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Abstract: - Numerous deadlock detection algorithms were proposed for distributed systems, but most of them 
assumed the static wait-for graph (WFG), which is inconsistent with the dynamic application environment of 
distributed systems, in fact they can not run concurrently. A novel instance of diffusion-computation algorithms 
is proposed in this paper to resolve the concurrency problem. In our algorithm, a Dynamic WFG (DWFG) is 
raised, where the blocked transactions creating or quitting is responded to the nodes joining or disappearing in 
DWFG. Three additional detection termination conditions are assigned for the concurrent running of the 
proposed algorithm: the being detected node is a leaf or quitted, or fault occurs in the system. By these methods 
the concurrent running detections can terminate eventually and the deadlock can be resolved correctly. The 
correctness of the proposed algorithm is proven. Performance evaluation shows the time and message 
complexity of our algorithm outperforms the existing algorithms under a static WFG. 
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1 Introduction 
The distributed deadlock problem has been 
extensively studied and numerous deadlock detection 
algorithms were developed. Based on the deadlock 
detection technique, the existing algorithms can be 
classified into four categories: path pushing, edge 
chasing, diffusion computation and globe state 
detection [1]. Usually deadlock detection approach 
responds the blocked system to a WFG firstly, 
afterwards the detection messages, such as probe [2], 
label [3], token [4] and deadlock detection agent [5] 
were propagated along the edges of WFG to find the 
closed deadlock cycles or knots, finally at least one 
victim in a cycle or knot is aborted to resolve the 
infinitely waiting state of the underlying system.  

However, most of the existing distributed deadlock 
detection algorithms assume explicitly or implicitly 
that the WFG is static [6~13], but in real systems, the 
structure of WFG may be changed in such situations: 
1) the undetermined massage passing delay makes 
the blocked transactions unblocking latterly; 2) the 
transactions executions is stopped by node failures; 
3) new blocked transactions are created before the 
deadlock resolution finish. Without these 
consideration, many algorithms were proved to be 
incorrect: the detection messages were discarded 
falsely or lost their detect objects so that the 
algorithms ran into disorder. 

This paper presents a DWFG based distributed 
deadlock detection algorithm, which is a variation of 
diffusion computation. In our algorithm, the blocked 

transactions creating or quitting is responded to the 
nodes joining or disappearing in DWFG. Every 
transaction has a resource request satisfaction 
predication f (n, T), only if it is true can the 
transaction be committed. The notion Virtual Victim 
is invented to reflect the dynamic shift in DWFG: 
besides the active victims produced by the normal 
deadlock detections, any quitted transaction in above 
situation 1) and 2) is stipulated as the virtual victim of 
a deadlock detection, which will makes the algorithm 
terminated passively. Therefore, not only the single 
running detection but also the concurrent detections 
can terminate eventually. In the case of  3) above, we 
prove that they  are trivial for a detection. 

The rest of this paper is organized as follows: 
Section 2 introduces the general distributed system 
model, provides f (n, T) and illustrates how it can be 
used to express the resource request models. Section 
3 presents the new deadlock detection and resolution 
algorithm. Section 4 discusses the deadlock detection 
correctness criteria of our algorithm in DWFG and 
proves it. Section 5 evaluates the message and time 
complexities of the new algorithm in a static 
environment. Section 6 concludes our works.   
 
 
2 The Distributed System Model 
Without loss of generality, a distributed system can 
be viewed as consisting of a collection of nodes on 
which transactions and resources are residing; each 
node has a manager, i.e., transaction manager (TM) 
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and resource manager (RM). Every transaction or 
resource has a unique id for the ordering purpose. 
After a transaction quitted, it reenters the system with 
a new id to keep the system concurrency. TM is 
responsible for its ever managed transactions. In 
order to simplify the presentation, we assume that 
each TM and RM controls one transaction and 
resource respectively, so we will often use 
synonymously the term transaction for TM and 
resource for RM.  

No shared storage exists in the system model. TMs 
and RMs communicate via message passing. We 
assume the messages arriving at object in their 
sending order and the communication channel is 
error-free, note the executions in local node may be 
fail. If these assumptions can not be held, some fault 
tolerance schemes should be applied.  

A resource can be accessed exclusively. RM 
receives the requests and schedules the requesters in 
a FCFS table, only the requester in the top of the table 
can be granted. If a request is released or canceled, 
the RM cancels the requester from table and updates 
it.  

A two-phase locking protocol is assumed for the 
transaction execution. In the first phase, TMs send all 
resources requests on behalf of the transactions; RMs 
reply with grant or await messages according to the 
current accessing states of the residing resources. In 
the second phase, TMs commit the transactions and 
release their locked resources.  

A transaction consists of a set of resource requests 
with their combination style. The generality or the 
system transparency of the proposed algorithm is 
realized by the application of f (n, T).      

Definition 1 The resource request satisfaction 
predication f is a 2-tuple (n, T)，where n = {r1, r2,…, 
rM} is a set of required resources; T = {φ, and, or} is 
the set of connection operators which represent the 
resources request combination style.  

Different combinations of n and T denote various 
resource request models of distributed systems: (1,φ
) denotes the one-resource request model, which is 
the mostly used model where a transaction has only 
one resource request at a time, only if it is satisfied 
can the transaction send the next request; (n, and) 
denotes the AND model where the resource requests 
of a transaction are sent simultaneously and all of 
them must be satisfied for the transaction 
committing; (n, or) denotes the OR model where the 
transactions committing need only part of the 
resource requests being granted; (n, T) denotes the 
AND-OR model or k out of N model where the 
resource request satisfaction condition is undefined 
for every transaction. The applications of these 

models can be found in the Distributed Data Base 
systems (DDBS) and communication networks etc. 

 

Fig. 1 Transaction life-cycle 
 

The running of general distributed system model 
can be presented by the state transformation graph in 
figure 1, which is explained by message passing as 
follows, where i and r denote the transaction node 
and resource node respectively. 

 
I TMi executes: {i has four states：ACTIVE; 

BLOCK; COMMIT and ABORT} 
I.1 when i is initialed, it is in ACTIVE state, sends 

all request messages to the required RMs; 
 puts i into BLOCK state;  

I.2 upon receives grant or await messages, 
computes fi(n, T); if fi(n, T) is true, puts i into 
COMMIT state,  executes I.3; else executes I.4; 

I.3 sends release messages to all granted RMs; 
sends cancel messages to all un-granted RMs; puts i 
into ABORT state and abort it; 

I.4 if fi(n, T) is false until Timeout, executes 
DEADLOCK DETECTION; 

 
II RMr executes: {r has two states: BUSY or IDLE} 
II.1 upon receives a request message, adds the 

requester to the request table; if r is in IDLE state, 
executes II.2; else sends await message to the 
requester; 

II.2 sends grant message to the TM of the first 
requester in request table; puts r into BUSY state; 

II.3 upon receives release or cancel messages, 
purges the requester from the request table; if the 
message is release, puts r into IDLE state;  

II.4 if the request table is not empty, executes II.2
； 

 
In above executions, if I.4 happens, the system 

involved in blocks. Now we give the WFG and 
DWFG definition which reflects the blocking state.  
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Definition 2 WFG is a direct graph (N，E), where 
each node i∈N denotes a blocked transaction and its 
holding resources, the direct edge e∈E between a 
pair of nodes denotes the waiting relation, such as ij
∈E denotes the execution of transaction i is blocked, 
it is waiting for the transaction j release its holding 
resource, in such situation, i is called the predecessor 
of j and j is called the successor of i.  

Definition 3 A Cycle is a loop with the same 
originator and terminus in WFG; A knot is a 
nonempty set of nodes such that the reachable set of 
each node in the knot is exactly the kont. 

Definition 4 The DWFG is a 4-tuple (N, E, ^, D), 
where N and E are the same as that in WFG; the 
operator ^ stands for a discrete time, D = {q，j，λ} 
stands for the quitting, joining and static actions of a 
node in N respectively. The dynamic shift of DWFG 
can be expressed by such infinite sequences: S^λ, 
S^q, S^j, S^q^j, S^j^q^q … where S is the initial 
value of N. 

Although the waiting relation between transactions 
may be uncertain in DWFG, the topologies of the 
deadlocks is not changed, namely, there are still 
cycles or knots exist in DWFG. 

 
 

3 New Algorithm 
By definition 3, the existence of a cycle is the 

necessary condition for a knot existence, so the knot 
is more general than the cycle in describing a 
deadlock topology. In the field of knot detection, 
diffusion computation is the most suitable approach. 
The basic idea of the diffusion computation is that the 
algorithm responds the knot in WFG to a direct 
spanning tree (DST): the deadlock detection initiator 
is the root, the node without successor is the leaf，
the nodes between roots and leaves are the neutral 
nodes, then the deadlock detection is realized by a 
depth-first search of the DST: A root sends the 
detection messages, probes to all of its successors, 
the successors propagate probes to their successors in 
turn and echo the predecessors and/or roots based on 
their current states, finally the root concludes the knot 
members and designates a victim node quitting from 
the system to resolve the deadlock.  

The diffusion computation algorithms can be 
classified according to the knot reduction happening 
places: the initiator reduction (IR) algorithms and the 
neutral node reduction (NR) algorithms. The knot 
reduction happens at root in IR algorithms [11, 14] 
while at neutral nodes in NR algorithm [4, 10]. 
Furthermore, some algorithms [9, 12] collect all the 
knot members for the manager. 

The proposed algorithm is an optimized IR 
algorithm and gives the total members of a knot in a 
special set blk_s; a successor set suc_s, records the 
current successors informed by the un-granted 
resource nodes; an initial node set ini_s, records the 
initiators of the probes. The data structure of a probe 
is Probe(ini, suc, ts), where ini is an identifier stands 
for the initiator of the probe, suc is a parameter stands 
for the next detecting object node, ts is the time stamp 
of the probe, it is assigned with the local time of the 
initiator. The timing order of ts can be used for the 
priority comparison between nodes in DWFG either. 
Every transaction node in DWFG can send probe and 
a node can send multi probes. The data structure of a 
echo message for a probe is Ack(j, sp, ts)，where j 
and sp stands for the identifier and state of the on 
going detected node respectively, ts comes from the 
latest arrived probe. 

 
 

3.1 Deadlock Detection 
The outline of our deadlock detection can be 

described by the executions of a root i and its direct 
or indirect successor j: 

 
III Executions of TMi : 
III.1 initial: blk_si := suc_si; ini := i; ts := local 

time; sends Probe(i, j, ts) to all j ∈suc_si; 
III.2 upon receives Ack(j, sp, ts)，blk_s i:= blk_si 

∪ suc_sj; 
III.2.1 if sp = suc_sj and i∈suc_sj, declares blk_s 

is a cycle; Abort victim(i);                  /*real victim*/ 
III.2.2 elseif sp = Φ, declares blk_s is a knot; Abort 

victim(j);                                        /*virtual victim*/ 
III.2.3 elseif sp = stop, declares blk_s is a knot; 

Abort victim(j);                              /*virtual victim*/ 
III.2.4 else sp = -k, blk_si := blk_si - k； 
 
IV Executions of TMj :{ upon receives Probe(i, j, 

ts)} 
 ini_sj := ini_sj + i; 
IV.1 if ts > local time, discards Probe(i, j, ts); 
                                            /*an obsolete probe*/  
IV.2 elseif suc_sj≠Φ∧ ts < local time, sends 

Ack(j, suc_sj, ts) to i; sends Probe(i, k, ts) to all k ∈
suc_sj ;      

                                                   /*j is not a leaf*/ 
IV.3 elseif suc_sj = Φ, sends Ack(j, Φ, ts) to all i∈

ini_sj;                                               /*j is a leaf*/  
IV.4 elseif j is in COMMIT or ABORT state, sends 

Ack(j, stop, ts) to all i∈ini_sj;  /*j has already quit*/ 
IV.5 elseif k∈  suc_sj and j is in COMMIT or 

ABORT state, sends Ack(j,-k, ts) to all i∈ini_sj; 
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                                            /*one successor quit*/ 
 
 

3.2 Deadlock resolution 
The victims in deadlock resolution have to be 

aborted actively or passively in order to resolve the 
deadlock.  

 
V Abort victim (v)            /*deadlock resolution*/ 
V.1 TMv executes I.3； 
V.2 the root sends resend resource request 

messages to all k∈blk_s\v; 
 
 

3.3 Discussion 
Definition 5 The virtual victim is the midway 

quitting node before the deadlock detection finish. 
If multi deadlock detections running concurrently, 

when a victim node receive probes after it quitting in 
III.2.2 and III.2.3, its TM will echo the probe with the 
messages in IV.4 and IV.5, now the status of the 
quitted node transforms from the successor of one 
detection to the quitted victim of other running 
detections, by this way, other detections may 
terminate passively because the victim is known. The 
alternative passive and active termination conditions 
ensure multi deadlock detections can terminate 
eventually. Since the victims in III.2.2 and III.2.3 are 
not the real victims detected by the normally 
deadlock detection, they are named the virtual victim.  

In order to decrease the detection overhead and 
select the single victim, in IV.1, only the probes with 
the lower ts than the detected nodes can be 
forwarded. 

 
 

4 Correctness Proof 
The dynamic shift of DWFG is unordered, by 

definition 4, if infinite q and j actions happen in a 
period of time, the correctness proof of the algorithm 
will be very complicate. For the paper length limited, 
we give the correctness proof under the assumption 
of only one q or j action happening in a deadlock 
detection round. Because of the rare happening rate 
of deadlocks in distributed systems (or else the 
deadlock avoid algorithms should be adopted), and 
the few quitting or joining nodes in DWFG, the 
assumption is acceptable.  

Singhal put forward the correctness criteria [15] of 
a deadlock detection algorithms, that is 1) Liveness. 
If a deadlock happens, the algorithm should detect it 
in finite steps; 2) Safety. If an algorithm declares a 
deadlock happens, the deadlock exists truly. While in 
a dynamic distributed system, the safety condition 

can not be satisfied: during a deadlock detection 
round, any halfway quitting node would destroy the 
integrity of a cycle or knot. Besides, the correctness 
criteria proposed by Singhal lacks termination 
conditions for concurrent running deadlock 
detections, it is useful just for one deadlock detection 
round. Therefore the correctness conditions of the 
proposed algorithm should be: 1) Narrow sense 
consistency: once deadlock detection produces only 
one victim; 2) Broad sense consistency: the 
concurrent deadlock detections can terminate 
eventually; 3) Livness. 

For describe simply, we assume that the lower 
priority of the node, the lower value of its ts; the 
character n and e represent the number of nodes and 
edges of DST respectively; all messages passing have 
the same interval and other executions are instant. 

 
Theorem 1 The proposed algorithm satisfy 

narrow sense consistency. 
Proof Recall the deadlock detection termination 

condition in section 3 part III, we have three cases: 
Case1. In III.2.1, if the deadlock is a cycle, there 

must be the lowest priority node exists in the cycle, 
by IV.1, only the probes originated from the node can 
pass through all the nodes in the cycle, any probe 
initialed by other nodes may be discarded at least by 
the lowest priority node. Namely, only the lowest 
priority node can become the victim; 

Case2. In III.2.2, if the deadlock is a knot, by IV.3, 
the root near the leaf would receive the reply in 
advance, but no matter how many deadlock 
detections find the knot, the victim is the same leaf, 
thus the unique property of the leaf guarantees only 
one victim can be selected; 

Case3. In III.2.3, if a node quits during the 
deadlock detection, it is the virtual victim, obvious it 
is unique. 

 
Theorem 2 The proposed algorithm satisfy broad 

sense consistency. 
Proof The running of nodes in distributed system 

are independent, none of them has the global state 
information. Whether or not the concurrently running 
detections can terminate eventually is decided by the 
reduction results of the roots. If some concurrent 
deadlock detections intersect at some nodes and one 
of them terminates before others, by discussion in 
section 3.3, the victim created by the first terminate 
deadlock detection will be transformed to other 
deadlock detections virtual victims, so every 
deadlock detection will terminates eventually.  

 
Theorem 3 Liveness 
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Proof Consider all the possible dynamic shift in 
DWFG, we have: 

Case1. S^λ 
1.1 Deadlock is a cycle 
Although it is possible that each node in the cycle 

can create probes, by case 1 in theorem 1, only one 
root can conclude the entire cycle, the deadlock 
detection steps are the same as the diameter of the 
cycle in DWFG; 

1.2 Deadlock is a knot 
In theorem 1 case 2, the lowest deadlock detection 

steps is 2 when a root sends probes to a leaf directly; 
the upper limit deadlock detection steps are no more 
than n. 

Case2. S^q 
The quitted node is defined as the virtual victim in 

our algorithm, it will lead to the termination of the 
current running deadlock detection, so no matter the 
original topology of a deadlock in DWFG is cycle or 
knot, this quit action will transform the topology to a 
knot and the deadlock detection steps are decreased 
by at least 1. By IV.4 in section 3.1，there may be 
multi roots execute III.2.3, but because the total 
number of n is decreased, the upper limit deadlock 
detection steps are n-1. 

Case3. S^j 
3.1 Deadlock is a cycle 
3.1.1 If the joined node hasn’t the lowest priority 

in DST, by IV.1, the probes originated from it must 
be discarded by some nodes in DST. The joined root 
can not affect original deadlock detection;  

3.1.2 If the joined node has the lowest priority in 
DST, the probes originated from it will either arrive 
at all members of the cycle or be discarded because of 
the original deadlock detection termination. While in 
the former situation, the joined root will not satisfy 
any termination condition in section 3.1 III.2.1, 
III.2.2 and III.2.3; in the last situation, the joined root 
may be satisfy the termination condition in III.2.3, 
but it can not affect the original deadlock detection.  

So the original deadlock detection will continues 
and terminate eventually. 

3.2 Deadlock is a knot 
3.2.1 If the joined node is waiting a leaf directly, it 

will sends probes to the leaf, by section 3.1 IV.3 and 
III.2.2, the deadlock detection will terminate within 2 
steps. This detection result will make the former 
running detections executing IV.4 and III.2.3 and 
terminating eventually; 

3.2.2 If the joined node is waiting for the leaf 
indirectly, the original detections will keep running 
like 1.2 above. It is possible the joined node executes 
IV.4 and III.2.3, but in any situation the upper limit of 
the detection is less than n steps; 

So the upper timing limit for all deadlock 
detections is n steps. 

 
 

5 Performance Evaluation 
Due to the dynamic property of the DWFG, the 

performance of the algorithm is undetermined. In 
order to given a valid performance evaluation, we 
only consider the situation of ^λ in DWFG.  

By the proofs of section 4, if the deadlock is a knot, 
the lower limit of time complexity is 2: a root and its 
directly waiting node, the leaf forms the simplest 
knot. It will be detected in 2 steps; while the upper 
limit is known as n. The lower limit of message 
complexity is also 2：a probe and a reply message; 
the upper limit for a single deadlock detection is 
e+n-1: if the distance between the root and the leaf is 
n，the probes initialed by the root will be sent to all 
the edges of the DWFG, the total number is e, all the 
detected nodes will reply the probes, the total number 
is n-1. 

If the deadlock is a cycle, the lower limit of time 
complexity is still 2 in case of the cycle consists of 
two nodes; the upper limit is still n by theorem 3. The 
lower limit of message complexity is obvious 2; the 
upper limit of message complexity can be computed 
as follows: for the node with the lowest priority in the 
cycle, its probes will be propagated all the 
successors, so there are e probes for a single deadlock 
detection, every detected node except the root will 
reply each probe, so there are n-1 reply messages, the 
total number of message is e+n-1.  

The comparison of the time and message 
complexity of the proposed algorithm and previous 
algorithms is listed in table 1. It shows our algorithm 
is favorable than other algorithms.  

 
Table 1 Performance comparison 

Algorithms Messages /n Delay 
Misra and Chandy [2] 4e 2n 
Kshemkalyani [10] 4e-2n+2L 2n 
Kshemkalyani [11] 2e 2n 
Boukerche [12] 2e 2(n+1) 
Chen [13] 2n 2n 
Lee [14] <2e n+2 
Proposed <e+n-1 n 
 

6 Conclusion 
Deadlock detection in distributed system is 

difficult because of the independent running and 
lacking of global information of each node. Most 
existing proposals just represented how to search 
cycle or knot in a static WFG, while neglected the 
dynamic shift of the underlying distributed system, 
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they failed to run concurrently or have false 
detections. The algorithm proposed in this paper 
eliminates these defects. Main advantage of our 
algorithm is that the occurring of leaf, fault or node 
quitting which may make the detection interrupt are 
viewed as the detection termination conditions, 
enable the multiple detections terminate when node 
disappear in the corresponding DWFG. On the other 
hand, all the resource request condition is denoted by 
a resource request satisfaction predication, therefore 
the proposed algorithm can be applied to any 
distributed systems. The correctness including 
narrow sense consistency, broad sense consistency 
and Livness for our algorithm is proved. Performance 
evaluation shows the message and time complexity 
of the proposed algorithm is <e+n-1 and n 
respectively under a static WFG, where n and e stand 
for the number of nodes and edges of the DST 
respectively, the performance is better than that of the 
previous algorithms. 
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