

Modeling and Performance Evaluation of ATM Switches

KHALIL SHIHAB

Department of Computer Science, Sultan Qaboos University, P.O. Box 36, Al-Khod 123, Oman

Abstract: - In this work, we present a Colored Petri Net (CPN) model used for prototyping and modeling a
complex switching scheme for ATM switches based on the combined I/O buffering technique. The new
scheme is evaluated here within an overall setting that includes the traffic regulations enforced by the leaky
bucket algorithm. It is based on splitting the traffic coming into input lines into two priority queues (High and
Low) where traffic destined to busy ports is directed to the low priority queue. This scheme was compared
against pure combined I/O buffering and simulation results showed that the new scheme pays back in
decreasing transmission delay only when the traffic increases beyond a certain level. In addition the
sensitivity analysis of the bucket size showed also that this latter affects the performance of the system only at
high loads.

Keyword: Combined I/O Buffering, Priority Queues, ATM Switches, Leaky Bucket regulator

1. Introduction
ATM networks offer solutions for various traffic
demands supporting a wide range of traffic types
such as voice, real-time video, images and data. In
most ATM networks, the traffic is regulated at the
source using the leaky bucket algorithm. A leaky
bucket regulator consists of a bucket (buffer) of a
certain depth (size) leaking at a specified smooth
constant rate. This is achieved by storing temporary
bursts of incoming cells in the buffer. The buffer
size defines the maximum burst that can be
accommodated. If the buffer is full, the incoming
cells are in violation and are therefore discarded.

There are two parameters associated with a
leaky bucket regulator: the burst parameter and the
leak rate parameter. The burst parameter, denoted
by ß, is the size of the bucket. The leak rate
parameter is denoted by ?. The number of cells that
may be transmitted by a leaky bucket regulator in
any interval of length I is bounded by I.ρβ +
[1].

ATM switches involve a number of input and
output ports. Incoming cells on the input lines are
switched to the appropriate output ports based on
the addressing information embedded in the cells. A
problem occurs when cells arriving at two or more
input lines want to go to the same output port in the
same cycle. Solving this problem is one of the key
issues in the design of all ATM switches [2]. We
can solve this problem using an input queue at each
input port to store incoming cells, and in every cycle

zero or one cell is taken from each input buffer and
zero or one cell is sent to each output port. This
solution is easy to implement and doesn’t require
any memory speedup over the line speed. But it
suffers from the head of line blocking, which
degrades the throughput to 60% or less [3]. The
head of line blocking occurs when some packets left
at the front of the input buffer prevent other packets
further back in the buffer from getting a chance to
go to their chosen output, even though there may be
no contention for those output [4].

As a solution for the head of line blocking
problem in input queuing switches, many
researchers proposed that each input port maintains
a separate queue for all cells destined to each output
port (virtual output queuing), thus completely
eliminating the head of line blocking [5], and [6]. In
virtual output queuing zero or one cell is taken from
one of the input queues at each input port and zero
or one cell is delivered to each output port. This
requires a memory that runs at the same speed as the
line rate. A scheduling algorithm is used to
determine which cell to select from the different
queues at each input port. The scheduling algorithm
chooses the best match between the input ports and
the output ports in order to optimize a certain
criterion. Some of the criteria used are: maximizing
the switch throughput, minimizing the delay, or
emulating an output buffered switch.

In [7] and [8] the authors addressed some of the
issues in designing switches for very high-speed

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp377-383)

networks. An algorithm that uses longest
normalized queue first for scheduling input queuing
switches to smooth the traffic shape in order to
guarantee a faster delivery and a fair scheduling
policy is presented in [9]. It has been proved in [10]
that a speedup of 2 - 1/N is both necessary and
sufficient for a combined input/output queuing
buffer to emulate output queuing switch. In [11] the
authors proposed a scheduling algorithm that can
achieve the maximum efficiency at each switch and
the scheduling algorithm is independent of the input
traffic model.

Most of these algorithms either perform well
under a uniform and independent input traffic but
fails under a non-uniform or correlated traffic, or
require complicated matching algorithms, such as
bipartite graph matching that is very difficult to run
in one cycle especially with very high-speed line
rates and/or large N.

In [3], a new combined input/output buffered
switch architecture is proposed that uses two
priority queues at each input port and a simple
scheduling algorithm that could be
implemented in one cycle time in
order to minimize the delay. In this
scheme the queue of each input port is
split into two queues, one is called
high priority queue and the other is
called a low priority queue. Each
output port has only one queue (see
Figure 1). In every cycle zero or one
cell is taken from each input queue
and zero or one cell is sent to each
output queue. Both high priority and
low priority input buffers and output
buffers are assumed to be a simple
First-In First-Out (FIFO) buffer.

Fig. 1: Combined I/O Buffered Switch Architecture

It is also assumed that each output buffer is
limited to a maximum number of cells (Max). If the
output buffer is full, then all cells directed to this
output port are blocked. In addition, a threshold
value T is associated with each output queue. When
a cell arrives in the input port, it is sent to the high
priority queue. However, if the number of cells in
the output queue reaches the threshold (T), then,
newly arriving cells are sent to the low priority
queue. Therefore, selecting cells to be sent to the
output port will start from the high priority queues.
Cells in low priority queue will not be sent out but
only when all high priority queues are empty.

In this work we propose a Colored Petri Net
(CPN) model to study the performance of the
combined I/O switch architecture of Figure 1 under
a leaky-bucket-regulated traffic. The CPN model is
serving as a prototype of the proposed new
combined I/O buffering scheme within a realistic
setup. The setup comprises a set of nodes, each
involving a set of processes engaged in
communication through a central switch.

Fig. 2: Components of a CPN

The system is emulating an ATM LAN. The

study focuses first on comparing priority based
buffering and non-priority based one. Then, varying
the bucket size

2. System Modeling

2.1 Colored Petri Nets
A Petri net is a network of interconnected locations
and activities, with rules that determine when an
activity can occur, and specify how its occurrence
changes the states of the associated locations. Petri
Nets can be used to model and simulate systems of
any type. They are particularly useful in facilitating
the design and analysis of complex distributed

1

2

N

Switching
fabric

Low priority

queue

High priority
queue

A time stamp

1`Ordent

@+5

An arc expression 1`Big++
2`Small
(Initial
marking)

[Ordent = Big] (A guard)

2`Ordent
Order

In
Process
Orders

Order
Out

(* Declaration node *)
color Order = with Big | Small timed;
color ProductShipped = Order;
var Ordent : Order; (* variable
declaration*)

Order (Token color) ProductShipped

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp377-383)

systems that handle discrete flows of objects and
information [12].

CPNs represent an extension of Petri Nets. They
are graphical models that use the concept of colored
tokens to represent data structures and state
conditions. The presence of data or state conditions
is marked by colored tokens in locations. The
locations are represented graphically by ellipses
called places. Each place is associated with a token
color that specifies the type of data that may reside
in the location. Activities are represented by
rectangles called transitions, which govern the
occurrence of events in the system. Places can be
either input or output places for a transition. Places
and transitions are linked through directed arcs
modeling the flow of data. Each arc has an
associated arc expression that controls the
transition’s occurrence. This expression specifies
the number of tokens consumed by the transition, or
the number of tokens that produce after its
occurrence.

When the number of tokens in each input place
of a transition satisfies the corresponding arc
expression, then the transition is said to be enabled.
An enabled transition can fire (i.e., occur) at any
time. When it fires, it consumes as many tokens
from its input places, as specified by their
corresponding arc expressions, and produces as
many tokens in its output places as specified by
their corresponding arc expressions. Additional
conditions for the enabling of the transition can be
specified through the guard of the transition. All the
Boolean conditions specified in the guard must
evaluate to true for the transition to be enabled.

A declaration node is another component of a
CPN that is used to record the token color,
constants, variables, and function definitions. CPN
modeling and simulation is supported by various
simulation packages such as the Design/CPN tool
[13] used in this study. In this tool, the different
parts of a CPN model are constructed in different
CPN pages. This helps making use of the CPN
hierarchy constructs that enable the designer to
break the complexity of the modeled system into
different layers with different abstraction levels.

Figure 2 depicts a small CPN diagram used for
processing shipping orders. The transition Process
Orders has one input place, Order In, and one output
place Order Out. The token color Order is
associated with the place Order In, and the
equivalent token color

ProductShipped is associated with the place
Order Out. The token color Order is declared to hold
Big and Small as data values. A variable Ordent is
declared in the declaration node. The guard of the

transition specifies that Ordent should be bound
only to tokens having the value Big. In this state the
transition is enabled. When it occurs it will consume
the one token Big and produces two instances of Big
into the output place.

Place fusion is one hierarchy construct that
enables a place to be present physically on different
CPN pages while representing a single conceptual
place. The place Order Out might be declared as a
fusion place that will be used to connect to another
CPN page that completes the process of shipping
with additional operation. Substitution transition
(ST) is the second hierarchy construct that enables
to hide lower level design details into the lower
abstraction level. In the upper level, the ST behaves
like a single transition, while in fact it represents a
more complex activity hidden in the lower level.
The transition Process Order can be designed to
represent a ST that hides more elaborate details of
product shipping that is hidden in the current level
of the model.

Finally, the concept of time stamps that may be
associated with timed tokens is used for the purpose
of performance evaluation. Each timed token will
bear an associated time stamp at each creation in
accordance to a global clock maintained by the
simulator. In figure 2, the transition Process Order
has an associated timestamp (denoted by @+5) that
specify that the occurrence of the transition takes 5
time units. The associated timestamps of the
produced Big tokens will be augmented with 5
units. See [12, 13].

2.2 Overview of the Proposed CPN Model
Our CPN models an ATM LAN consisting of an
ATM switch connecting a number of hosts running
the combined input/output buffered switching
algorithm described above. As depicted in figure 3,
the CPN model comprises a set of nodes (PC1 to
PC5), each connected to an input line (L1 to L5).

The traffic then goes through the ATM switch
to any appropriate destination in the LAN. Each
node generates traffic through five different
processes, directed to specific destinations. Figure 4
depicts a view of the different processes generating
traffic (modeled by the Substitution transitions Gen1
to Gen5). Figure 5 depicts one of such processes.

In Figure 5 an “on/off” model is used to capture
the fact that sources alternate between an active (on)
period (a generation state) during which packets are
periodically emitted and a silence (off) period (a
silence state), in which no packets are produced. In
case there is only one source, this yield an
Interrupted Poisson Process (IPP). When N similar

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp377-383)

IPPs are multiplexed, one obtains a Markov
Modulated Poisson Process (MMPP) with N states,
where the state number indicates the number of
active sources.

Fig. 3: CPN Top page modeling.

Fig. 4: CPN modeling traffic generation in a node

Fig. 5: A Traffic generation process with Leaky Bucket

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp377-383)

Generation of traffic bursts of up to 64 Kbits is
modeled by transition Pak-gen. Transitions T1 and
T2 simulate the IPP traffic generation. When there
is a token in the place fire, the transition Pak-gen
fires and generates a packet. The firing of this
transition is governed by the time stamp of the token
on the place Gen. The time stamp associated with
the token t is calculated using the function texp()
that generates exponentially distributed variables
with specified means. The generation of the next
packet will not occur until the time of the global
clock becomes greater or equal to the time stamp
associated with the token t.

The IPP process is enforced in the same way,
using the same exponential function. The transition
Gen-Cell models the breaking of the bursts into
streams of cells. The packets arrive at the Pak-Div
place then go thru the process of splitting. In each
cycle the size of the packet is reduced by 48 bytes,
and a cell is generated in the place send. The
transitions To-LB and To-L1 represent the leaky
bucket regulator.

Fig. 6: CPN page describing Cell Switching to
specific ports

The place LB models the Bucket. This place is a

global fusion so all the traffic coming from different
processes in the same node and will be multiplexed
thru the same regulator. The transition To-LB will
be blocked if the number of cells in the place LB is
equal to the Bucket size b. The transition To-L1
generates cells at a periodic “leak rate” in the place
L1 modeling the transmission line.

Figure 6 models the continuity of this process.
Cells from place L1 are placed in the place P1.
From P1 cells are sent to the appropriate port (Out1
to Out5) depending to their respective destinations
by means of the substitution transitions To-Out1
thru To-Out5. The details of the switching enforced
by any of these transitions are shown in figure 7.

Figure 7 models the combined I/O buffered
switching algorithm. Cells from place P1 represent

traffic coming from an input port of the switch.
These cells are routed to either the high-priority
queue modeled by the place HPQ, or to the low-
priority queue modeled by LPQ. The transitions To-
HPQ and To-LPQ enforce the checking of the
threshold T value and of reaching the maximum
occupancy of the buffer (specifically done by the
transition To-LPQ). The place Out1-Q represents
the queue at the port. The number of cells in this
place is maintained in the place Check-t. Whenever
any of the transitions send2 or send3 fires, a cell is
put in the queue and the cell counter token in
Check-t is incremented by one; and whenever the
transition send4 fires, the cell-counter is
decremented by one. Furthermore, the transition
send2 has higher precedence than send3, since the
latter cannot occur unless no cells are found in the
HPQ place.

Fig.7: Cell Switching through the new Combined
I/O Buffering scheme

This control is enforced using the content of the
counter place HPQ-C that is used to maintain the
number of High-priority cells present in the HPQ.
The arc connecting the place HPQ-C to the
transition send3 is used to enforce this control
through the transition guard. The transition Send4

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp377-383)

outputs cells from physical queue into the place
Out1 modeling the specific destination.

Those cells are used later on to compute the
delay incurred by the cell using the current value of
the global clock minus the generation time that is
recorded inside the token representing the cell.
Other control places (e.g., CL, HPQ Seq1, LPQ
Seq1, Seq2, etc.) are used to ensure the right
sequencing and ordering of cells according to their
arrival to match the FIFO requirement of ATM cell
transmission.

Particularly the places Seq2 together with Seq3
are used to maintain the right sequence in sending a
cell from HPQ or LPQ out to the output port. The
place Out1-Q is declared as a global fusion place. It
is used to accumulate cells from the various input
lines generating traffic that is destined to go through
the same output port.

3. Simulation and Results
The simulation is based on comparing the
performance of the Cell Switching algorithm with
priority queues with the case of pure Combined I/O
buffering with no priority queuing enforced. The
CPN model of the pure Combined I/O buffering is
similar to the model described above with the
omission of the splitting of the traffic into high and
low priority queues depicted in figure 7.

Furthermore, we explore the sensitivity of the
queuing scheme to the size of the leaky bucket.

Figure 8, plots the cell transmission delay as a
function of the workload for both the Priority Based
I/O queuing and Non-Priority based queuing. These
results show that the effectiveness of the Priority
Based I/O queuing starts when the load increases
above a certain level. This is justified by the fact
that the Priority Based I/O queuing imposes an
overhead of traffic splitting (into high and low
priority queues) that pays back only at high loads.
This calls for exploiting this feature to implement an
adaptive switching scheme that can use either of the
two schemes (priority queue based or non-priority
queue based schemes) depending on the load to
which the switch is being subject to.

The plot of figure 9, describes the sensitivity of
the priority queue based combined I/O switching
scheme.

It can be noted from the plot that the effect of
the bucket size on the average transmission delay
incurred by cells in the switch for the priority
queue-based combined I/O buffering is apparent
only at high loads where increasing the bucket size
starts paying off in terms of reduced transmission
delays.

Fig. 8: Priority Vs. Non-Priority based switching

Fig. 9: Delay Vs. Workload for different bucket
sizes

4. Conclusion
We have presented a Colored Petri Net (CPN)
model for the Combined I/O Buffered Switching
algorithm that is based on queue splitting into high
and low priority queues to overcome the Head of
Line blocking problem in ATM switches. The CPN
was useful for capturing the essence of the Leaky
Bucket cell generation at the hosts as well as the
detail of the dynamic queue splitting process.
Simulation results based on the CPN model have
been derived. These results show that the priority
based I/O queuing outperforms the non-priority
based queuing beyond a minimum level of workload
and that the size of leaky bucket affects performance
only at very high loads.

References

[1] Raha Amitava, Kamat Sanjay, Jia Xiaohua
and Zhao Wei, “Using Traffic Regulation to

0

500

1000

1500

2000

2500

3000

500 400 300 200 100
Interarrival time of packet

D
el

ay
 (

in
 t

im
e

un
it

s) b50

b100

b150

0

50

100

150

200

250

300

350

1.84 2.01 2.16 2.38 2.43

WorkLoad (KB)

D
el

ay
 (

in
 t

im
e

u
n

its
)

Priority Input Queue

Non-Priority Input
Queue

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp377-383)

Meet End-to-End Deadlines in ATM
Networks”, IEEE Transactions on Computers,
vol. 48, No.9, pp. 917-935, Sept. 1999.

[2] Tanenbaum Andrew, Computer Networks, 3rd
Ed, 1996, Prentice-Hall Inc.

[3] Gojko Babic, Raj Jain, Arjan Durresi, “ATM
Performance Testing and QoS Management”
in F. Golshani, Ed., "The IEC ATM
Handbook" to be published by International
Engineering Consortium, Chicago, IL, 1999

[4] Peterson Larry & Davie Bruce, Computer
Networks A Systems Approach, 1996, Morgan
Kaufmann Publisher Inc.

[5] M. Karol, and M. Hluchy “Improving the
performance of input-queued ATM packet
switches” INFOCOM 92 PP 110-115.

[6] T. Anderson, S. Owicki, J. Saxe, and C.
Thaker “High speed switch scheduling for
local area networks” ACM Transactions on
Computer Systems, Nov. 1993 pp 319-352.

[7] G. Nong, and M. Hamdi “Burst-Level
Scheduling Algorithms for Non-Blocking
ATM Switches with Multiple Input Queues”
IEEE Communication Letters Vol. 4, No. 6,
June 2000.

[8] K. Choudhury, and E. L. Hahn, “A New
Buffer Management Scheme for Hierarchical
Shared Memory Switches” IEEE/ACM
Transaction on Networking v 5, No. 6 pp 728-
738 Oct. 98.

[9] S. Li and N. Ansari, “Scheduling Input-
Queued ATM Switches with QoS Features,”
Seventh International Conference on
Computer communications and Networks
IC3N’98, pp 107-112 Oct. 12-14, Lafayette,
LA. 1998.

[10] S.-T. Chuang, A. Goel, N. McKeown, and
B. Prabhakar “Matching Output Queueing
with a Combined Input Output Queued
Switch” Computer Systems Technical Report
CSL-TR-98-758 Stanford University, 1998.

[11] S. Chaudhry, and A. Choudhray “Time
Dependent Priority Scheduling for
Guaranteed QOS Systems” Proceedings of the
6th International Conference on Computer
Communications and Networks, Las Vegas,
NV Sept. 1997.

[12] Kurt Jensen, "Coloured Petri Nets: Basic
Concepts, Analysis Methods and Practical
Use", Vol.1 and Vol.2, Monographs in
Theoretical Computer Science, Springer-
Verlag, 1992, 1994.

[13] Kurt Jensen, S. Christensen, P. Huber, and
M. Holla, “Design/CPN: A reference anual”,
C.S. Dept, University of Aarhust, Denmark,
1996.

[14] Durresi, A., V. Paruchuri, R. Kannan, S.S.
Iyengar, "Optimized Broadcast Protocol for
Sensor Networks," IEEE Transactions on
Computers , Volume 54, Issue 8, August
2005, pp. 1013 - 1024

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp377-383)

