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Abstract: - This paper describes a method for surface reconstruction from sparse three-dimensional (3D) data that performs the 

reconstruction by building a sequence of surfaces approximating the data at increasing level of details (LOD). The method is 

simple, fast and suitable for a progressive 3D data/model representation, archiving, transmission. The surface reconstruction is 

obtained by a volumetric method that differs from other volumetric methods because it does not require implicitly or explicitly 

information on surface normals. This aspect is important in the case of noisy data sets, such as those coming from image based 

methods, because normals are often estimated unreliably from 3D data. The method is based on a hierarchical partitioning of the 

volume data set. The working volume is split and classified at different scales of spatial resolution into surface, internal and 

external voxels  and this hierarchy is described by an octree structure in a multiscale framework. The octree structure is used to 

build a multiresolution description of the surface by means of compact support Radial Basis Functions (RBFs). A hierarchy of 

surface approximations at different LOD is built by representing the voxels at the same  octree level as RBFs having the same 

spatial support. At each scale, information related to the reconstruction error drives the  reconstruction process at the following 

finer scale. Preliminary results on real data are presented and discussed. 
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1   Introduction 
The reconstruction of surfaces from its sparse 

three-dimensional (3D) samples is a challenging problem 

both in computer vision and computer graphics. There is a 

wide variety of approaches to surface reconstruction from 

sparse 3D data (see [4] for a survey), among which region 

growing [9], tensor voting [11], distance fields [10], 

algebraic and computational geometry methods [16], 

volumetric regularization and implicit surface methods 

[13,15].  

Implicit surface methods [3] are an active research area 

which includes among others Moving Least Squares (MLS) 

[1,2] and Radial Basis Functions (RBFs) [15]. RBF based 

approaches address the question of the choice between local 

or global RBFs. Local RBFs lead to fast and simpler 

computation but have the drawback of being sensitive to the 

density of scattered data. Global RBFs on the other hand are 

able to deal better with non-uniform density data but are 

computationally heavier or even impractical for large data 

sets.  

Some authors [8,12,18] have tried to combine the advantage 

of both  types  of   RBFs  by  using  locally  supported  basis  

 

functions in a hierarchical framework. A coarse-to-fine 

approximation/interpolation of the data is built by sets of 

self-similar local basis functions having their support scaled 

according to the scale of the details considered. The 

estimated reconstruction error at a coarse scale drives the 

reconstruction process at the following finer scale. This 

approach is very promising respect to the size of the data set 

that can be managed, the reconstruction time and the control 

on the level of details (LOD), but it requires a hierarchical 

partitioning of the data set.  

Data set partitioning is commonly realized by the 

hierarchical subdivision of the data set volume in voxels of 

different sizes according to a fixed subdivision scheme or an 

adaptive scheme, based on either the approximation error, or 

the evaluation cost [1,8]. The hierarchical partition of the 

data set is commonly coded in an octree structure [14] or in a 

K-D tree [12].  

An important aspect common to several of these approaches, 

especially those coming from the computer graphics area is 

that they relay directly or indirectly on information about the 

surface normals to produce a meaningful output. Generally 
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this information is assumed available a priori or is estimated 

from the data.  

On the other side, some computer vision approaches to 

surface reconstruction from images such as Generalized 

Voxel Coloring (GVC) [7] and space carving [17] do not use 

information on surface normal nor try to infer it. They 

produce estimates of 3D surfaces as a partition of the surface 

volume in empty and surface voxels, whose centres can be 

assumed as surface points.  

Depending on the technique used to measure or to estimate 

3D samples of the surface (e.g. laser scanner, stereo, etc.) 

information obtained on surface normals can be more or less 

reliable.  

This paper presents a volumetric approach to surface 

reconstruction which does not use this information and  

hence copes easily with several sources of 3D data. The 

method tries to blend some of the ideas concerning 

multiscale partitioning of 3D data, local construction of 

volumetric functions, successive approximations to the 

surface driven by LOD, and GVC techniques. It requires a 

smaller amount of information with respect to more 

sophisticated methods as [12], still allowing an acceptable 

quality of the surface reconstruction. 

The method classifies at different spatial scales the volume 

occupied by data into inner, outer and surface voxels. The 

constraints on the surface reconstruction are then defined in 

term of volume instead of values of the surface normals and 

of the volumetric function at inner and outer points as in[15].  

The algorithm builds a description of the volume around the 

data at different spatial scales, by classifying the volume 

occupied by data into voxels of an octree hierarchical 

structure. The octree structure is then used to build a 

multiresolution volumetric description of the surface by 

means of RBFs of compact support.  

A sequence of volumetric functions of different smoothness 

and LOD is generated from the octree structure. Information 

related to the partial reconstruction errors at one scale is used 

to drive the reconstruction process at the following finer 

scale. The estimated surfaces at different LOD are obtained 

as the zero level set of the corresponding volumetric 

functions. Preliminary results produced by the algorithm on 

real data are presented  and discussed.  

 

 

2   Hierarchical representation of 3D data 
The algorithm makes a hierarchical partitioning of the data  

volume containing the surface into voxels of different sizes. 

These voxels are classified into surface, inner, and outer 

voxels  respectively if they contain data, or they are empty 

and inside or outside the surface. This description of the 

surface and its surrounding volume is represented  by an 

octree structure in a multiscale framework where different 

levels  correspond to different scales and different voxel 

sizes (see Fig. 1).   The tree from the root to a specific level 

contains  a description of the surface occupancy in the 

working volume up to that   spatial resolution or scale. 

2.1 Building the octree structure  
 The volume partitioning and the construction of the octree 

structure starts at the coarsest scale where the working 

volume is split into a cube made of 3x3x3 voxels of the same 

size. These voxels consist of a central surface voxel where 

are contained all the 3D data, surrounded by 26 empty voxels 

classified as outer voxels. Other initial configurations are 

possible depending on initial hypothesis on the surface and 

its volume occupancy.  

The initial surface voxel, root of the octree, is then split into 8 

voxels of the same size halving the voxel size along every 

dimension [6,14] (see Fig. 1). The son voxels of the root 

voxel are then classified into surface or empty voxels, 

according to the occupancy of the voxels by the 3D data. 

Empty voxels are the classified into inner and outer voxels  

depending on their adjacency to voxels of the same type. At 

the first step no inner voxels are generated; these voxels are 

usually generated in the following steps when are created 

empty voxels not adjacent to outer ones.  

Only the surface voxels are then split again and classified 

proceeding toward smaller scales of spatial resolution. 

Empty voxels (inner and outer) are not split anymore, but can 

be reclassified at the following steps of the octree building 

from inner to outer voxels. The volume subdivision stops at a 

specified scale or when every surface voxel contains a 3D 

point only.  

Concerning the decomposition algorithm complexity and 

memory requirements, it should be noted that the maximum 

number of voxels produced is lower bounded by ( )8logN N ; 

in practical cases this bound is too conservative. Further, the 

octree structure is efficiently managed by pointer structures. 

 

Fig. 1  Volume subdivision in voxels  and 

corresponding  octree  structure 
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3   Volumetric regularization by using RBF 
 

3.1 Data approximation and interpolation 

The recovering of a function f  defined on 
d

R  from the set 

( ){ }
1

N

i i i
g y R

=
= , ∈ ×dx R  of N  function values sampled at 

random locations is ill-posed [5]. The problem can be 

constrained and solved assuming some a priori knowledge 

on f . A commonly adopted constraint consists in assuming 

that the function is smooth. A variational approach [5,13,15] 

is then adopted and the original problem is recast into that of 

finding the function f  which minimize a functional G  

which take into account both the smoothness and the data 

values:  

2

1

[ ] ( ( ) ) [ ]
N

i i

i

F f f y fλφ
=

= − +∑ x   (1) 

 

The first term of F  takes into account the closeness to the 

data and the functional φ  at the second term the smoothness 

of the solution f . The trade-off between the two terms is 

controlled by the so called regularizing parameter λ . In the 

case 0λ =  the solution leads to pure interpolation of the 

data. For a wide class of possible functionals φ  the solution 

( )f x  has the form [13]:  

1 1

( ) ( ) ( )
N k

i i j

i j

f w H v P
= =

= − +∑ ∑x x x x   (2) 

where the first term consists of a sum of basis functions H  

having radial symmetry which are centred on the ix  values 

of the 3D data and are weighted by iw . The second term in 

(2) consists of linear combination of polynomial terms 

( )P x .  

The regularizing parameter λ  can vary from sample to 

sample, to take into account different local trade-off between 

reconstruction error and smoothness. The choice of a specific 

smoothness functional φ  leads to radial gaussian basis 

functions H  of the type:  

2 221
( )

2
G e σ

πσ
− /= r

r     (3) 

and the polynomial term in (2) reduces to a constant 0p . The 

unknown weights iw  and 0p  in (2) can be determined from 

the data [13] and the choice of λ  by the linear system of 

equations:  

 

0( )H I p+ + =l w y     (4) 

and the constraint 
1

0
N

ii
w

=
=∑  , where I  the identity 

matrix, and  

 ( ) ( ) ( ) ( ) ( )ij i j i i i i i iH H y wλ= − , = , = , =x x l y w  

 

The isosurface related to the zero level set { ( ) 0}f| =x x  of 

the volumetric function f  gives an estimate of the surface 

associated to the 3D data.  

 

3.2 Radial basis function of compact support  
 According to the algorithm description in Sec. 1 the volume 

occupancy of voxels of different size is cast into a 

corresponding volume occupancy by gaussian radial basis 

functions  of compact support (See Eq. 3) centred on the 

voxel centres ic . In the case of wide support basis functions 

the system of equations (4) becomes untractable for more 

than few thousands data. On the other hand a compact 

support of the radial basis functions means that at a given 

scale the influence on the volumetric function f of the 

subset of 3D data contained  into a specific voxel is localized 

around the voxel volume. Hence the compact support choice 

has the benefit that the system of equations (4) becomes 

sparse and can be solved very efficiently by standard 

methods [5]. For the gaussian RBF used in this work  the 

support of the functions depends on the parameter σ ; this 

parameter changes with the scale. 

 

3.3 Multiresolution volumetric reconstruction 

 by RBF  
 Multilevel approximation by adaptive domain 

decomposition is a promising approach to sparse data 

approximation [5, 8]. Here the data domain decomposition in 

subsets produces the octree structure of Sec. 2, which is the 

starting point to build up a multiresolution volumetric 

description of the surface by means of RBF of compact 

support.  

The global volumetric function iS  which approximates up to 

the scale i  the surface associated to the data 

{ }
1

iN

j j
j

g y R 
 
  =

= , ∈ ×dx R  is given by the sum of a 

sequence of volumetric functions kf   

0 1

1

( ) ( ) ( ) ( ) ( )
i

i k i

k

S f f f … f
=

= = + + +∑x x x x x   (5) 

At a given scale i  the function if  approximates the 

reconstruction error due to the difference between the actual 

values of the 1iS −  at the voxel centres 
ijc  and the prescribed 

values ijy . Hence the reconstruction error propagates from 

the scale 1i −  to the scale i  according to:  

1( ) ( )i ij ij i ijf c y S c−= −     (6) 

 

where ijc  are the j  voxel centres at the scale i  

corresponding to the level i  of the octree, and  
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if is a surface voxel

if is an outer voxel

if is an inner voxel

s

ij o

i

K j

y K j

K j

,
= ,
 .

  (7) 

 

The constant values s o iK K K, ,  are chosen as seen in Sec. 4  

while the evaluation of the functions if  is performed as 

shown in Subsec. 3.1.  

 

 

4   Implementation details and choice of  

 the parameters 
The choice of the parameter values and of the voxel 

classification rules are crucial for the quality of 

reconstruction process. Some parameters have standard 

values in the literature, and those values have been implicitly 

assumed here, as the geometry of the working volume 

partitions (voxels) or the shrinking value (
12−
) along every 

co-ordinate at every scale step.  

The constants for the function value assignments at the voxel 

centres in Eq. 7 are chosen to be 0 1 1s o iK K K= , = − , =  

as in [15] , but other choices can be exploited. Other 

parameters as the regularizing parameter λ  and the support 

parameter σ  along with the classification rules deserve a 

discussion.  

 

4.1 Empty voxel classification 
The general voxel classification rules have been discussed 

before in Subsec. 2.1. When empty voxels of different type 

become adjacent, the classification depends on the scale. At 

scales coarser than or equal to typical scale i TYP , which 

depends on the mean distance between 3D data points, 

volume carving is supported. Inner voxels adjacent to outer 

ones are by reclassified as outer, and this classification 

propagates along adjacent voxels  of the same or coarser 

scale. The partially build octree structure is analyzed bottom 

up to  propagate the reclassification. At scales finer than i TYP 

the reclassification propagation is partially inhibited to avoid 

the creation of holes (outer-inner voxel adjacency) on the 

surface along which inner voxels can change to outer 

destroying in this way the surface continuity. 

Empty voxels are classified outer only if they are adjacent to 

at least one bigger outer voxel. Empty voxels are classified 

inner only if they are adjacent to at least one bigger inner 

voxel.  In all the other cases empty voxels are classified as a 

surface voxels of particular type because they will never be 

split further.  

 

4.2 Support and Regularizing parameters 
 To force the support extension of an RBF at a given scale i  

to be contained inside the first neighboring voxels the 

support parameter σ  is chosen as:  

2 2 2 i

i ia aσ −≤ , =      (8) 

 

where ia  is the length of the voxel side at the scale i .  

The regularizing parameter λ  is crucial to control the 

reconstruction process. By varying locally its value for every  

voxel it is possible to stress the closeness to the data, such as 

near edges or sharp surface variations, or the smoothness, 

such as near planar zones of the reconstructed surface. 

A reasonable constraint on the reconstruction process could 

be the preservation of surface continuity at scales finer than   

i TYP , if it is supposed no holes are present at that scale  and  at 

the finer ones. Hence not only space carving should be 

inhibited by the classification rules on empty voxels,  but 

also smoothness should increased by increasing λ . In any 

case the surface should be close to the 3D data points inside 

the surface voxels, hence a measure of the approximation 

error has to be defined to deal with the trade-off between 

smoothness and goodness of fit to the data.  

As a measure of the local approximation error of the 

reconstruction has been chosen the Euclidean distance 

ie between the point ix  and the estimated surface, or more 

formally, between the 3D data point ix  and the point iy on 

the isosurface 0f =  intersected by the normal 

ɵ ( )i

i

n f= ∇ x x to the isosurface ( )i if f= x passing though 

ix  , that is : 

�( ) ( )i i i i i

i

f f
 

= − ∇ = 
 

x y x x xe  e≃   (9) 

For a given surface voxel V, the maximum 

�{ }max maxi ie =  e  of the moduli of the estimates �
i e  of the 

approximation errors 
ie  related to the points ix that belong to 

V defines the local maximum deviation of the surface from 

the data. Note that the estimates are valid only for a first 

order expansion of f ; for this reason 
maxe has been bounded 

to be at most 
ia  where 

ia  is the length of the voxel side at 

the scale i .  To trade  smoothness for accuracy, at the next 

scale step the values of the smoothness parameter λ  for all 

the eigth descendants of the surface voxel V (if it will be 

split) is locally set according to : 

 

max

1
surf

e
λ =    (10) 

 

Inner and outer voxels are not split hence their local  

approximation error does not propagates along the scales. 

For this reason their smoothness parameters are constant at a 

particular scale; they only increase while proceeding along 

the scales to compensate  for the corresponding  reduction 
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 of the smoothness part of the functional [ ]fφ  of Eq.1,  

according to : 

 

1
inner outer

ia
λ λ= ∝   (11) 

 

5   Reconstruction results 
The reconstruction performance of the algorithm has been 

tested on two sets of 3D data generated by laser scanners. 

The Horse data, made of about 50000 surface points, is 

available at the Large Geometric Models Archive at Georgia 

Inst. of Tech., while the Bunny data,  made of about 360000 

surface points, is available at the at The Stanford 3D 

Scanning Repository. The typical scale i TYP for the two data 

set was estimated by the mean inter-point distance of the two 

data sets. 

The two data sets were normalized in a working volume of  

2×2×2 units. Starting at scale 0, where the side of the voxel is 

2, a first surface voxel with 26 adjacent outer voxels is 

refined up to scale 7, where the side of the voxel is 0.015. 

The Horse surface reconstructed at scale 2 is shown in Fig. 2. 

The surface voxels (32 voxels) are shown on the left and the 

corresponding reconstructed isosurface on the right. The 

final result is obtained at scale 7 (33000 surface voxel) and is 

shown  in Fig. 3.  

The Bunny surface reconstructed at scale 5 is shown in Fig. 

4. The surface voxels (3400) are shown on the left and the 

corresponding reconstructed isosurface on the right. More 

details are visible respect to Fig.3, even if a surface 

“voxelization” is evident. The final result  is  obtained at 

scale 7  (56000 surface voxels) and the surface is shown  in 

Fig. 5. The reconstruction times up to scale 7 were 20 s for 

the Horse data and 90 s for the Bunny data on a PentiumIII 

1GHz. The mean reconstruction errors were 0.005 and 0.004  

for the Horse data and for the Bunny data respectively. All 

the surfaces shown were obtained by standard isosurface 

extraction techniques [3] applied to the volumetric  functions 

estimated by the algorithm from the test data. 

 

 

 

Fig. 2 Horse data reconstruction at scale 2 

 

 

 

 

Fig. 3 Horse data reconstruction at scale 7 

 

 

 

 

 

 

Fig. 4 Bunny data reconstruction at scale 5 

 

 

 

 

 

               

Fig. 5 Bunny data reconstruction at scale 7 
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6   Conclusions 
This paper describes a  multiscale volumetric approach to 

surface reconstruction from non-uniform data which is based 

on a hierarchical partitioning of the volume data set into an 

octree structure.  The surface is reconstructed from the 3D 

data as a sequence   of surfaces approximating different level 

of details in the space of spatial scales. Information related to 

reconstruction error propagates along the scales to drive the 

reconstruction process. A test on the performance of the 

method has been made on commonly used data sets available 

on the web. 

The results show the algorithm is effective to produce from 

the original 3D data a sequence of reconstructions that 

converge to a final good-quality surface. An important 

feature of the algorithm is its ability to incrementally refine 

the reconstruction. When the object represented by 3D data 

should be archived or transmitted at lower LOD than the 

finest one, the algorithm output a sequence of information 

able to upgrade an initial rough representation up to the 

desired LOD. This is particular attractive for applications to 

progressive transmission of 3D data [14]. 

The multiscale approach, the octree data structure and the 

choice of local support RBFs allow both efficient and fast 

surface reconstruction. 

Further investigations and improvements are necessary to 

understand in deep how the inter-relations between 

decomposition rules, local error and smoothing parameters 

affect the final quality of the reconstruction.     
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