
A Concurrent Distributed Deadlock Detection/Resolution
 Algorithm for Distributed Systems

CHENG XIN, YANG XIAOZONG

School of Computer Science and Engineering
 Harbin Institute of Technology

Harbin, Xidazhi street No.92 150001
CHINA

Abstract: - Numerous deadlock detection algorithms were proposed for distributed systems, but most of them
assumed the static wait-for graph (WFG), which is inconsistent with the dynamic application environment of
distributed systems, in fact they can not run concurrently. A novel instance of diffusion-computation algorithms
is proposed in this paper to resolve the concurrency problem. In our algorithm, a Dynamic WFG (DWFG) is
raised, where the blocked transactions creating or quitting is responded to the nodes joining or disappearing in
DWFG. Three additional detection termination conditions are assigned for the concurrent running of the
proposed algorithm: the being detected node is a leaf or quitted, or fault occurs in the system. By these methods
the concurrent running detections can terminate eventually and the deadlock can be resolved correctly. The
correctness of the proposed algorithm is proven. Performance evaluation shows the time and message
complexity of our algorithm outperforms the existing algorithms under a static WFG.

Key-Words: - Distributed systems; Deadlock detection/resolution; Dynamic wait-for graph; Concurrent

1 Introduction
The distributed deadlock problem has been
extensively studied and numerous deadlock detection
algorithms were developed. Based on the deadlock
detection technique, the existing algorithms can be
classified into four categories: path pushing, edge
chasing, diffusion computation and globe state
detection [1]. Usually deadlock detection approach
responds the blocked system to a WFG firstly,
afterwards the detection messages, such as probe [2],
label [3], token [4] and deadlock detection agent [5]
were propagated along the edges of WFG to find the
closed deadlock cycles or knots, finally at least one
victim in a cycle or knot is aborted to resolve the
infinitely waiting state of the underlying system.

However, most of the existing distributed deadlock
detection algorithms assume explicitly or implicitly
that the WFG is static [6~13], but in real systems, the
structure of WFG may be changed in such situations:
1) the undetermined massage passing delay makes
the blocked transactions unblocking latterly; 2) the
transactions executions is stopped by node failures;
3) new blocked transactions are created before the
deadlock resolution finish. Without these
consideration, many algorithms were proved to be
incorrect: the detection messages were discarded
falsely or lost their detect objects so that the
algorithms ran into disorder.

This paper presents a DWFG based distributed
deadlock detection algorithm, which is a variation of
diffusion computation. In our algorithm, the blocked

transactions creating or quitting is responded to the
nodes joining or disappearing in DWFG. Every
transaction has a resource request satisfaction
predication f (n, T), only if it is true can the
transaction be committed. The notion Virtual Victim
is invented to reflect the dynamic shift in DWFG:
besides the active victims produced by the normal
deadlock detections, any quitted transaction in above
situation 1) and 2) is stipulated as the virtual victim of
a deadlock detection, which will makes the algorithm
terminated passively. Therefore, not only the single
running detection but also the concurrent detections
can terminate eventually. In the case of 3) above, we
prove that they are trivial for a detection.

The rest of this paper is organized as follows:
Section 2 introduces the general distributed system
model, provides f (n, T) and illustrates how it can be
used to express the resource request models. Section
3 presents the new deadlock detection and resolution
algorithm. Section 4 discusses the deadlock detection
correctness criteria of our algorithm in DWFG and
proves it. Section 5 evaluates the message and time
complexities of the new algorithm in a static
environment. Section 6 concludes our works.

2 The Distributed System Model
Without loss of generality, a distributed system can
be viewed as consisting of a collection of nodes on
which transactions and resources are residing; each
node has a manager, i.e., transaction manager (TM)

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp336-341)

and resource manager (RM). Every transaction or
resource has a unique id for the ordering purpose.
After a transaction quitted, it reenters the system with
a new id to keep the system concurrency. TM is
responsible for its ever managed transactions. In
order to simplify the presentation, we assume that
each TM and RM controls one transaction and
resource respectively, so we will often use
synonymously the term transaction for TM and
resource for RM.

No shared storage exists in the system model. TMs
and RMs communicate via message passing. We
assume the messages arriving at object in their
sending order and the communication channel is
error-free, note the executions in local node may be
fail. If these assumptions can not be held, some fault
tolerance schemes should be applied.

A resource can be accessed exclusively. RM
receives the requests and schedules the requesters in
a FCFS table, only the requester in the top of the table
can be granted. If a request is released or canceled,
the RM cancels the requester from table and updates
it.

A two-phase locking protocol is assumed for the
transaction execution. In the first phase, TMs send all
resources requests on behalf of the transactions; RMs
reply with grant or await messages according to the
current accessing states of the residing resources. In
the second phase, TMs commit the transactions and
release their locked resources.

A transaction consists of a set of resource requests
with their combination style. The generality or the
system transparency of the proposed algorithm is
realized by the application of f (n, T).

Definition 1 The resource request satisfaction
predication f is a 2-tuple (n, T)，where n = {r1, r2,…,
rM} is a set of required resources; T = {φ, and, or} is
the set of connection operators which represent the
resources request combination style.

Different combinations of n and T denote various
resource request models of distributed systems: (1,φ
) denotes the one-resource request model, which is
the mostly used model where a transaction has only
one resource request at a time, only if it is satisfied
can the transaction send the next request; (n, and)
denotes the AND model where the resource requests
of a transaction are sent simultaneously and all of
them must be satisfied for the transaction
committing; (n, or) denotes the OR model where the
transactions committing need only part of the
resource requests being granted; (n, T) denotes the
AND-OR model or k out of N model where the
resource request satisfaction condition is undefined
for every transaction. The applications of these

models can be found in the Distributed Data Base
systems (DDBS) and communication networks etc.

Fig. 1 Transaction life-cycle

The running of general distributed system model
can be presented by the state transformation graph in
figure 1, which is explained by message passing as
follows, where i and r denote the transaction node
and resource node respectively.

I TMi executes: {i has four states：ACTIVE;

BLOCK; COMMIT and ABORT}
I.1 when i is initialed, it is in ACTIVE state, sends

all request messages to the required RMs;
 puts i into BLOCK state;

I.2 upon receives grant or await messages,
computes fi(n, T); if fi(n, T) is true, puts i into
COMMIT state, executes I.3; else executes I.4;

I.3 sends release messages to all granted RMs;
sends cancel messages to all un-granted RMs; puts i
into ABORT state and abort it;

I.4 if fi(n, T) is false until Timeout, executes
DEADLOCK DETECTION;

II RMr executes: {r has two states: BUSY or IDLE}
II.1 upon receives a request message, adds the

requester to the request table; if r is in IDLE state,
executes II.2; else sends await message to the
requester;

II.2 sends grant message to the TM of the first
requester in request table; puts r into BUSY state;

II.3 upon receives release or cancel messages,
purges the requester from the request table; if the
message is release, puts r into IDLE state;

II.4 if the request table is not empty, executes II.2
；

In above executions, if I.4 happens, the system

involved in blocks. Now we give the WFG and
DWFG definition which reflects the blocking state.

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp336-341)

Definition 2 WFG is a direct graph (N，E), where
each node i∈N denotes a blocked transaction and its
holding resources, the direct edge e∈E between a
pair of nodes denotes the waiting relation, such as ij
∈E denotes the execution of transaction i is blocked,
it is waiting for the transaction j release its holding
resource, in such situation, i is called the predecessor
of j and j is called the successor of i.

Definition 3 A Cycle is a loop with the same
originator and terminus in WFG; A knot is a
nonempty set of nodes such that the reachable set of
each node in the knot is exactly the kont.

Definition 4 The DWFG is a 4-tuple (N, E, ^, D),
where N and E are the same as that in WFG; the
operator ^ stands for a discrete time, D = {q，j，λ}
stands for the quitting, joining and static actions of a
node in N respectively. The dynamic shift of DWFG
can be expressed by such infinite sequences: S^λ,
S^q, S^j, S^q^j, S^j^q^q … where S is the initial
value of N.

Although the waiting relation between transactions
may be uncertain in DWFG, the topologies of the
deadlocks is not changed, namely, there are still
cycles or knots exist in DWFG.

3 New Algorithm
By definition 3, the existence of a cycle is the

necessary condition for a knot existence, so the knot
is more general than the cycle in describing a
deadlock topology. In the field of knot detection,
diffusion computation is the most suitable approach.
The basic idea of the diffusion computation is that the
algorithm responds the knot in WFG to a direct
spanning tree (DST): the deadlock detection initiator
is the root, the node without successor is the leaf，
the nodes between roots and leaves are the neutral
nodes, then the deadlock detection is realized by a
depth-first search of the DST: A root sends the
detection messages, probes to all of its successors,
the successors propagate probes to their successors in
turn and echo the predecessors and/or roots based on
their current states, finally the root concludes the knot
members and designates a victim node quitting from
the system to resolve the deadlock.

The diffusion computation algorithms can be
classified according to the knot reduction happening
places: the initiator reduction (IR) algorithms and the
neutral node reduction (NR) algorithms. The knot
reduction happens at root in IR algorithms [11, 14]
while at neutral nodes in NR algorithm [4, 10].
Furthermore, some algorithms [9, 12] collect all the
knot members for the manager.

The proposed algorithm is an optimized IR
algorithm and gives the total members of a knot in a
special set blk_s; a successor set suc_s, records the
current successors informed by the un-granted
resource nodes; an initial node set ini_s, records the
initiators of the probes. The data structure of a probe
is Probe(ini, suc, ts), where ini is an identifier stands
for the initiator of the probe, suc is a parameter stands
for the next detecting object node, ts is the time stamp
of the probe, it is assigned with the local time of the
initiator. The timing order of ts can be used for the
priority comparison between nodes in DWFG either.
Every transaction node in DWFG can send probe and
a node can send multi probes. The data structure of a
echo message for a probe is Ack(j, sp, ts)，where j
and sp stands for the identifier and state of the on
going detected node respectively, ts comes from the
latest arrived probe.

3.1 Deadlock Detection
The outline of our deadlock detection can be

described by the executions of a root i and its direct
or indirect successor j:

III Executions of TMi :
III.1 initial: blk_si := suc_si; ini := i; ts := local

time; sends Probe(i, j, ts) to all j ∈suc_si;
III.2 upon receives Ack(j, sp, ts)，blk_s i:= blk_si

∪ suc_sj;
III.2.1 if sp = suc_sj and i∈suc_sj, declares blk_s

is a cycle; Abort victim(i); /*real victim*/
III.2.2 elseif sp = Φ, declares blk_s is a knot; Abort

victim(j); /*virtual victim*/
III.2.3 elseif sp = stop, declares blk_s is a knot;

Abort victim(j); /*virtual victim*/
III.2.4 else sp = -k, blk_si := blk_si - k；

IV Executions of TMj :{ upon receives Probe(i, j,

ts)}
 ini_sj := ini_sj + i;
IV.1 if ts > local time, discards Probe(i, j, ts);
 /*an obsolete probe*/
IV.2 elseif suc_sj≠Φ∧ ts < local time, sends

Ack(j, suc_sj, ts) to i; sends Probe(i, k, ts) to all k ∈
suc_sj ;

 /*j is not a leaf*/
IV.3 elseif suc_sj = Φ, sends Ack(j, Φ, ts) to all i∈

ini_sj; /*j is a leaf*/
IV.4 elseif j is in COMMIT or ABORT state, sends

Ack(j, stop, ts) to all i∈ini_sj; /*j has already quit*/
IV.5 elseif k∈ suc_sj and j is in COMMIT or

ABORT state, sends Ack(j,-k, ts) to all i∈ini_sj;

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp336-341)

 /*one successor quit*/

3.2 Deadlock resolution
The victims in deadlock resolution have to be

aborted actively or passively in order to resolve the
deadlock.

V Abort victim (v) /*deadlock resolution*/
V.1 TMv executes I.3；
V.2 the root sends resend resource request

messages to all k∈blk_s\v;

3.3 Discussion
Definition 5 The virtual victim is the midway

quitting node before the deadlock detection finish.
If multi deadlock detections running concurrently,

when a victim node receive probes after it quitting in
III.2.2 and III.2.3, its TM will echo the probe with the
messages in IV.4 and IV.5, now the status of the
quitted node transforms from the successor of one
detection to the quitted victim of other running
detections, by this way, other detections may
terminate passively because the victim is known. The
alternative passive and active termination conditions
ensure multi deadlock detections can terminate
eventually. Since the victims in III.2.2 and III.2.3 are
not the real victims detected by the normally
deadlock detection, they are named the virtual victim.

In order to decrease the detection overhead and
select the single victim, in IV.1, only the probes with
the lower ts than the detected nodes can be
forwarded.

4 Correctness Proof
The dynamic shift of DWFG is unordered, by

definition 4, if infinite q and j actions happen in a
period of time, the correctness proof of the algorithm
will be very complicate. For the paper length limited,
we give the correctness proof under the assumption
of only one q or j action happening in a deadlock
detection round. Because of the rare happening rate
of deadlocks in distributed systems (or else the
deadlock avoid algorithms should be adopted), and
the few quitting or joining nodes in DWFG, the
assumption is acceptable.

Singhal put forward the correctness criteria [15] of
a deadlock detection algorithms, that is 1) Liveness.
If a deadlock happens, the algorithm should detect it
in finite steps; 2) Safety. If an algorithm declares a
deadlock happens, the deadlock exists truly. While in
a dynamic distributed system, the safety condition

can not be satisfied: during a deadlock detection
round, any halfway quitting node would destroy the
integrity of a cycle or knot. Besides, the correctness
criteria proposed by Singhal lacks termination
conditions for concurrent running deadlock
detections, it is useful just for one deadlock detection
round. Therefore the correctness conditions of the
proposed algorithm should be: 1) Narrow sense
consistency: once deadlock detection produces only
one victim; 2) Broad sense consistency: the
concurrent deadlock detections can terminate
eventually; 3) Livness.

For describe simply, we assume that the lower
priority of the node, the lower value of its ts; the
character n and e represent the number of nodes and
edges of DST respectively; all messages passing have
the same interval and other executions are instant.

Theorem 1 The proposed algorithm satisfy

narrow sense consistency.
Proof Recall the deadlock detection termination

condition in section 3 part III, we have three cases:
Case1. In III.2.1, if the deadlock is a cycle, there

must be the lowest priority node exists in the cycle,
by IV.1, only the probes originated from the node can
pass through all the nodes in the cycle, any probe
initialed by other nodes may be discarded at least by
the lowest priority node. Namely, only the lowest
priority node can become the victim;

Case2. In III.2.2, if the deadlock is a knot, by IV.3,
the root near the leaf would receive the reply in
advance, but no matter how many deadlock
detections find the knot, the victim is the same leaf,
thus the unique property of the leaf guarantees only
one victim can be selected;

Case3. In III.2.3, if a node quits during the
deadlock detection, it is the virtual victim, obvious it
is unique.

Theorem 2 The proposed algorithm satisfy broad

sense consistency.
Proof The running of nodes in distributed system

are independent, none of them has the global state
information. Whether or not the concurrently running
detections can terminate eventually is decided by the
reduction results of the roots. If some concurrent
deadlock detections intersect at some nodes and one
of them terminates before others, by discussion in
section 3.3, the victim created by the first terminate
deadlock detection will be transformed to other
deadlock detections virtual victims, so every
deadlock detection will terminates eventually.

Theorem 3 Liveness

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp336-341)

Proof Consider all the possible dynamic shift in
DWFG, we have:

Case1. S^λ
1.1 Deadlock is a cycle
Although it is possible that each node in the cycle

can create probes, by case 1 in theorem 1, only one
root can conclude the entire cycle, the deadlock
detection steps are the same as the diameter of the
cycle in DWFG;

1.2 Deadlock is a knot
In theorem 1 case 2, the lowest deadlock detection

steps is 2 when a root sends probes to a leaf directly;
the upper limit deadlock detection steps are no more
than n.

Case2. S^q
The quitted node is defined as the virtual victim in

our algorithm, it will lead to the termination of the
current running deadlock detection, so no matter the
original topology of a deadlock in DWFG is cycle or
knot, this quit action will transform the topology to a
knot and the deadlock detection steps are decreased
by at least 1. By IV.4 in section 3.1，there may be
multi roots execute III.2.3, but because the total
number of n is decreased, the upper limit deadlock
detection steps are n-1.

Case3. S^j
3.1 Deadlock is a cycle
3.1.1 If the joined node hasn’t the lowest priority

in DST, by IV.1, the probes originated from it must
be discarded by some nodes in DST. The joined root
can not affect original deadlock detection;

3.1.2 If the joined node has the lowest priority in
DST, the probes originated from it will either arrive
at all members of the cycle or be discarded because of
the original deadlock detection termination. While in
the former situation, the joined root will not satisfy
any termination condition in section 3.1 III.2.1,
III.2.2 and III.2.3; in the last situation, the joined root
may be satisfy the termination condition in III.2.3,
but it can not affect the original deadlock detection.

So the original deadlock detection will continues
and terminate eventually.

3.2 Deadlock is a knot
3.2.1 If the joined node is waiting a leaf directly, it

will sends probes to the leaf, by section 3.1 IV.3 and
III.2.2, the deadlock detection will terminate within 2
steps. This detection result will make the former
running detections executing IV.4 and III.2.3 and
terminating eventually;

3.2.2 If the joined node is waiting for the leaf
indirectly, the original detections will keep running
like 1.2 above. It is possible the joined node executes
IV.4 and III.2.3, but in any situation the upper limit of
the detection is less than n steps;

So the upper timing limit for all deadlock
detections is n steps.

5 Performance Evaluation
Due to the dynamic property of the DWFG, the

performance of the algorithm is undetermined. In
order to given a valid performance evaluation, we
only consider the situation of ^λ in DWFG.

By the proofs of section 4, if the deadlock is a knot,
the lower limit of time complexity is 2: a root and its
directly waiting node, the leaf forms the simplest
knot. It will be detected in 2 steps; while the upper
limit is known as n. The lower limit of message
complexity is also 2：a probe and a reply message;
the upper limit for a single deadlock detection is
e+n-1: if the distance between the root and the leaf is
n，the probes initialed by the root will be sent to all
the edges of the DWFG, the total number is e, all the
detected nodes will reply the probes, the total number
is n-1.

If the deadlock is a cycle, the lower limit of time
complexity is still 2 in case of the cycle consists of
two nodes; the upper limit is still n by theorem 3. The
lower limit of message complexity is obvious 2; the
upper limit of message complexity can be computed
as follows: for the node with the lowest priority in the
cycle, its probes will be propagated all the
successors, so there are e probes for a single deadlock
detection, every detected node except the root will
reply each probe, so there are n-1 reply messages, the
total number of message is e+n-1.

The comparison of the time and message
complexity of the proposed algorithm and previous
algorithms is listed in table 1. It shows our algorithm
is favorable than other algorithms.

Table 1 Performance comparison

Algorithms Messages /n Delay
Misra and Chandy [2] 4e 2n
Kshemkalyani [10] 4e-2n+2L 2n
Kshemkalyani [11] 2e 2n
Boukerche [12] 2e 2(n+1)
Chen [13] 2n 2n
Lee [14] <2e n+2
Proposed <e+n-1 n

6 Conclusion
Deadlock detection in distributed system is

difficult because of the independent running and
lacking of global information of each node. Most
existing proposals just represented how to search
cycle or knot in a static WFG, while neglected the
dynamic shift of the underlying distributed system,

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp336-341)

they failed to run concurrently or have false
detections. The algorithm proposed in this paper
eliminates these defects. Main advantage of our
algorithm is that the occurring of leaf, fault or node
quitting which may make the detection interrupt are
viewed as the detection termination conditions,
enable the multiple detections terminate when node
disappear in the corresponding DWFG. On the other
hand, all the resource request condition is denoted by
a resource request satisfaction predication, therefore
the proposed algorithm can be applied to any
distributed systems. The correctness including
narrow sense consistency, broad sense consistency
and Livness for our algorithm is proved. Performance
evaluation shows the message and time complexity
of the proposed algorithm is <e+n-1 and n
respectively under a static WFG, where n and e stand
for the number of nodes and edges of the DST
respectively, the performance is better than that of the
previous algorithms.

References:
[1] E. Knapp, Deadlock Detection in Distributed

Databases, ACM Computing Surveys, Vol. 19,
No. 4, 1987, pp. 303-328.

[2] K.M. Chandy and J.Misra, A Distributed
Algorithm for Detecting Resource Deadlocks in
Distributed Systems, In: Proc ACM
SIGACT-SIGOPS Symp Principles of
distributed computing, 1982, pp. 157-164.

[3] D.P. Mitchell, M.J. Merritt, A Distributed
Algorithm for Deadlock Detection and
Resolution,” In: Proc ACM conf Principles of
distributed computing, 1984, pp. 282-284.

[4] J. Brzezinski et al., Deadlock Models and a
General Algorithm for Distributed Deadlock
Detection, IEEE Trans. Parallel and Distributed
Systems, Vol. 31, No. 2, 1995, pp. 112-125.

[5] N. Krivokapic, A. Kemper, E. Gudes, Deadlock
Detection in Distributed Database Systems: A
New Algorithm and a Comparative Performance
Analysis VLDB Journal, Vol. 8, No. 2, 1999, pp.
79-100.

[6] S. Lee, Performance Analysis of Distributed
Deadlock Detection Algorithms, IEEE Trans
Knowledge and Data Engineering, Vol. 13, No.
4, 2003, pp. 623-636.

[7] D. Manivannan, M. Singhal, “A Distributed
Algorithm for Knot Detection in a Distributed
Graph,” Proc Int’l conf Parallel Processing,
2002, pp. 485-492.

[8] G. P. Souza, G.H. Pfitscher, An Implementation
of a Distributed Algorithm for Detection of
Local Knots and Cycles in Directed Graphs
Based on the CSP Model and Java, In: Proc 6th

IEEE Int’l Workshop on Distributed Simulation
and Real-Time Applications, 2002, pp.143-150.

[9] D. Manivannan, M. Singhal, An Efficient
Distributed Algorithm for Detection of Knots
and Cycles in a Distributed Graph, IEEE Trans
Parallel and Distributed Systems, Vol. 14, No.
10, 2003, pp. 961-972.

[10] A.D. Kshemkalyani, M. Singhal, Efficient
Detection and Resolution of Generalized
Distributed Deadlocks, IEEE Transaction on
Software Engineering, Vol. 20, No.1, 1994, pp.
43-54.

[11] A.D. Kshemkalyani, M. Singhal, Distributed
Detection of Generalized Deadlocks, In: Proc
17th Int’l Conf Distributed Computing Systems,
1997, pp.553-560.

[12] Boukerche, C. Tropper, A Distributed Graph
Algorithm for the Detection of Local cycles and
knots, IEEE Trans Parallel and Distributed
Systems, Vol. 9, No. 8, 1998, pp. 748-757.

[13] S. Chen et al., Optimal Deadlock Detection in
Distributed Systems Based on Locally
Constructed Wait-for Graphs, In: Proc 16th Int’l
Conf Distributed Computing Systems, 1996, pp.
1-15.

[14] S. Lee, Fast, Centralized Detection and
Resolution of Distributed Deadlocks in the
Generalized Model, IEEE Trans Software Eng.,
Vol. 30, No. 9, 2004, pp. 561-573.

[15] M. Singhal, “Deadlock Detection in Distributed
Systems,” IEEE Computer, Vol. 22, No. 2,
1989, pp. 37-48.

Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp336-341)

