
policy is presented in [9]. It has been proved in [10] 
that a speedup of 2 - 1/N is both necessary and 
sufficient for a combined input/output queuing 
buffer to emulate output queuing switch. In [11] the 
authors proposed a scheduling algorithm that can 
achieve the maximum efficiency at each switch and 
the scheduling algorithm is independent of the input 
traffic model. 

Most of these algorithms either perform well 
under a uniform and independent input traffic but 
fails under a non-uniform or correlated traffic, or 
require complicated matching algorithms, such as 
bipartite graph matching that is very difficult to run 
in one cycle especially with very high-speed line 
rates and/or large N. 

In [3], a new combined input/output buffered 
switch architecture is proposed that uses two 
priority queues at each input port and a simple 
scheduling algorithm that could be 
implemented in one cycle time in 
order to minimize the delay. In this 
scheme the queue of each input port is 
split into two queues, one is called 
high priority queue and the other is 
called a low priority queue. Each 
output port has only one queue (see 
Figure 1). In every cycle zero or one 
cell is taken from each input queue 
and zero or one cell is sent to each 
output queue. Both high priority and 
low priority input buffers and output 
buffers are assumed to be a simple 
First-In First-Out (FIFO) buffer.  

 

 

Fig. 1:  Combined I/O Buffered Switch Architecture 

It is also assumed that each output buffer is 
limited to a maximum number of cells (Max). If the 
output buffer is full, then all cells directed to this 
output port are blocked. In addition, a threshold 
value T is associated with each output queue. When 
a cell arrives in the input port, it is sent to the high 
priority queue. However, if the number of cells in 
the output queue reaches the threshold (T), then, 
newly arriving cells are sent to the low priority 
queue. Therefore, selecting cells to be sent to the 
output port will start from the high priority queues. 
Cells in low priority queue will not be sent out but 
only when all high priority queues are empty.   

In this work we propose a Colored Petri Net 
(CPN) model to study the performance of the 
combined I/O switch architecture of Figure 1 under 
a leaky-bucket-regulated traffic. The CPN model is 
serving as a prototype of the proposed new 
combined I/O buffering scheme within a realistic 
setup. The setup comprises a set of nodes, each 
involving a set of processes engaged in 
communication through a central switch.  

Fig. 2: Components of a CPN 
 
The system is emulating an ATM LAN. The 

study focuses first on comparing priority based 
buffering and non-priority based one. Then, varying 
the bucket size 
 
 
2. System Modeling 
 
2.1 Colored Petri Nets 
A Petri net is a network of interconnected locations 
and activities, with rules that determine when an 
activity can occur, and specify how its occurrence 
changes the states of the associated locations. Petri 
Nets can be used to model and simulate systems of 
any type. They are particularly useful in facilitating 
the design and analysis of complex distributed 
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systems that handle discrete flows of objects and 
information [12]. 

CPNs represent an extension of Petri Nets. They 
are graphical models that use the concept of colored 
tokens to represent data structures and state 
conditions. The presence of data or state conditions 
is marked by colored tokens in locations. The 
locations are represented graphically by ellipses 
called places. Each place is associated with a token 
color that specifies the type of data that may reside 
in the location. Activities are represented by 
rectangles called transitions, which govern the 
occurrence of events in the system. Places can be 
either input or output places for a transition. Places 
and transitions are linked through directed arcs 
modeling the flow of data. Each arc has an 
associated arc expression that controls the 
transition’s occurrence. This expression specifies 
the number of tokens consumed by the transition, or 
the number of tokens that produce after its 
occurrence.  

When the number of tokens in each input place 
of a transition satisfies the corresponding arc 
expression, then the transition is said to be enabled. 
An enabled transition can fire (i.e., occur) at any 
time. When it fires, it consumes as many tokens 
from its input places, as specified by their 
corresponding arc expressions, and produces as 
many tokens in its output places as specified by 
their corresponding arc expressions. Additional 
conditions for the enabling of the transition can be 
specified through the guard of the transition. All the 
Boolean conditions specified in the guard must 
evaluate to true for the transition to be enabled. 

A declaration node is another component of a 
CPN that is used to record the token color, 
constants, variables, and function definitions. CPN 
modeling and simulation is supported by various 
simulation packages such as the Design/CPN tool 
[13] used in this study. In this tool, the different 
parts of a CPN model are constructed in different 
CPN pages. This helps making use of the CPN 
hierarchy constructs that enable the designer to 
break the complexity of the modeled system into 
different layers with different abstraction levels. 

Figure 2 depicts a small CPN diagram used for 
processing shipping orders. The transition Process 
Orders has one input place, Order In, and one output 
place Order Out. The token color Order is 
associated with the place Order In, and the 
equivalent token color  

ProductShipped is associated with the place 
Order Out. The token color Order is declared to hold 
Big and Small as data values. A variable Ordent is 
declared in the declaration node. The guard of the 

transition specifies that Ordent should be bound 
only to tokens having the value Big. In this state the 
transition is enabled. When it occurs it will consume 
the one token Big and produces two instances of Big 
into the output place.  

Place fusion is one hierarchy construct that 
enables a place to be present physically on different 
CPN pages while representing a single conceptual 
place. The place Order Out might be declared as a 
fusion place that will be used to connect to another 
CPN page that completes the process of shipping 
with additional operation. Substitution transition 
(ST) is the second hierarchy construct that enables 
to hide lower level design details into the lower 
abstraction level. In the upper level, the ST behaves 
like a single transition, while in fact it represents a 
more complex activity hidden in the lower level. 
The transition Process Order can be designed to 
represent a ST that hides more elaborate details of 
product shipping that is hidden in the current level 
of the model. 

Finally, the concept of time stamps that may be 
associated with timed tokens is used for the purpose 
of performance evaluation. Each timed token will 
bear an associated time stamp at each creation in 
accordance to a global clock maintained by the 
simulator. In figure 2, the transition Process Order 
has an associated timestamp (denoted by @+5) that 
specify that the occurrence of the transition takes 5 
time units. The associated timestamps of the 
produced Big tokens will be augmented with 5 
units. See [12, 13]. 

 

2.2 Overview of the Proposed CPN Model 
Our CPN models an ATM LAN consisting of an 
ATM switch connecting a number of hosts running 
the combined input/output buffered switching 
algorithm described above. As depicted in figure 3, 
the CPN model comprises a set of nodes (PC1 to 
PC5), each connected to an input line (L1 to L5).  

The traffic then goes through the ATM switch 
to any appropriate destination in the LAN. Each 
node generates traffic through five different 
processes, directed to specific destinations. Figure 4 
depicts a view of the different processes generating 
traffic (modeled by the Substitution transitions Gen1 
to Gen5). Figure 5 depicts one of such processes.   

In Figure 5 an “on/off” model is used to capture 
the fact that sources alternate between an active (on) 
period (a generation state) during which packets are 
periodically emitted and a silence (off) period (a 
silence state), in which no packets are produced. In 
case there is only one source, this yield an 
Interrupted Poisson Process (IPP). When N similar 
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IPPs are multiplexed, one obtains a Markov 
Modulated Poisson Process (MMPP) with N states, 
where the state number indicates the number of 
active sources. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3:  CPN Top page modeling. 

 

 

 

 

 

 

 

 

 

Fig. 4: CPN modeling traffic generation in a node 
 

 

 

 
 
 
 

 
 
 
 
 
 
 

 
 

Fig. 5: A Traffic generation process with Leaky Bucket 
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Generation of traffic bursts of up to 64 Kbits is 
modeled by transition Pak-gen. Transitions T1 and 
T2 simulate the IPP traffic generation. When there 
is a token in the place fire, the transition Pak-gen 
fires and generates a packet. The firing of this 
transition is governed by the time stamp of the token 
on the place Gen. The time stamp associated with 
the token t is calculated using the function texp() 
that generates exponentially distributed variables 
with specified means. The generation of the next 
packet will not occur until the time of the global  
clock becomes greater or equal to the time stamp 
associated with the token t.   

The IPP process is enforced in the same way, 
using the same exponential function. The transition 
Gen-Cell models the breaking of the bursts into 
streams of cells. The packets arrive at the Pak-Div 
place then go thru the process of splitting. In each 
cycle the size of the packet is reduced by 48 bytes, 
and a cell is generated in the place send. The 
transitions To-LB and To-L1 represent the leaky 
bucket regulator.  

 
Fig. 6: CPN page describing Cell Switching to 
specific ports 

 
The place LB models the Bucket. This place is a  

global fusion so all the traffic coming from different 
processes in the same node and will be multiplexed 
thru the same regulator. The transition To-LB will 
be blocked if the number of cells in the place LB is 
equal to the Bucket size b. The transition To-L1 
generates cells at a periodic “leak rate” in the place 
L1 modeling the transmission line. 

Figure 6 models the continuity of this process.  
Cells from place L1 are placed in the place P1. 
From P1 cells are sent to the appropriate port (Out1 
to Out5) depending to their respective destinations 
by means of the substitution transitions To-Out1 
thru To-Out5. The details of the switching enforced 
by any of these transitions are shown in figure 7. 

Figure 7 models the combined I/O buffered 
switching algorithm. Cells from place P1 represent 

traffic coming from an input port of the switch. 
These cells are routed to either the high-priority 
queue modeled by the place HPQ, or to the low-
priority queue modeled by LPQ. The transitions To-
HPQ and To-LPQ enforce the checking of the 
threshold T value and of reaching the maximum 
occupancy of the buffer (specifically done by the 
transition To-LPQ). The place Out1-Q represents 
the queue at the port.  The number of cells in this 
place is maintained in the place Check-t. Whenever 
any of the transitions send2 or send3 fires, a cell is 
put in the queue and the cell counter token in 
Check-t is incremented by one; and whenever the 
transition send4 fires, the cell-counter is 
decremented by one. Furthermore, the transition 
send2 has higher precedence than send3, since the 
latter cannot occur unless no cells are found in the  
HPQ place.  
 

 
Fig.7: Cell Switching through the new Combined 
I/O Buffering scheme 
 

This control is enforced using the content of the 
counter place HPQ-C that is used to maintain the 
number of High-priority cells present in the HPQ. 
The arc connecting the place HPQ-C to the 
transition send3 is used to enforce this control 
through the transition guard. The transition Send4 
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outputs cells from physical queue into the place 
Out1 modeling the specific destination.  

Those cells are used later on to compute the 
delay incurred by the cell using the current value of 
the global clock minus the generation time that is 
recorded inside the token representing the cell. 
Other control places (e.g., CL, HPQ Seq1, LPQ 
Seq1, Seq2, etc.) are used to ensure the right 
sequencing and ordering of cells according to their 
arrival to match the FIFO requirement of ATM cell 
transmission. 

Particularly the places Seq2 together with Seq3 
are used to maintain the right sequence in sending a 
cell from HPQ or LPQ out to the output port. The 
place Out1-Q is declared as a global fusion place. It 
is used to accumulate cells from the various input 
lines generating traffic that is destined to go through 
the same output port.   
 
 

3. Simulation and Results 
The simulation is based on comparing the 
performance of the Cell Switching algorithm with 
priority queues with the case of pure Combined I/O 
buffering with no priority queuing enforced. The 
CPN model of the pure Combined I/O buffering is 
similar to the model described above with the 
omission of the splitting of the traffic into high and 
low priority queues depicted in figure 7.  

Furthermore, we explore the sensitivity of the 
queuing scheme to the size of the leaky bucket.  

Figure 8, plots the cell transmission delay as a 
function of the workload for both the Priority Based 
I/O queuing and Non-Priority based queuing. These 
results show that the effectiveness of the Priority 
Based I/O queuing starts when the load increases 
above a certain level. This is justified by the fact 
that the Priority Based I/O queuing imposes an 
overhead of traffic splitting (into high and low 
priority queues) that pays back only at high loads. 
This calls for exploiting this feature to implement an 
adaptive switching scheme that can use either of the 
two schemes (priority queue based or non-priority 
queue based schemes) depending on the load to 
which the switch is being subject to. 

The plot of figure 9, describes the sensitivity of 
the priority queue based combined I/O switching 
scheme.  

It can be noted from the plot that the effect of 
the bucket size on the average transmission delay 
incurred by cells in the switch for the priority 
queue-based combined I/O buffering is apparent 
only at high loads where increasing the bucket size 
starts paying off in terms of reduced transmission 
delays.   

 
Fig. 8: Priority Vs. Non-Priority based switching 

 
 
 
Fig. 9: Delay Vs. Workload for different bucket 
sizes 
 
 
4. Conclusion 
We have presented a Colored Petri Net (CPN) 
model for the Combined I/O Buffered Switching 
algorithm that is based on queue splitting into high 
and low priority queues to overcome the Head of 
Line blocking problem in ATM switches. The CPN 
was useful for capturing the essence of the Leaky 
Bucket cell generation at the hosts as well as the 
detail of the dynamic queue splitting process.   
Simulation results based on the CPN model have 
been derived.  These results show that the priority 
based I/O queuing outperforms the non-priority 
based queuing beyond a minimum level of workload 
and that the size of leaky bucket affects performance 
only at very high loads.  
 
 
References 

[1] Raha Amitava, Kamat Sanjay, Jia Xiaohua 
and Zhao Wei, “Using Traffic Regulation to 

0

500

1000

1500

2000

2500

3000

500 400 300 200 100
Interarrival time of packet

D
el

ay
 (

in
 t

im
e 

un
it

s) b50

b100

b150

 

 

0

50

100

150

200

250

300

350

1.84 2.01 2.16 2.38 2.43

WorkLoad (KB) 

D
el

ay
 (

in
 t

im
e 

u
n

its
)

Priority Input Queue

Non-Priority Input
Queue

 

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp377-383)



 

Meet End-to-End Deadlines in ATM 
Networks”, IEEE Transactions on Computers, 
vol. 48, No.9, pp. 917-935, Sept. 1999. 

[2] Tanenbaum Andrew, Computer Networks, 3rd 
Ed, 1996, Prentice-Hall Inc. 

[3] Gojko Babic, Raj Jain, Arjan Durresi, “ATM 
Performance Testing and QoS Management” 
in F. Golshani, Ed., "The IEC ATM 
Handbook" to be published by International 
Engineering Consortium, Chicago, IL, 1999 

[4] Peterson Larry & Davie Bruce, Computer 
Networks A Systems Approach, 1996, Morgan 
Kaufmann Publisher Inc. 

[5] M. Karol, and M. Hluchy “Improving the 
performance of input-queued ATM packet 
switches” INFOCOM 92 PP 110-115. 

[6] T. Anderson, S. Owicki,  J. Saxe, and C. 
Thaker “High speed switch scheduling for 
local area networks” ACM Transactions on 
Computer Systems, Nov. 1993 pp 319-352. 

[7] G. Nong, and M. Hamdi “Burst-Level 
Scheduling Algorithms for Non-Blocking 
ATM Switches with Multiple Input Queues” 
IEEE Communication Letters Vol. 4, No. 6, 
June 2000. 

[8] K. Choudhury, and E. L. Hahn, “A New 
Buffer Management Scheme for Hierarchical 
Shared Memory Switches” IEEE/ACM 
Transaction on Networking v 5, No. 6 pp 728-
738 Oct. 98. 

[9] S. Li and N. Ansari, “Scheduling Input-
Queued ATM Switches with QoS Features,” 
Seventh International Conference on 
Computer communications and Networks 
IC3N’98, pp 107-112 Oct. 12-14, Lafayette, 
LA. 1998. 

[10] S.-T. Chuang, A. Goel, N. McKeown, and 
B. Prabhakar “Matching Output Queueing 
with a Combined Input Output Queued 
Switch” Computer Systems Technical Report 
CSL-TR-98-758 Stanford University, 1998. 

[11] S. Chaudhry, and A. Choudhray “Time 
Dependent Priority Scheduling for 
Guaranteed QOS Systems” Proceedings of the 
6th International Conference on Computer 
Communications and Networks, Las Vegas, 
NV Sept. 1997. 

[12] Kurt Jensen, "Coloured Petri Nets: Basic 
Concepts, Analysis Methods and Practical 
Use", Vol.1 and Vol.2, Monographs in 
Theoretical Computer Science, Springer-
Verlag, 1992, 1994. 

[13] Kurt Jensen, S. Christensen, P. Huber, and 
M. Holla, “Design/CPN: A reference anual”, 
C.S. Dept, University of Aarhust, Denmark, 
1996.  

[14] Durresi, A., V. Paruchuri, R. Kannan, S.S. 
Iyengar, "Optimized Broadcast Protocol for 
Sensor Networks," IEEE Transactions on 
Computers , Volume 54, Issue 8, August 
2005, pp. 1013 - 1024 

 

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp377-383)


