

Using Existing Instrumentation For System Performance Tuning

KHALIL SHIHAB
Department of Computer Science, Box 36, Sultan Qaboos University, Al-Khod, 123 Oman

Abstract: - This work presents a new measurement methodology especially designed to improve the
performance of interactive systems as perceived by the user (user-perceived performance). It uses heuristics
and system performance tools to the diagnosis of bottlenecks and provides the necessary remedies to
achieve acceptable computer performance. The technique relies on a high level functional model of
the interaction between application workloads, the UNIX operating system, and system hardware.
Current performance measurement and tuning techniques suffer from a multitude of problems when applied to
interactive systems. Our reliance on these techniques for interactive system performance tuning has caused the
systems to be tuned in a suboptimal manner with systems often failing to provide predictable performance

Keywords : Heuristics, Computer System Tuning; Bottleneck Detection; System Management.

1. Introduction
Satisfactory computer services depend greatly on
the choice of configurations and capacity in the
computer systems. Performance evaluation of
computer and communication systems helps not
only in determining how well they are performing
and whether any improvements need to be made, but
also in understanding their behavior in order to plan
and to design the systems of the future. As the
hardware cost of these systems is decreasing, their
complexity and the demands being placed upon
them are increasing dramatically. Therefore,
considerable theoretical research and applied
development have been focused on improving
computer system performance.

Literatures in system performance and
engineering reported many factors that affect system
performance [1, 2]. Usage patterns, I/O
configuration, CPU configuration, cache size, and
system and user software are examples of these
factors. Changing any of these variables can lead to
different system behavior. However, we should
regularly monitor our system and analyze the values
of these variables before any changes we might
consider. Based on the outcomes of the analysis,
necessary actions can be taken in order to reach a
well-configured system that has an acceptable
computer performance.

Computer system managers should consider two
views: user’s view of performance and the

computer’s view. If users’ jobs take a long time to
run and complete, the manager should expect a
number of complaints from them. On the other
hand, if the system hardware resources are not well
utilized, then the system is in trouble. This is also
the case when the load on the resources is
unbalanced or the throughput is low. Therefore, we
need to ensure that every user gets a fair share of
available resources and in the same time, we should
keep maintaining a healthy system.

Therefore, an effective computer program is
designed and built to help computer managers in the
tuning process of their computers. For detection of
bottlenecks, some heuristics and operational laws
are also used [3] as a framework for modeling the
relationships among the variables of computer
performance. In particular, the program encodes the
functional model of a computer operating system.
The inference method combines expert assessments
with the measures that produced the system
monitoring tools. These tools are also called system
management tools, tuning tools, or system
measurement tools (c.f. section 7).

While the system is running, the program
predicts the values of observable system counters
available from the UNIX performance-monitoring
tools. During diagnostic inference, observed
performance monitor values are analyzed to find the
most probable assignment to the workload
parameters.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp148-155)

The tuning problem is considered in this work
as two interrelated activities: self-tuning and
learning. The following sections provide some
background on automated bottleneck detection,
describe the structure of the system model, and
discuss empirical procedures for implementing these
activities.

2. Dynamic System Performance
When a computer system is running, many factors
should be considered for evaluation. These
contribute to a job’s total time. Therefore, we should
look at CPU time, I/O time, and network time to
find out whether the system is spending more time
in the System State (i.e. executing operating system
calls) than in the User State – executing users’
programs. For instance, to find out whether the
system is overloaded, we may need only to
investigate the I/O time.

Other important factors should be considered in
order to achieve acceptable computer behavior.
These are system-related factors and they are as
important as user related factors. In any system,
there are three fundamental resources CPU,
memory, and I/O subsystems (e.g. disks and
networks). Each resource has its own particular
problems. The job of a manager is, therefore, to
determine which subsystem is causing his/her
system to slow down (i.e. a bottleneck). For
example, CPU contention and CPU utilization
provide good understanding of the status of the CPU
and its limitations. Memory contention arises when
the memory requirements of the active processes
exceed the physical memory that is available on the
system. Another good indication of degradation of
system performance is when we notice that the
system is paging [4].

The existing operating systems and the UNIX
systems in particular contain a number of
measurement tools available [2]. These tools are
good resources that provide sufficient data about
general system and per component behavior. The
UNIX systems, for example, have a good number of
monitoring tools such as uptime, ps, iostat, sar,
vmstat, and netstat (c.f. section 7). We can also use
the UNIX utility cron that runs specified UNIX
commands at regular intervals and collect the
relevant data to system performance. Necessary
changes to the computer configuration should be
taken based on the analysis to of the collected data.

3. Understanding System’s Workloads
The principal aim of performance tuning is to
analyze the behavior of the configuration of a
computer system to the existing workload [5, 6].
Understanding our system workload is therefore
necessary to be able to determine the necessary
hardware that supports it. The workload definition
must include not only the type and rate of each
component but also the identification of both the
typical and peak request rates.

After a complete definition of the system’s
workload, we will be left with many courses of
actions that can be taken to enhance the
performance of our computer system. These actions
include eliminating unnecessary daemons and other
system processes, giving the highest priority to the
most important jobs, and shifting some jobs to run at
another time.

Analyzing the workload enables us to determine
some of its major characteristics, for example,
whether it is I/O-bound, CPU-bound, or both, and so
on.

4. Self-Tuning Systems
Other objectives of this work include the dynamic
tuning of an operating system. LINUX is used for
this purpose because its source codes are accessible.

In order to achieve a satisfactory level of
performance for a live system, the used method
should be fast and its overhead should be negligible.
These restrictions cannot be achieved if a detailed
analysis of a real workload is required. Therefore,
an alternative method suggested here is based on
system measurement tools, such as iostat, vmstat,
and ps.

If the above-mentioned restrictions are taken
into account, then the dynamic tuning can be
achieved by an adjustment of the system's
parameters. However, these parameters are
dependent on the used operating system and the
hardware capacity and configuration. In particular,
the number of these tunable parameters differs from
one operating system to another, and it also differs
from one version of an operating system to another.
Furthermore, in order to change the values of these
parameters, each operating system has built-in
commands that can be used for this purpose. These
commands are also operating system dependent.
Therefore, a general dynamic tuning technique
cannot be achieved. However, the method can easily
be adapted if it is required for a different platform.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp148-155)

The system management tools, such as iostat,
vmstat, renice, ps, time, kill, and netstat, that are
provided with almost all operating systems are not
only being used for assessing the current state of
system performance but they are also used
successfully for tracking the changes in workloads
and system performance. Systems’ managers, for
their daily management tasks, use these tools and
their demands are negligible.

Therefore, the on-line tuning should be based on
a quick analysis of the results that are produced by
these system management tools.

5. Detection of System Bottlenecks
A bottleneck is a limitation of system performance
due to inadequacy of a hardware or a software
component. It is also the result of bad system
organization. Once a particular component is
identified as the bottleneck, a number of remedies
exist. Theses include running big jobs at lower
priority, terminating the jobs with largest memory
requirement, distributing I/O workload more evenly,
or eliminating unnecessary daemon processes. Other
actions require some changes to the parameters of
the operating system. These include reducing the
size of buffer cache if the system reveals of having a
memory problem or increasing the size of memory
cache if the system has a disk I/O problem. These
and other necessary actions will resolve the
bottleneck by reducing the time spent using the
component that is causing it.

Management tools play an important role in the
process of bottleneck detection of a live computer
system [6, 7, 8]. For example, response times can be
inferred from both the throughput and the utilization
measures that are produced by these tools. The
throughput itself enables us to identify the
bottleneck and its causes. Clearly, the system
component that saturates at the lowest rate is the
bottleneck. This component can be characterized by
having the largest service demands. The key to
determining this result is the consistency law.

Let Di and Ui denote the demand and the
utilization of hardware center i. The Throughput
Law states:

 T = Ui/Di (1)

Where T is the system throughput. When any of the
hardware components becomes saturated, that is
when its utilization = 1, the whole system becomes
saturated. Let max be the index of the bottleneck
center. The maximum throughput for any resource i
is

 Tmax = 1/Di (2)
Therefore, the center with the smallest T in the
system will determine the maximum throughput the
system can achieve. This computer center is the
bottleneck.

6. The UNIX Systems
AIX is the only operating system of the UNIX
family that allows us to tune its parameters without
need to rebuild the kernel and reboot the machine
[4, 9, 10]. Other UNIX systems, such as Solaris,
need to redesign its kernel so that they accept the
automatic and dynamic tuning. Otherwise, the
tuning should be carried out when the system is
doing almost nothing, at night for example. In this
case, the anticipated load during the next day has to
be considered.

LINUX and MINIX have no system
management tools, and you also need to rebuild the
kernel after each change of the values of their
tunable parameters. It is not difficult to add these
tools to the kernel. However, it is hard to capture the
reaction of these systems, after changing their
parameters, to a real workload in order to fulfill the
first activity, namely the self-tuning activity.

Dynamic tuning cannot be carried out on a live
system unless the used method is fast and its
overhead is negligible. These restrictions cannot be
achieved if a detailed analysis of a real workload is
required. Therefore, our alternative method, that is
described here, is based on system measurement
tools, such as iostat, vmstat, and ps.

The tuning problem is considered in this work
as two interrelated activities: self-tuning and
learning (c.f. section 10).

7. System-Management Tools
They are efficient commands that periodically
collect and record performance data. Other features
of these tools include the following:

• They can provide system-performance
reports at a fixed interval indefinitely.

• They report on activity that varies with
different types of workload.

• They report on activity since the last
previous report, so changes in activity are
easy to detect.

Examples of these system-management tools are:

iostat provides a picture of the state of the system
every certain unit time.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp148-155)

vmstat provides a picture of overall memory use,
and supplies data on I/O, and CPU. It can be used to
find out whether the system is memory-limited or
I/O, or both.

ps reports the actives processes. It is a good tool for
identifying the programs that are running in the
system and the resources they are using.

sar displays statistics on operating system activities
such as directory access, read and write system
calls, forks, paging activity.

uptime reports the average number of jobs in the run
queue over a given period of time.

ab is apache bench which simulates multiple web
browsers. A good networking and application server
test.

Therefore, the system's parameters can be
adjusted based on an overall assessment of the
system behavior that is reported by the system-
management tools. For example, if it is found that
the disk service time is greater than 50ms, then the
inode cache size should be increased by 20%. This
quantity, i.e., 20%, is obtained by the off-line
training method (section 10 elaborates on this
point).

8. Heuristic Rules
Heuristics, a form of cognitive strategy, have been
studied in discplines such as cognitive psychology,
social psychology and social cognition. Heuristics
are rules of thumb for reasoning, a simplification, or
educated guess that reduces or limits the search for
solutions in domains that are difficult and poorly
understood. Unlike formal structures like
algorithms, heuristics do not guarantee optimal, or
even feasible, solutions and are often used with no
theoretical guarantee.

The use of heuristics is often contrasted with
probalistic, statistical, or rationalistic reasoning,
according to which people use rationalistic and
systematic ways to solve problems and generally
seek the optimal results.

From the results of the measurement tools, an
overall assessment of system performance can be
initiated and that would lead to assign the best
values for system tunable parameters [2, 10].

The heuristic rules assist in the traversal of
MNG (management navigation graph).

F ig. 1: MNG (management navigation graph)

Figure 1 represent a management navigation graph,
where P denotes system performance; R denotes response
time; U denotes utilization; THRUPT denotes system
throughput; QLEN denotes queue length; Rcpu denotes
the CPU time; RI/O denotes the I/O time; Rpage denotes
the time spent in the paging activities.

Examples of the implemented heuristics are as
follows:

Rule 1: If any paging-space I/O is taken place, then
the workload is approaching the system memory
limits, i.e. there is a memory problem.

Rule 2: If the sum of user and system CPU
utilization is greater than 80%, then the workload is
approaching the CPU limits, i.e. there is a CPU
problem.

Rule 3: If the I/O-wait percentage is non-zero, a
significant amount of time is being spent waiting on
I/O, and some part of the workload is I/O-bound,
i.e. there is a disk problem.

Rule 4: If the number of blocked processes
approaches or exceeds the queue length, then there
is a disk problem (bottleneck).

Rule 5: If there is more system time than user time
and the machine is not an NFS server, then there is
a system problem.

Rule 6: If the idle time and the load average are
both high, then we have a memory problem

Rule 7: If the average arrival rate is increasing,
then select QLEN.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp148-155)

Rule 8: If the service time is greater than 50ms, then
increase the inode cache by 20%.

Rule 9: If the queue length is more than four times
the number of CPUs, then it is long, i.e., select
QLEN.

Rule 10: If the utilization of CPU is greater than
80% or the utilization of a disk is greater than 35%,
then there is a utilization problem, i.e. select U.

Rule 11: If vmstat.swap is greater than 4000k, then
increase the swap area.

Rule 12: If sar,ufs.lpf is less than or equal to 100%
and greater than zero, then double the inode area.

Rule 13: If we have a disk problem (busy or a slow
disk), then we have a throughput problem.

Rules 14: If we have a throughput problem, use the
formula (2) to identify the disk that causes this
problem.

The conflict between memory performance, disk
performance, and processor performance is resolved
in favor of memory, and then in favor of disk. This
is because the memory problem can cause a disk
problem.

9. Implementation and Results
The on-line tuning and the off-line learning were
carried out on the same system hardware
specifications. The on-line tuning was carried out on
the UNIX system running under Solaris operating
system. The off-line experimental analysis and
learning were conducted on the same system, when
the system is idle.

The programs that listed at the end of this paper
are selected pieces from our program. The first
program is a script written in cshell. It uses some of
the UNIX accounting tools for collecting the
required data for performance analysis. The second
program is written in C++ uses some heuristics and
the results of the first program for allocating some
possible bottlenecks.

10. Self-Tuning Systems
A self-scaling benchmark is developed (see the
following subsection) in order to implement the self-
tuning strategy. LINUX is used in this work as a
platform for the implementation. This work involves
the learning activity, which is the main step in the
process of self-tuned operating system. The second

activity is for finding the best values of system
tunable parameters. The following subsections
explain these two activities.

10.1. The Learning Activity
Given:
1. The values of the system measurements, CPU
utilization, I/O utilization, response time,
throughput, etc.

2. A self-scaling benchmark that produces similar
values of the system measurements that are
produced during the first activity (see the next
section for more details).

Use:
Heuristic rules (thresholds) and management
navigation graph (MNG) to learn the best values of
the system tunable parameters. Here we should keep
changing the values of the system parameters, i.e.
moving these values up and down, within their
permissible intervals until no more enhancements in
the system performance can be achieved.

10.2. Self-Scaling Benchmark
In order to produce the best values of tunable system
parameters, a benchmark can be used that
automatically scales itself across the computer
system under study.

This type of workload model is characterized by
having a set of tunable parameters. The number of
these parameters depends on the number of
performance indexes (measurements) that are
indicated by the system measurement tools. During
the execution of this model, its parameters can
automatically be adjusted to reach a performance
state (base state). The base state is the performance
assessment of the current system that is close
enough to the performance assessment that
produced the system measurement tools on the same
system.

Adjusting of the benchmark parameters should
be guided by a set of heuristic rules instead of using
a random or a blind search.

There are a number of self-scaling benchmarks
that can be used, after some modifications, for this
purpose, such as TPC-B, TPPC, Sdet, and SDM.
Otherwise, it is not difficult to design and to build a
self-scaling benchmark.

Once the base state has been produced for a
particular run, the system should invoke the second
activity for finding the best values of system tunable
parameters.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp148-155)

10.3. System Tunable Parameters
Almost every operating system has a number of
tunable parameters, Solaris for example has around
30 of such parameters, and AIX has around 52
tunable parameters. To change the default value of
each parameter, there are many commands that can
be used in order to tune these parameters. AIX on
PowerPC or RS/6000 has the tuning commands:
fdpr optimizes executable files; nfso changes the
values of NFS options; nice executes a command at
a specific priority; no changes the values of network
options; renice changes the priority of running
processes; schedtune changes the values of VMM
memory load control parameters, the CPU-time-
slice duration, and the paging-space-low retry
interval; vmtune changes the Virtual Memory
Manager page replacement algorithm parameters.

Frank Waters in his book "AIX Performance
Tuning" reported a number of AIX tunable
parameters.

11. Conclusion
A model and a computer program are developed.
The underlying technique is based on heuristics and
operational laws for detecting computer system
bottlenecks. The model and the program are
currently being extended and verified in order to
implement another set of heuristics and laws.
Fortunately, in the realm of computer performance
analysis, it is relatively easy to generate the needed
data and therefore to automate that data collection
effort. The implemented model is effective for
dynamic tuning of system operating parameters,
such as cache sizes, in response to inferred
application loading.

Also, we plan to use similar approaches to
predict the effects of changes to application
workload parameters. The model can predict
throughput and bottlenecks given an increment to
application workloads.

References
[1] Accetta et al. Mach: a new kernel for UNIX

development. In Proceedings of USENIX
Association Summer Conference, pages 93--112,
Atlanta; 1986.

[2] Loukides, M. 1992; System Performance
Tuning, O’Reilly & Associations, Inc. 1992

[3] Buzen, J. Fundamental operational laws of
computer system performance. Acta
Informatica,Vol. 7, 1976, pp. 167—182.

[4] Waters, F. AIX Performance Tuning, Prentice
Hall, 1996.

[5] Ferrari, D. Workload characterization for
tightly­coupled and loosely­coupled systems. In
Proceedings Sigmetrics and Performance ‘89
International Conference on Measurement and
Modeling of Computer Systems , page 210,
Berkeley, California. ACM, 1989.

[6] Domanski, D. A PROLOG­ based expert system
for tuning MVS/XA. Performance Evaluation
Review, Vol. 16, 1989, pp. 30—47.

[7] Gian-Paolo D. Musumeci and Mike Loukides,
System Performance Tuning, 2nd Edition.
O’Reilly & Associates, 2002.

[8] Joseph D. Sloan, Network Troubleshooting
Tools. O’Reilly & Associates, 2001.

[9] Stern H. Mike Eisler, and Ricardo Labiaga,
Managing NFS and NIS, 2nd Edition. O’Reilly &
Associates, 2001.

[10] Wilson, E. and James Naramore, Network
Monitoring and Analysis. Prentice Hall, 2000.

Appendix
#!/bin/csh
long term performance collection script
if ($#argv != 2) then
echo "usage: monitor interval filename"; exit
else
 echo "Performance Log File Collected By Monitor"
> $2
 echo >> $2
endif
iostat -tDc -l 32 $1 2 > iolog$$ & vmstat $1 2 >
vmlog$$
echo >> $2

echo "performance for" $1 "seconds ending at "
`date`>>$2
wait
head -2 vmlog$$ >> $2
tail -1 vmlog$$ >> $2
rm vmlog$$
head -2 iolog$$ >> $2
tail -1 iolog$$ >> $2
rm iolog$$
uptime >> $2
//***

// To run program -

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp148-155)

// g++ csp.C
// a.out
//This program finds the relevent figures from the
vmstat,
//iostat and uptime UNIX commands and identifies
the possible bottlenecks.
//
#include <iostream.h>
#include <stdlib.h>
#include <fstream.h>
#include <iomanip.h>

#define in_file "result.txt"
#define PO 53
#define DiskU1 104
#define DiskU2 108
#define DiskU3 112
#define DiskU4 116
#define DiskU5 120
#define DiskU6 124
#define CpuI 129
#define LoadAv 142

struct Values
{
 int PageOut; int CpuIdle; float LoadAverage;
 int CpuUtil; float DiskUtil[5];
};
void Setvalues(Values &Sysresults, int &counter,
ifstream monitorFile);
void OverThirty(float x); void cpu_idle(float a, int
b);
void cpu_disks(int CpuUtil, float diskAv);
void Outputfn(Values Sysresults);
main()
{
char z; char quitx; int count; Values Sysresults;
while (quitx != 'Q' && quitx != 'q'){
 count = 0; system("monitor 1 result.txt");
 ifstream monitorFile(in_file); if (!monitorFile){
 cout << "File Result.txt cannot be opened"<<
endl; quitx = 'q';}
 else {while (monitorFile.peek() != EOF){
 monitorFile.get(z);
 if (z == ' ') {
 count ++;
 while (monitorFile.peek() == ' ')
monitorFile.get(z);
 Setvalues(Sysresults, count, monitorFile);}
 }

 monitorFile.close(); system("rm result.txt");
Outputfn(Sysresults);
 cout<<endl;
 cout<<"Press C to continue or Q to
quit"<<endl; cin>>quitx;
 }
 }
}
//***

// Outputs the results to the screen.
void Outputfn(Values Sysresults)
{
float diskAv = 0; int i;
for (i = 0; i < 6; i++) diskAv = diskAv +
Sysresults.DiskUtil[i];
system("clear");
cout<<"**********************************"
<<endl;
cout<<"*"<<endl;
cout <<"* Page Out: "<<setw (7)<<
Sysresults.PageOut;
if (Sysresults.PageOut > 0) cout<< " Paging has
reached a high level";
cout<<endl;cout<<"*"<<endl;
cout<<"***********************************
*"<<endl;
cout<<"*"<<endl;
cout <<"* Disk Utilisation: "<<endl;cout
<<"*"<<endl;
for (i=0; i < 6;i++){
 cout <<"* Disk "<<i<<": "<<setw
(7)<<Sysresults.DiskUtil[i];
 OverThirty(Sysresults.DiskUtil[i]);}
cout <<"*"<<endl;cout <<"* Average Disk
Utilisation: "<<setw (7)<< diskAv<<endl;
cout <<"*"<<endl;
cout<<"****************************"<<endl;
cout<<"*"<<endl;cout <<"* CpuUtil: "<<
Sysresults.CpuUtil;
cpu_disks(Sysresults.CpuUtil, diskAv);cout
<<"*"<<endl;
cout<<"**************************"<<endl;
cout<<"*"<<endl;
cout <<"* CpuIdle: "<<Sysresults.CpuIdle<<endl;
cout <<"*"<<endl;
cout<<"***************************"<<endl;
cout<<"*"<<endl;
cout<<"* Load Av: "<<Sysresults.LoadAverage;
cpu_idle(Sysresults.LoadAverage,
Sysresults.CpuIdle);
cout <<"*"<<endl;
cout<<"****************************"<<endl;
}
//********************************

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp148-155)

// Places the relevant values in the structure
void Setvalues(Values &Sysresults, int &counter,
ifstream monitorFile)
{
int p;
switch (counter)
{
case PO: monitorFile >> Sysresults.PageOut;
counter ++;break;
case DiskU1:monitorFile >> Sysresults.DiskUtil[0];
counter ++; break;
case DiskU2:monitorFile >> Sysresults.DiskUtil[1];
counter ++; break;
case DiskU3:monitorFile >> Sysresults.DiskUtil[2];
counter ++; break;
case DiskU4:monitorFile >> Sysresults.DiskUtil[3];
counter ++; break;
case DiskU5:monitorFile >> Sysresults.DiskUtil[4];
counter ++; break;
case DiskU6:monitorFile >> Sysresults.DiskUtil[5];
counter ++; break;
case CpuI:monitorFile >> Sysresults.CpuIdle;
 Sysresults.CpuUtil = 100 -
Sysresults.CpuIdle;
 counter ++; break;
case LoadAv :monitorFile >>
Sysresults.LoadAverage; counter ++; break;
 }}
//***
//
// Determines if the disk figures are over 30%
//
void OverThirty(float x)
{
if (x > 30) cout<<" The Disk utilization is
high"<<endl;
else cout<<endl;
}
//*********************************
// Determines the state of the paging and
memory
void cpu_idle(float a, int b)
{
 if (a > 1 && b > 30)
 cout << "The system is paging and there is not
enough memory"<<endl;
 else cout << endl;}
//**
// Determines the cpu utilization and disk
figures.
void cpu_disks(int CpuUtil, float diskAv){
if (CpuUtil <30 && diskAv >30)
 cout<<" The system is I/O bound"<<endl;
 else if (CpuUtil > 30 && diskAv < 30)
 cout <<"The system is CPU bound"<<endl;

 else if (CpuUtil < 30 && diskAv < 30)
 cout <<" The system is
underutilized"<<endl;
 else if (CpuUtil > 30 && diskAv > 30)
 cout <<" The system is over
utilized"<<endl;
}

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp148-155)

