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Abstract - It is of great importance a trial to embed new geometric techniques into SQL in order to achieve more 
efficient indexing of objects moving on the plane and answer range queries about their future positions. This 
problem is motivated by real-life applications, such as allocating more bandwidth for areas where high 
concentration of mobile phones is imminent, or predicting future congestion areas in a highway Geographic 
Information System (GIS). We consider the problem in the external memory model of computation and present a 
variety of dynamic techniques.  
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1 Introduction 
Location-aware applications, such as traffic 
monitoring in GIS, intelligent navigation, and mobile 
communications management, cannot be efficiently 
supported by traditional database management 
systems. The assumption that data stored in the 
database remain constant, unless explicitly updated, 

supports a model where updates are issued in discrete 
steps. The aforementioned applications deal with 
continuously changing data, i.e. objects’ location. 
Inevitably, a DBMS receiving requests of that kind at 
every unit of time would exhibit tremendous update 
overhead. 
An attractive solution to tackle the problem is to use 
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a function of time g(t) to abstract each object’s 
location. Then the current location of a moving 
object at any time instant can be calculated. An 
update has to be issued only when the parameters of 
g change (e.g. speed or direction). Clearly, this 
approach minimizes the update overhead. However, 
it introduces new problems, such as the need for 
appropriate data structures, data models, query 
languages, query processing and optimization 
techniques. 

Any data model in a large database requires 
efficient external storage support for its language 
features. Range searching and its variants are 
problems that often need to be solved efficiently. In 
RDBMS and SQL, one-dimensional dimensional 
range searching is a commonly used operation. 
Special cases of two-dimensional range searching are 
important for the support of new language features, 
such as constrain query languages. In spatial 
databases such as Geographic Information Systems 
(GIS), a large number of external data structures for 
answering such queries have been proposed. While 
most attention has been focused on isothetic or 
orthogonal range searching, in which a query is a d-
dimensional axis-parallel hyperrectangle, the 
importance of nonisothetic queries has also been 
recognized. In the computational geometry 
community a nonisothetic range searching is called 
half plane range searching, where a query is a linear 
constraint of the form and the 

target is to retrieve all points that satisfy the 
constraint.  
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The focus of this paper is on the problem of 
indexing mobile objects in two dimensions. We are 
interested in efficiently answer range queries over the 
objects location in the future. Here we present both 
approximate methods based on geometric duality 
transformation and worst-case methods based on the 
geometric techniques of [10]. In section 2 we give a 
formal problem description of moving object’s 
indexing. In section 3 we present work related with 
the problem at hand. Next, section 4 describes the 
dual transform, which is the core of our approximate 
approach. The worst-case method is addressed in 
section 5. Section 6 closes the paper. 

 
 
2 Problem descriptions 
We consider a database that records the position of 
moving objects in two dimensions on a finite terrain. 
We assume that objects move with a constant 
velocity vector starting from a specific location at a 
specific time instant. Thus, we can calculate the 
future position of the object, provided that the 
characteristics of its motion remain the same. 
Velocities are bounded by [ . Objects 
update their motion information, when their speed or 
direction changes. The system is dynamic, i.e. objects 
may be deleted or new objects may be inserted. 

], maxmin uu

Let ],[)( 000 yxtP = be the initial position at time 
. Then, the object starts moving and at  

time  its position will be 
0t

(P
0tt >

[)](),([ 0xtytx )](),() 000 ttuyttut yx −+−+== , 

where ],[ yx uuU = is its velocity vector. For 
example, in Figure 1, the lines depict the objects’ 
trajectories on the (t,y) plane. 
We would like to answer queries of the form: 
“Report the objects located inside the rectangle 

],[],[ 2121 qqqq yyxx × at the time instants between t1q 

and t2q (where qq tt 21 ≤nowt ≤ ), given the current 
motion information of all objects”. 

In general, the straightforward approach of 
representing an object moving on an 1-dimensional 
line is by plotting the trajectories as lines in the time-
location (t,y) plane (same for (t,x) plane). The 
equation describing each line is y(t)=ut+a where u is 
the slope (velocity vector in this case) and a is the 
intercept (initial position vector in this case), which is 
computed using the motion information (Figure 1). 
Based on this setting, the query is expressed as the 2-
dimensional interval [(y1q,y2q),(t1q,t2q)], and it reports 
the objects that correspond to the lines intersecting 
the query rectangle. 
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Fig. 1: Trajectories and query in (t,y) plane 

 
Let the following spatio-temporal relation: 

 
Mobile_objects (name: string, from :point, to :point, 
route: y(t)=ut+a) 
 

Let a specific SQL language for moving objects, 
like that presented in [16], where new predicates like 
trajectory and intersects have been defined. Then 
the query can be expressed as follows: 
Select name 
From Mobile_Objects 
Where trajectory (route) intersects 
rectangle[t1q,t2q,y1q,y2q]. 
 
 
3. Related work 
The space-time approach provides an intuitive 
representation, but is also problematic, since the 
trajectories correspond to long lines. Traditional 
indexing techniques in this setting tend to show many 
drawbacks. 

A common approach is to use a Spatial Access 
Method, such an R-tree [4] or an R*- tree [2]. In this 
setting each line is approximated by a minimum-
bounding rectangle (MBR). Obviously, the MBR 
approximation has much larger area than the line 
itself. Furthermore, since the trajectory of an object is 
valid until an update is issued, it has a starting point 
but no end. Thus all trajectories expand till “infinity”. 
Also, the Moving Objects Spatio-Temporal (MOST) 
model and a language (FTL) for querying the current 
and future locations of mobile objects are presented 
in [20, 24, 25]. In order to index line segments a 
method based upon the dual transform was proposed 

in [5]. The use of dual transformation to index mobile 
objects is also proposed in [11]. 

Saltenis et al. [7] presented a technique to 
efficiently index moving objects. They proposed the 
time-parameterized R-tree (TPR-tree), which extends 
the R*-tree. The coordinates of the bounding 
rectangles in the TPR-tree are functions of time and, 
intuitively, are capable of following the objects as 
they move. The position of a moving object is 
represented by its location at a particular time instant 
(reference position) and its velocity vector 

In [6] a technique to index moving objects was 
introduced, based upon the dual transform, which we 
refer here. 
 
 
4. Embedding duality geometric 
techniques into SQL for better 
approximate (average) performance.  
The dual space-time representation: The dual 
transform, in general, maps a hyper-plane h from Rd 
to a point in Rd and vice-versa. In this section we 
briefly describe how we can address the problem at 
hand in a more intuitive way, by using the dual 
transform on the one-dimensional case. 

Specifically, a line from the primal plane (t,y) is 
mapped to a point in the dual plane. A class of 
transforms with similar properties may be used for 
the mapping. The problem setting parameters 
determine which one is more useful. 
 
 
4.1 Hough-X transform [5] and approximate 
rectangle query 
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One dual transform for mapping the line with 
equation y(t)=ut+a to a point in R2 is by using the 
dual plane where one axis represents the slope of an 
object’s trajectory (i.e. velocity) and the other axis its 
intercept. Thus we have the dual point (u,a) (this is 
called Hough-X transform in [5]). Accordingly, the 

1-d query [(y1q,y2q),(t1q,t2q)] becomes a polygon in the 
dual space. By using a linear constraint query [3], the 
query  in the dual Hough-X plane (Figure 2) is 
expressed in the following way [6]: 
 

a

u

Umin Umax

y1q

y2q

Q hough-x

E1 hough-x

E2 hough-x

 
Fig. 2: Query on the Hough-X dual plane. 

 
� If u , then 

, where: 
0>

XHough− 4321 AAAAQ III=

� A  max2min1 , uuAuu ≤=≥=
� A utyaAutya qqqq 124213 , −≤=−≥=

 
The inequalities for A1 and A2 areas are obvious. 

The inequalities for A3 and A4 can be derived as 
follows: 

⇒−≤≤−⇒≤+≤⇒≤≤⇒∈∀ tuyatuyytuayyyyttt qqqqqqqq 21212121 ],[  

utytuyatuyuty qqqqqq 122121 −≤−≤≤−≤−⇒

qq tt 21 ≤≤

, 

since t . 
� If u , then 

, where: 
0<

XHough− 4321 BBBBQ III=

� B  max2min1 , uuBuu −≥=−≤=
� B utyaButya qqqq 224113 , −≤=−≥=

 
The inequalities for B1 and B2 are obvious. For B3 

and B4 we are working in the same way: 
⇒−≤≤−⇒≤+≤⇒≤≤⇒∈∀ tuyatuyytuayyyyttt qqqqqqqq 21212121 ],[  

utytuyatuyuty qqqqqq 222111 −≤−≤≤−≤−⇒ , 

since qq ttt 210 ≤≤≤  but  u . 0<

ya 1=

maxu1ya q=

uty qq 22 −

min22 uty qq −

, 2y q −(),, 11max tyu qq −

In figure 2 the line for u=uut qq 1− max 

becomes 1t q− and the line 

a =  for u=umin becomes 

a = . 
Thus the initial query  [(t1q,t2q), [(y1q,y2q)] in (t,y) 

plane can be transformed to the following one 
approximate query in (u.a) plane: 

)][( min2maxmin utuu q . 
So, instead of  

Select name 
From Mobile_Objects 
Where trajectory(route) intersects 
rectangle[t1q,t2q,y1q,y2q] 

We write 
Select name 
From Mobile_Objects 
Where umin <=  u  <=umax and y1q-
t1qumax <= y <= y2q-t2qumin 
 

The second alternative approximate query avoids 
operations of huge overhead like trajectory or 
intersects. 
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4.2 Hough-Y transform [5] and approximate 
rectangle query 

By rewriting the equation as auty +=
u
ay

u
−=

1t , 

we can arrive to a different dual representation. The 
point in the dual plane has coordinates (b,n) where 

u
ab −=  and 

u
n 1
= . Coordinate b is the point where 

the line intersects the line y=0 in the primal space. By 
using this transform, horizontal lines cannot be 
represented. Similarly, the Hough-X transform 
cannot represent vertical lines. Nevertheless, since in 
our setting lines have a minimum and maximum 
slope (velocity is bounded by  [umin,umax]),  both 
transforms are valid. 

 
n

b

1/u max

Q hough-y

E1 hough-y

E2 hough-y

1/u min

t1q t2q

 
Fig. 3: Query on the Hough-Y dual plane. 

 
The query in the dual Hough-Y plane (Figure 3) is 

expressed in the following way [6]: 
� If u , then 0>

4321 CCCCQ YHough III=− , where: 

� 
min

2
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The inequalities for C1 and C2 areas are obvious. 

The inequalities for C3 and C4 can be derived as 
follows:

y
t
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y
t
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yy

tb
y

n q211
+−≤+−= .  So, the two lines in 

figure 3 they have negative slope and for b=0 

intersect the axis b in t1q and t2q respectively. The 
intersection of four regions C1, C2, C3 and C4 derives 
the polygon (shaded) query of figure 3. 

For 0<u
1DY

 the case is symmetric, that means: 
432 DDDQHough III=− , where: 

� 
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The line 
y

t
b

y
n q11

+−=  for n=1/umin implies 

that: ⇔−=⇔−= nytbn
y

t
b

y q
q

1
11

 

min
1 u

ytb q −=⇔ (1) 
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In the same way the line 
y

t
b

y
n q21

+−=  for 

n=1/umax implies that: 
maxu
y

q −

⇔−≥− qyy 2

2t=

≥qy1

b  (2).  But 

according to initial query and equation (1) we have 
that:  −⇔≤≤ qq yyy 21

⇔−≥−≥−⇔
min

2

minmin
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u
y qq
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Proportionally according to initial query and 
equation (2) we have that: 
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According to (3) and (4) the initial query  [(t1q,t2q), 
[(y1q,y2q)] in (t,y) plane can be transformed to the 
following one approximate query in (b.n) plane: 

)]1,1(),,[(
minmaxmax
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2
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So, now instead of  

 

Select name 
From Mobile_Objects 
Where trajectory(route) intersects 
rectangle[t1q,t2q,y1q,y2q] 

We write 
Select name 
From Mobile_Objects 
Where 1/umax <=  u  <= 1/umin and   
t1q-y2q/umin <= t <= t2q-y1q/umax 

 
 
4.3 A new (u,t)-transform and approximate 
rectangle query 
In this case we assume that objects move with 
constant velocity vector starting from a specific 
location at a specific time instant but the velocities 
are unbounded.  

As you can see in figure 4, we represent each 
moving object by a dual point (u,t). For example the 
moving object Ok is associated to (uk,tk) point which 
means that the object Ok is moving with constant 
velocity vector uk starting from a specific location at 
time instant tk. 
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So, the initial query  [(t1q,t2q), [(y1q,y2q)] in (t,y) 

plane can be transformed to the following one 
approximate query in (u,t) plane: 
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Fig. 4: (u,t) dual transform and approximate rectangle query 
 

So, now instead of  
 

Select name 
From Mobile_Objects 
Where trajectory(route) intersects 
rectangle[t1q,t2q,y1q,y2q] 

We write 
Select name 
From Mobile_Objects 
Where t1q <=  t  <= t2q  and   
(y1q-a)/t2q  <=u <=  (y2q-a)/t1q   

 
 
4.4 Observations about Indexing in one 
dimension 
Observation 1: Motions with small velocities in the 
Hough-Y approach are mapped into dual points (b,n) 
having large n coordinates (n=1/u). Thus, since few 
objects can have small velocities, by storing the 
Hough-Y dual points in an index structure such an 
R*-tree, MBR’s with large extents are introduced, and 
the index performance is severaly affected. On the 
other hand, by using a Hough-X for the small 
velocities’ partition, we eliminate this effect, since 
the Hough-X dual transform maps an object’s motion 
to the (u,a) dual point. 

The query area in Hough-X plane is enlarged by 
the area E, which is easily computed as EHough-X =(E1 
hough-X + E2 hough-X). Also, let the actual area of 
the simplex query be QHough-X. Similarly, on the dual 
Hough-Y plane, let QHough-Y be the actual area of the 

query, and EHough-Y be the enlargement. In order to 
answer the initial query we must choose the 
transform which minimizes the following criterio 

YHough

YHough

XHough

XHough

Q
E

Q
Ec −

−

−

−

+= . 

Observation 2:  Since all 2-dimensional 
approximate queries in Hough-X plane have the same 
rectangle side (umin,umax), the rectangle range search 
is equivalent to a simple 1-dimensional  range 
search on the a coordinate axis. Thus each of the “a” 
indices can simply be a simple B+- tree.  When the 
objects’ velocities are unbounded then it’s obvious 
that the solution of (u,t) dual transform is needed. 
Similarly, in Hough-Y plane due to the fact that all 2-
dimensional approximate queries have the same 
rectangle side (1/umax, 1/umin), the rectangle range 
search is again equivalent to a simple 1- dimensional 
range search on the b coordinate axis. Thus each of 
the “b” indices can simply be again a simple B+- tree 
again. 

Observation3: When the objects’ velocities are 
unbounded then it’s obvious that the solution of (u,t) 
dual transform is needed. The 2-dimensional 
rectangle approximate query of figure 4 can be 
managed optimally by the external priority search 
tree [1].  
 
 
4.5 Indexing mobile objects in two dimensions 
The procedure for building the index follows: 
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1. Decompose the 2-d motion into two 1-d 
motions on the (t,x) and (t,y) planes. 

2. For each projection, build the corresponding 
index structure.  
� Partition the objects according to their 

velocity: 
(a) Objects with small velocity are stored 

using the Hough-X dual transform, 
while the rest are stored using the 
Hough-Y dual transform. 

(b) Motion information about the other 
projection is also included 

 
The outline of the algorithm for answering the 

exact 2-d query is presented next: 
 

1. Decompose the query into two 1-d queries, 
for the (t,x) and (t,y) projection. 

2. For each projection get the dual – simplex 
query  

3. For each projection calculate the criterion c, 
according to the observation 1, and choose 
the one (say p) that minimizes it. 

4. Search in projection p the Hough-X or 
Hough-Y partition. 

5. Perform a refinement or filtering step “on the 
fly”, by using the whole motion information. 
Thus, the result set contains only the objects 
that satisfy the query 

 
 
5. Embedding half plane geometric 
techniques into SQL for better worst-
case indexing performance.  
Since the approximate range queries previously 
described require an overhead of I/O’s in refinement 
step, it’s worth a try to develop efficient indexing 
mechanisms that can answer directly the specified 
form of simplex (polygon) queries. As a result we 
avoid the expensive overhead of refinement step and 
now the performance of our index can be evaluated 
in worst-case. 
 

Example 1: Operations on single data types 
Let the relation Companies (Name, Price, 

Earnings) and the Query:”Retrieve the names of all 
companies whose price/earnings ratio is less than 5”. 
In SQL the query can be expressed as follows: 
Select Name 
From Companies 

Where (Price-5∗Earnings<0). 
If we interpret each ordered pair 

(Earning,Price) as a point in the plane, the result 
of the query derives from all such points that 
satisfy the following linear constraint line: y-
5∗x≤0.  
 

Example 2: Operations on spatio-temporal data 
types 

In one-dimensional space, operation rangevalues 
returns values assumed over time as a set of intervals. 
For the two-dimensional types, operations are offered 
to return the parts of the projections corresponding to 
our data types. For example, the projection of a 
moving point into the plane may consist of points and 
of lines; these can be obtained separately by 
operations locations and trajectory, respectively. 
Operation length gets the trajectory as parameter and 
returns the full length of the lines that constitute the 
trajectory of the mobile object. 
Let the following spatio-temporal relation: 
 

flight(airline:string, no:int, from:string, to:string, 
route:mpoint) 
 

Attributes airline and no of the relation flight 
identify a flight. In addition, the relation records the 
names of the departure and destination cities and the 
route taken for each flight. The last attribute is of 
type moving(point). We assume that a flight’s route is 
defined only for the times the plane is in flight and 
not when it is on the ground. 
 

Query: ”Give me the number (no ) -pair of 
airlines LH and OL respectively that satisfy the 
following constraint: The plane of LH airlines 
routed double total distance from the respective 
one of OL airlines”. 
 
SQL Query: 
flight: fl,f2 
Select f1.no,f2.no 
From f1,f2 
where 

Length(trajectory(Select f1.route  
From f1 
Where f1.airline=”LH” ))>2* 
Length(trajectory(Select f2.route  
From f2 
Where f2.airline=”OL” )) 
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If we interpret each ordered pair (length of 
OL,length of LH) as a point in the plane, the result 
of the query derives from all such points that 
satisfy the linear constraint line y-2∗x>0.  
Several complex queries can be expressed as 
reporting all points lying within a given convex query 
region. Such queries can in turn be viewed as the 
intersection of a number of halfplane range queries. 

The index in [12] was the first optimal data 
structure for answering two-dimensional halfpspace 
range queries in the worst case, based on the 
geometric technique called filtering search 
[13,14,15]. It uses O(n) blocks of space and answers 
a query using O(logBn+t) I/Os. It is also simple 
enough to be efficient in practice. 
 
 
6. Conclusions 
We presented external memory approximate and 
worst-case mechanisms for indexing mobile objects 
that move on the plane, in order to efficiently answer 
range queries about their location in the future.  
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