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Abstract: In this paper a parallel implementation of an encoder and of a decoder for cyclic codes to increase 
the bit rate is proposed. The structures are composed of a cascade of iterative combinational cells able to 
obtain a finite output sequence spatially. The proposed solution allows high bit rates and high degree of 
modularity, so an easy integration of the circuits is possible. These characteristics make the method suitable 
to be adopted in a photonic environment in which clocked digital memory elements are still a critical aspect 
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1 Introduction 
Channel encoding for error detection and 
correction is achieved by adding to the source 
binary sequence a controlled amount of 
redundancy. This solution protects the 
information against possible transmission errors. 
However, the occurrence of errors in the message 
gives rise to increase message loss and 
consequently to reduce the network quality of 
service. 
The adopted encoding rule will heavily affect the 
decoding algorithm complexity, that is the process 
to be performed on the received sequence to 
recover the transmitted information. 
Cyclic codes are widely used for the detection and 
correction of errors in modern networks. They 
possess a great deal of well-understood 
mathematical structure and are effective 
particularly in controlling errors with a minimal 
amount of hardware [1], [2] [3], [4], [5]. 
Moreover, the transmitter and the receiver have an 
equal logical structure. The encoding and the 
decoding process of cyclic codes is achieved 
using a division algorithm. For this reason the 
classical hardware implementation adopts shift 
registers with feedback connections related to the 
used code. Due to its sequential logic nature, the 
circuit is time variant so the output depends on the 
input and the current state of memory elements. 
Therefore, the output may be viewed as a 
sequence because it varies with time and is 
dependent on the past. 

However, the grow of speed in modern 
transmission systems makes necessary the 
research of hardware solutions able to work at 
frequencies of Gbit/s. 
In a previous paper a solution based on the 
transformation of an FSM in a fully parallel 
circuit was presented [6].  
In this paper in order to determine the speed limit 
of the parallel solution taking into account the 
current technological implementation, an encoder 
and a decoder for the systematic Hamming code 
are presented. They are based on a fully parallel 
and feed-forward operating mode, but it is 
possible to adopt any parallelism that is necessary. 
The modularity of the circuits makes an easy 
hardware implementation possible. These 
characteristics make the method suitable to be 
adopted in a photonic environment, too. 
In section 2, the principles of the encoding and 
decoding of cyclic codes are summarized and the 
design of the classical encoder and decoder for the 
Hamming code (15,11) are indicated. Section 3 
deals with the method to transform generic 
Synchronous Finite State Machines (S-FSMs)  in 
combinational circuits In section 4, the designs of 
the parallel solutions are presented and in section 
5 their performance are evaluated. The general 
validity of the method is outlined and some 
conclusions are drawn. 
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2 Cyclic code encoding and decoding 
procedure 

The cyclic codes are a particular class of block 
codes. Suppose that a block of n bits (message 
word) is generated by a source. In order to 
achieve a given bit error probability, the word 
has to be encoded before transmission. The 
basic feature of block codes is that another 
block of r redundant bits is added to the 
information packet. These bits derive from r 
parity checks performed on the original 
message word. 
If the first n bits of the code word are the 
message bits and the last r bits are the parity 
check bits, the block code is called systematic.  
An (n + r,  n) block code is a cyclic code if and 
only if any cyclic shift of an (n + r) bits code 
word produces another code word. In dealing 
with cyclic codes, it is useful to represent any 
binary sequence with the coefficients of a 
polynomial in the indeterminate D. 
A cyclic code is generated using a generator 
polynomial g(D) which for an (n+ r, n) cyclic 
code is unique and is of the form: 
 
D r + g r - 1 D r - 1 + . . . + g 1 D + 1  (with gk=0,1) 

 
All the code words of every cyclic code are 
multiples of the polynomial g(D). Therefore, one 
cyclic code is obtained  as follows: 
 

t(D) = x(D) g(D) 
 

where x(D) is the information sequence. To 
generate a systematic code another algorithm is 
employed, by which message words are 
multiplied by Dr and then divided by g(D).  
Denoting with q(D) and r(D) the quotient and the 
remainder of the division, the following 
expression is obtained: 
 

Dr x(D) = q(D) g(D) + r(D) 
 
The previous formula can be rewritten as: 
 

Dr x(D) + r(D)= q(D) g(D) = u(D) 
 
The polynomials u(D), being multiples of g(D), 
are code words of a systematic cyclic code. In 
fact r(D) constitutes the parity check word 
whose bits occupy the last r positions of u(D). 
The cyclic encoder is based on a shift register 
with linear feedback (Fig.1a), by which the 
division of the message word by the generator 
polynomial is performed.  

 
Fig.1  (a) The cyclic code encoder.  

(b) The cyclic code correcting section 
 
The shift register is initially set to all zero 
values. The message word enters one bit at a 
time in the register at its right end: this is 
equivalent to multiplying the message word by 
Dr. After n clock pulses, the remainder is stored 
into the shift register. The code word appears 
serially in (n + r) clock pulses. 

Adding to the previous circuit the correction 
section indicated in Fig.1b, it is possible to 
perform the decoding operation with error 
detection and correction. If some errors occur 
during the transmission, the received 
polynomial w(D) can be expressed as follows: 
 

w(D) = u(D) + e(D) 
 
where e(D) is an error polynomial. Dividing 
w(D) by g(D), we obtain 
 

w(D) = p(D) g(D) + s(D) 

where s(D) is the remainder of the division, called 
the syndrome. If s(D) is equal to zero, w(D) is a 
multiple of g(D) and therefore it is a code word. 
In this case, either the processed word is correct 
or e(D) transforms the true word in a different 
code word and so errors are not detectable. 
The error correction process is more 
complicated: the decoder consists of a 
detecting section (which has the same structure 
as the encoder), a shift register in which the 
received word is stored and a correcting 
combinational network (Fig.1b). The binary 
digits yi represent the bits of the syndrome. 
After the error detection, the syndrome is 
cyclically shifted into the shift register while 
the serial input is kept to zero, so that (2r-1) 
different syndrome values could be obtained. 
If one error occurs in the ith position           
(for 1 ≤ i ≤ n+r), the syndrome value obtained 
at the ith pulse clock is the same, whatever the 
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value of i. 
Therefore, the correcting section of the circuit 
is able to correct a single error, independently 
from its position into the received word. The 
syndrome words, together with the code word, 
are fed step-by-step into the correcting gates. 
If there is a single error, the incorrect bit is 
complemented. 
 
3. The iterative cells architecture 
Every S-FSM which transforms a finite input 
sequence x(i) into a finite output sequence z(i), 
can be transformed into a combinational circuit 
[7]. Therefore, every p bits long output 
sequence obtained by an FSM, can also be 
generated spatially by a combinational 
iterative network, consisting of a cascade of p 
identical cells, one of which is shown 
schematically in Fig. 2. xi is the input vector, 
zi is the output vector, yi is the input carries 
vector and Yi is the output carries vector. Thus 
 

Xi=x(i);  yi=y(i);   Yi=Y(i) 
 

The cells are in cascade in such a way that the 
output carries from the (i-1)th cell constitute 
the input carries to the ith cell. The input 
signals are applied simultaneously to all cells 
and the outputs appear simultaneously, except 
for the delay introduced by the cells, 
depending on the number of gates each signal 
must pass through. Because of its modularity, 
an iterative circuit is suitable for easy 
integration. 
The synthesis procedure of an iterative 
combinational circuit is the same as that of a 
synchronous sequential circuit [7].  
 

 
Fig.2 The generic cell composing an iterative circuit 
 
In order to transform the sequential cyclic code 
encoder and decoder into combinational 
circuits it is necessary to define their state 
transition property. For the previous sequential 
circuits it assume the following expression: 
 

Yk=gk(x ⊕ yr-1) ⊕ yk-1         k=0,..., r-1 

where ⊕ represents the mod-2 sum or the 
EXOR boolean function.  
In the corresponding iterative cells encoder, n 
iterative cells are needed, into which the n 
message bits are fed. The number of input and 
output carries is r. The output carries from the 
nth cell are the check digits to be added as the 
final bits of the code word. 
The parallel decoder needs for [2(n+r)-l] 
iterative cells. In fact, the whole code word is 
fed into (n+r) iterative cells, identical to those 
of the encoder. Moreover, as the syndrome is 
shifted (n+r-1) times into the shift register, 
n+r-1 cells are necessary in the iterative 
solution to perform the correction.  
The output carries vector, Y(n+r+i-1) (for i= 1, .. , 
n+r), representing the parallel syndrome, 
allows the error in the ith position to be 
corrected.  
 
4. Synthesis of the Hamming circuits 
In order to evaluate the speed-up of the 
iterative cells circuits as to the sequential 
structures, the encoder and decoder for the 
systematic Hamming (15,11) code have been 
designed.  
Every code word consists of 11 message bits and 
4 parity check digits obtained adopting the 
following generator polynomial: 
 

g(D) = D4+ D + 1 
 
From the previous formula derives that every cell 
has to implement the following logical functions: 
 

Y0 = y4 ⊕ xi 

Y1 = y0 ⊕ Y0

Y2 = y1 

Y3 = y2 

 

In fig.3 the logical structure of the designed cell is 
indicated. 
The parallel encoder is composed of 11 identical 
cells; the output carries of the last cell represent 
the check bits to add to the message word.  
To perform the error detection 15 cells are 
necessary while to correct the single error other 
14 cells have to be designed. Therefore, the 
Hamming decoder is composed of 15 cells having 
the structure indicated in fig.3 and 14 other cells  
whose logical architecture is shown in fig.4. 
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Fig.3 The logical architecture of the Hamming 

(15,11) encoder cell 
 

 
 
Fig.4 The logical architecture of the correcting 

section cell 
 
This last cells are characterized by a logical zero 
input value which corresponds to the shift of the 
generated syndrome inside the sequential circuit 
(fig.5). 
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Fig.5 Schematic structure of the combinational 

decoder 
 
The high degree of modularity of the previous 
circuits makes easy the layout process. Figgs.6 
and 7 show the logical structure of the 
combinational decoder and the layout of the 
generic cell decoder realized adopting the CMOS 
AMS 0.35 technology. Moreover, the layout of 
the Hamming (15,11) decoder is indicated in 
fig.8. 

 
 

Fig.6 The parallel Hamming (15,11) decoder 
 

 
Fig.7 The layout of the single cell decoder 
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Fig.8 The layout of the Hamming decoder 

5. Performance evaluation and 
comparative analysis  
To evaluate the enhancement of the designed 
circuits many simulations with different 
message and code words have been performed 
adopting the ORCAD simulator. As the 
parameter to analyze has been the coding and 
decoding speed, the study in the time domain 
started after the last bit arrived. In this way the 
real delay introduced by the circuits has been 
considered. 
The time necessary to code an information 
depends on the particular message word; in 
particular for the worst case the speed-up of 
the combinational encoder as regards the 
sequential solution is about 4. In fig.9 the 
simulation results for the message word 
[101000000000] are shown and the 
performance have been compared with the 
sequential solution (fig.10). In this situation 
the speed-up is about 8, in fact about 16ns are 
necessary to code the message word adopting 
the shift register solution while only 2ns are 
request in the iterative cell architecture. 
For what the decoding circuit concerns, the 
analysis has been performed with an operating 
frequency of 1GHz. In this condition a speed-
up of about 7 has been reached in the worst 
situation. 
 

 
 
Fig.9 Time domain performance of the parallel 

encoder  
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Fig.10 Time domain performance of the serial 

encoder  
 
6. Conclusions 
In this paper the designs of pure combinational 
Hamming code encoder and decoder have been 
indicated. The adopted procedure has a general 
validity in fact it can be used for every 
systematic cyclic code. 
The high performance of the realized solutions 
and the limited number of logical gates 
composing the structures make the circuits 
easy to be implemented in photonic 
environment, too. 
In particular having parallel data available, the 
designed encoder has a speed-up of about 4 as 
to the corresponding sequential solution while 
the performance of the decoder increases of 
about 7 with respect the serial structure. 
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