
Embedding advanced geometric techniques into SQL for efficient indexing
of mobile objects

S. SIOUTAS

Computer Engineering and Informatics department
University of Patras

Building B, University Campus, 26500, Rion, Patras
GREECE

L. DROSSOS
Technological Institute of Messolongi,

Department of Applied Informatics in Administration and Economics
Technological Institute Campus, 30200, Messolongi

GREECE

D.TSOLIS

Computer Engineering and Informatics department
University of Patras

Building B, University Campus, 26500, Rion, Patras
GREECE

T. S. PAPATHEODOROU

Computer Engineering and Informatics department
University of Patras

Building B, University Campus, 26500, Rion, Patras
GREECE

Abstract - It is of great importance a trial to embed new geometric techniques into SQL in order to achieve more
efficient indexing of objects moving on the plane and answer range queries about their future positions. This
problem is motivated by real-life applications, such as allocating more bandwidth for areas where high
concentration of mobile phones is imminent, or predicting future congestion areas in a highway Geographic
Information System (GIS). We consider the problem in the external memory model of computation and present a
variety of dynamic techniques.

Key – Words: -Spatio-Temporal Databases, Mobile Objects, Indexing, Computational Geometry, SQL

1 Introduction
Location-aware applications, such as traffic
monitoring in GIS, intelligent navigation, and mobile
communications management, cannot be efficiently
supported by traditional database management
systems. The assumption that data stored in the
database remain constant, unless explicitly updated,

supports a model where updates are issued in discrete
steps. The aforementioned applications deal with
continuously changing data, i.e. objects’ location.
Inevitably, a DBMS receiving requests of that kind at
every unit of time would exhibit tremendous update
overhead.
An attractive solution to tackle the problem is to use

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp348-356)

a function of time g(t) to abstract each object’s
location. Then the current location of a moving
object at any time instant can be calculated. An
update has to be issued only when the parameters of
g change (e.g. speed or direction). Clearly, this
approach minimizes the update overhead. However,
it introduces new problems, such as the need for
appropriate data structures, data models, query
languages, query processing and optimization
techniques.

Any data model in a large database requires
efficient external storage support for its language
features. Range searching and its variants are
problems that often need to be solved efficiently. In
RDBMS and SQL, one-dimensional dimensional
range searching is a commonly used operation.
Special cases of two-dimensional range searching are
important for the support of new language features,
such as constrain query languages. In spatial
databases such as Geographic Information Systems
(GIS), a large number of external data structures for
answering such queries have been proposed. While
most attention has been focused on isothetic or
orthogonal range searching, in which a query is a d-
dimensional axis-parallel hyperrectangle, the
importance of nonisothetic queries has also been
recognized. In the computational geometry
community a nonisothetic range searching is called
half plane range searching, where a query is a linear
constraint of the form and the

target is to retrieve all points that satisfy the
constraint.

∑ −

=
+≤

1

10
d

i iid xaax

The focus of this paper is on the problem of
indexing mobile objects in two dimensions. We are
interested in efficiently answer range queries over the
objects location in the future. Here we present both
approximate methods based on geometric duality
transformation and worst-case methods based on the
geometric techniques of [10]. In section 2 we give a
formal problem description of moving object’s
indexing. In section 3 we present work related with
the problem at hand. Next, section 4 describes the
dual transform, which is the core of our approximate
approach. The worst-case method is addressed in
section 5. Section 6 closes the paper.

2 Problem descriptions
We consider a database that records the position of
moving objects in two dimensions on a finite terrain.
We assume that objects move with a constant
velocity vector starting from a specific location at a
specific time instant. Thus, we can calculate the
future position of the object, provided that the
characteristics of its motion remain the same.
Velocities are bounded by [. Objects
update their motion information, when their speed or
direction changes. The system is dynamic, i.e. objects
may be deleted or new objects may be inserted.

], maxmin uu

Let],[)(000 yxtP = be the initial position at time
. Then, the object starts moving and at

time its position will be
0t

(P
0tt >

[)](),([0xtytx)](),() 000 ttuyttut yx −+−+== ,

where],[yx uuU = is its velocity vector. For
example, in Figure 1, the lines depict the objects’
trajectories on the (t,y) plane.
We would like to answer queries of the form:
“Report the objects located inside the rectangle

],[],[2121 qqqq yyxx × at the time instants between t1q

and t2q (where qq tt 21 ≤nowt ≤), given the current
motion information of all objects”.

In general, the straightforward approach of
representing an object moving on an 1-dimensional
line is by plotting the trajectories as lines in the time-
location (t,y) plane (same for (t,x) plane). The
equation describing each line is y(t)=ut+a where u is
the slope (velocity vector in this case) and a is the
intercept (initial position vector in this case), which is
computed using the motion information (Figure 1).
Based on this setting, the query is expressed as the 2-
dimensional interval [(y1q,y2q),(t1q,t2q)], and it reports
the objects that correspond to the lines intersecting
the query rectangle.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp348-356)

Y

Timet1

y1

O1

t2

O2

O4

O3

y2
y3

y4

t3 t4 t1q t2q

y1q

y2q

Fig. 1: Trajectories and query in (t,y) plane

Let the following spatio-temporal relation:

Mobile_objects (name: string, from :point, to :point,
route: y(t)=ut+a)

Let a specific SQL language for moving objects,
like that presented in [16], where new predicates like
trajectory and intersects have been defined. Then
the query can be expressed as follows:
Select name
From Mobile_Objects
Where trajectory (route) intersects
rectangle[t1q,t2q,y1q,y2q].

3. Related work
The space-time approach provides an intuitive
representation, but is also problematic, since the
trajectories correspond to long lines. Traditional
indexing techniques in this setting tend to show many
drawbacks.

A common approach is to use a Spatial Access
Method, such an R-tree [4] or an R*- tree [2]. In this
setting each line is approximated by a minimum-
bounding rectangle (MBR). Obviously, the MBR
approximation has much larger area than the line
itself. Furthermore, since the trajectory of an object is
valid until an update is issued, it has a starting point
but no end. Thus all trajectories expand till “infinity”.
Also, the Moving Objects Spatio-Temporal (MOST)
model and a language (FTL) for querying the current
and future locations of mobile objects are presented
in [20, 24, 25]. In order to index line segments a
method based upon the dual transform was proposed

in [5]. The use of dual transformation to index mobile
objects is also proposed in [11].

Saltenis et al. [7] presented a technique to
efficiently index moving objects. They proposed the
time-parameterized R-tree (TPR-tree), which extends
the R*-tree. The coordinates of the bounding
rectangles in the TPR-tree are functions of time and,
intuitively, are capable of following the objects as
they move. The position of a moving object is
represented by its location at a particular time instant
(reference position) and its velocity vector

In [6] a technique to index moving objects was
introduced, based upon the dual transform, which we
refer here.

4. Embedding duality geometric
techniques into SQL for better
approximate (average) performance.
The dual space-time representation: The dual
transform, in general, maps a hyper-plane h from Rd
to a point in Rd and vice-versa. In this section we
briefly describe how we can address the problem at
hand in a more intuitive way, by using the dual
transform on the one-dimensional case.

Specifically, a line from the primal plane (t,y) is
mapped to a point in the dual plane. A class of
transforms with similar properties may be used for
the mapping. The problem setting parameters
determine which one is more useful.

4.1 Hough-X transform [5] and approximate
rectangle query

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp348-356)

One dual transform for mapping the line with
equation y(t)=ut+a to a point in R2 is by using the
dual plane where one axis represents the slope of an
object’s trajectory (i.e. velocity) and the other axis its
intercept. Thus we have the dual point (u,a) (this is
called Hough-X transform in [5]). Accordingly, the

1-d query [(y1q,y2q),(t1q,t2q)] becomes a polygon in the
dual space. By using a linear constraint query [3], the
query in the dual Hough-X plane (Figure 2) is
expressed in the following way [6]:

a

u

Umin Umax

y1q

y2q

Q hough-x

E1 hough-x

E2 hough-x

Fig. 2: Query on the Hough-X dual plane.

� If u , then

, where:
0>

XHough− 4321 AAAAQ III=

� A max2min1 , uuAuu ≤=≥=
� A utyaAutya qqqq 124213 , −≤=−≥=

The inequalities for A1 and A2 areas are obvious.

The inequalities for A3 and A4 can be derived as
follows:

⇒−≤≤−⇒≤+≤⇒≤≤⇒∈∀ tuyatuyytuayyyyttt qqqqqqqq 21212121],[

utytuyatuyuty qqqqqq 122121 −≤−≤≤−≤−⇒

qq tt 21 ≤≤

,

since t .
� If u , then

, where:
0<

XHough− 4321 BBBBQ III=

� B max2min1 , uuBuu −≥=−≤=
� B utyaButya qqqq 224113 , −≤=−≥=

The inequalities for B1 and B2 are obvious. For B3

and B4 we are working in the same way:
⇒−≤≤−⇒≤+≤⇒≤≤⇒∈∀ tuyatuyytuayyyyttt qqqqqqqq 21212121],[

utytuyatuyuty qqqqqq 222111 −≤−≤≤−≤−⇒ ,

since qq ttt 210 ≤≤≤ but u . 0<

ya 1=

maxu1ya q=

uty qq 22 −

min22 uty qq −

, 2y q −(),, 11max tyu qq −

In figure 2 the line for u=uut qq 1− max

becomes 1t q− and the line

a = for u=umin becomes

a = .
Thus the initial query [(t1q,t2q), [(y1q,y2q)] in (t,y)

plane can be transformed to the following one
approximate query in (u.a) plane:

)][(min2maxmin utuu q .
So, instead of

Select name
From Mobile_Objects
Where trajectory(route) intersects
rectangle[t1q,t2q,y1q,y2q]

We write
Select name
From Mobile_Objects
Where umin <= u <=umax and y1q-
t1qumax <= y <= y2q-t2qumin

The second alternative approximate query avoids
operations of huge overhead like trajectory or
intersects.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp348-356)

4.2 Hough-Y transform [5] and approximate
rectangle query

By rewriting the equation as auty +=
u
ay

u
−=

1t ,

we can arrive to a different dual representation. The
point in the dual plane has coordinates (b,n) where

u
ab −= and

u
n 1
= . Coordinate b is the point where

the line intersects the line y=0 in the primal space. By
using this transform, horizontal lines cannot be
represented. Similarly, the Hough-X transform
cannot represent vertical lines. Nevertheless, since in
our setting lines have a minimum and maximum
slope (velocity is bounded by [umin,umax]), both
transforms are valid.

n

b

1/u max

Q hough-y

E1 hough-y

E2 hough-y

1/u min

t1q t2q

Fig. 3: Query on the Hough-Y dual plane.

The query in the dual Hough-Y plane (Figure 3) is

expressed in the following way [6]:
� If u , then 0>

4321 CCCCQ YHough III=− , where:

�
min

2
max

1
11,11

uu
nC

uu
n ≤==≥==C

�
y

t
b

y
nC

y
t

b
y

n qq 2
4

1
3

1,1
+−≤=+−≥=C

The inequalities for C1 and C2 areas are obvious.

The inequalities for C3 and C4 can be derived as
follows:

y
t

b
yy

tb
y

nttt q
qq

1
21

11],[+−≥+−=⇒∈∀ and

y
t

b
yy

tb
y

n q211
+−≤+−= . So, the two lines in

figure 3 they have negative slope and for b=0

intersect the axis b in t1q and t2q respectively. The
intersection of four regions C1, C2, C3 and C4 derives
the polygon (shaded) query of figure 3.

For 0<u
1DY

 the case is symmetric, that means:
432 DDDQHough III=− , where:

�
min

2
max

1
11,11

uu
nD

uu
nD −≥==−≤==

�
y

t
b

y
nD

y
t

b
y

nD qq 2
4

1
3

1,1
+−≤=+−≥=

The line
y

t
b

y
n q11

+−= for n=1/umin implies

that: ⇔−=⇔−= nytbn
y

t
b

y q
q

1
11

min
1 u

ytb q −=⇔ (1)

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp348-356)

In the same way the line
y

t
b

y
n q21

+−= for

n=1/umax implies that:
maxu
y

q −

⇔−≥− qyy 2

2t=

≥qy1

b (2). But

according to initial query and equation (1) we have
that: −⇔≤≤ qq yyy 21

⇔−≥−≥−⇔
min

2

minmin

1

u
y

u
y

u
y qq

⇔−≥−≥−
min

2
1

min
1

min

1
1 u

y
t

u
yt

u
y

t q
qq

q
q

min

1
1

min

2
1 u

y
tb

u
y

t q
q

q
q −≤≤−⇔ (3).

Proportionally according to initial query and
equation (2) we have that:

⇔−≥−≥−⇔≤≤ qqqq yyyyyy 2121

⇔−≥−≥−
max

2

maxmax

1

u
y

u
y

u
y qq

⇔−≥−≥−
max

2
2

max
2

max

1
2 u

y
t

u
yt

u
y

t q
qq

q
q

max

1
2

max

2
2 u

y
tb

u
y

t q
q

q
q −≤≤−⇔ (4).

According to (3) and (4) the initial query [(t1q,t2q),
[(y1q,y2q)] in (t,y) plane can be transformed to the
following one approximate query in (b.n) plane:

)]1,1(),,[(
minmaxmax

1
2

min

2
1 uuu

y
t

u
y

t q
q

q
q −− .

So, now instead of

Select name
From Mobile_Objects
Where trajectory(route) intersects
rectangle[t1q,t2q,y1q,y2q]

We write
Select name
From Mobile_Objects
Where 1/umax <= u <= 1/umin and
t1q-y2q/umin <= t <= t2q-y1q/umax

4.3 A new (u,t)-transform and approximate
rectangle query
In this case we assume that objects move with
constant velocity vector starting from a specific
location at a specific time instant but the velocities
are unbounded.

As you can see in figure 4, we represent each
moving object by a dual point (u,t). For example the
moving object Ok is associated to (uk,tk) point which
means that the object Ok is moving with constant
velocity vector uk starting from a specific location at
time instant tk.

⇔
−

≤≤
−

⇔≤+≤⇔≤≤
t

ay
u

t
ay

yautyyyy qq
qqqq

21
2121

q

qqq

q

q

t
ay

t
ay

u
t

ay
t

ay

1

221

2

1 −
≤

−
≤≤

−
≤

−
, since

qq ttt 210 ≤≤≤ .
So, the initial query [(t1q,t2q), [(y1q,y2q)] in (t,y)

plane can be transformed to the following one
approximate query in (u,t) plane:

 −−
),(),,(21

1

2

2

1
qq

q

q

q

q tt
t

ay
t

ay
.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp348-356)

t

uO

t1

t2

tk

u1 uk u2

tq1

tq2

O1

O2

Ok

(y1q-a) / t2q (y2q-a) / t1q

Fig. 4: (u,t) dual transform and approximate rectangle query

So, now instead of

Select name
From Mobile_Objects
Where trajectory(route) intersects
rectangle[t1q,t2q,y1q,y2q]

We write
Select name
From Mobile_Objects
Where t1q <= t <= t2q and
(y1q-a)/t2q <=u <= (y2q-a)/t1q

4.4 Observations about Indexing in one
dimension
Observation 1: Motions with small velocities in the
Hough-Y approach are mapped into dual points (b,n)
having large n coordinates (n=1/u). Thus, since few
objects can have small velocities, by storing the
Hough-Y dual points in an index structure such an
R*-tree, MBR’s with large extents are introduced, and
the index performance is severaly affected. On the
other hand, by using a Hough-X for the small
velocities’ partition, we eliminate this effect, since
the Hough-X dual transform maps an object’s motion
to the (u,a) dual point.

The query area in Hough-X plane is enlarged by
the area E, which is easily computed as EHough-X =(E1
hough-X + E2 hough-X). Also, let the actual area of
the simplex query be QHough-X. Similarly, on the dual
Hough-Y plane, let QHough-Y be the actual area of the

query, and EHough-Y be the enlargement. In order to
answer the initial query we must choose the
transform which minimizes the following criterio

YHough

YHough

XHough

XHough

Q
E

Q
Ec −

−

−

−

+= .

Observation 2: Since all 2-dimensional
approximate queries in Hough-X plane have the same
rectangle side (umin,umax), the rectangle range search
is equivalent to a simple 1-dimensional range
search on the a coordinate axis. Thus each of the “a”
indices can simply be a simple B+- tree. When the
objects’ velocities are unbounded then it’s obvious
that the solution of (u,t) dual transform is needed.
Similarly, in Hough-Y plane due to the fact that all 2-
dimensional approximate queries have the same
rectangle side (1/umax, 1/umin), the rectangle range
search is again equivalent to a simple 1- dimensional
range search on the b coordinate axis. Thus each of
the “b” indices can simply be again a simple B+- tree
again.

Observation3: When the objects’ velocities are
unbounded then it’s obvious that the solution of (u,t)
dual transform is needed. The 2-dimensional
rectangle approximate query of figure 4 can be
managed optimally by the external priority search
tree [1].

4.5 Indexing mobile objects in two dimensions
The procedure for building the index follows:

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp348-356)

1. Decompose the 2-d motion into two 1-d
motions on the (t,x) and (t,y) planes.

2. For each projection, build the corresponding
index structure.
� Partition the objects according to their

velocity:
(a) Objects with small velocity are stored

using the Hough-X dual transform,
while the rest are stored using the
Hough-Y dual transform.

(b) Motion information about the other
projection is also included

The outline of the algorithm for answering the

exact 2-d query is presented next:

1. Decompose the query into two 1-d queries,
for the (t,x) and (t,y) projection.

2. For each projection get the dual – simplex
query

3. For each projection calculate the criterion c,
according to the observation 1, and choose
the one (say p) that minimizes it.

4. Search in projection p the Hough-X or
Hough-Y partition.

5. Perform a refinement or filtering step “on the
fly”, by using the whole motion information.
Thus, the result set contains only the objects
that satisfy the query

5. Embedding half plane geometric
techniques into SQL for better worst-
case indexing performance.
Since the approximate range queries previously
described require an overhead of I/O’s in refinement
step, it’s worth a try to develop efficient indexing
mechanisms that can answer directly the specified
form of simplex (polygon) queries. As a result we
avoid the expensive overhead of refinement step and
now the performance of our index can be evaluated
in worst-case.

Example 1: Operations on single data types
Let the relation Companies (Name, Price,

Earnings) and the Query:”Retrieve the names of all
companies whose price/earnings ratio is less than 5”.
In SQL the query can be expressed as follows:
Select Name
From Companies

Where (Price-5∗Earnings<0).
If we interpret each ordered pair

(Earning,Price) as a point in the plane, the result
of the query derives from all such points that
satisfy the following linear constraint line: y-
5∗x≤0.

Example 2: Operations on spatio-temporal data
types

In one-dimensional space, operation rangevalues
returns values assumed over time as a set of intervals.
For the two-dimensional types, operations are offered
to return the parts of the projections corresponding to
our data types. For example, the projection of a
moving point into the plane may consist of points and
of lines; these can be obtained separately by
operations locations and trajectory, respectively.
Operation length gets the trajectory as parameter and
returns the full length of the lines that constitute the
trajectory of the mobile object.
Let the following spatio-temporal relation:

flight(airline:string, no:int, from:string, to:string,
route:mpoint)

Attributes airline and no of the relation flight
identify a flight. In addition, the relation records the
names of the departure and destination cities and the
route taken for each flight. The last attribute is of
type moving(point). We assume that a flight’s route is
defined only for the times the plane is in flight and
not when it is on the ground.

Query: ”Give me the number (no) -pair of
airlines LH and OL respectively that satisfy the
following constraint: The plane of LH airlines
routed double total distance from the respective
one of OL airlines”.

SQL Query:
flight: fl,f2
Select f1.no,f2.no
From f1,f2
where

Length(trajectory(Select f1.route
From f1
Where f1.airline=”LH”))>2*
Length(trajectory(Select f2.route
From f2
Where f2.airline=”OL”))

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp348-356)

If we interpret each ordered pair (length of
OL,length of LH) as a point in the plane, the result
of the query derives from all such points that
satisfy the linear constraint line y-2∗x>0.
Several complex queries can be expressed as
reporting all points lying within a given convex query
region. Such queries can in turn be viewed as the
intersection of a number of halfplane range queries.

The index in [12] was the first optimal data
structure for answering two-dimensional halfpspace
range queries in the worst case, based on the
geometric technique called filtering search
[13,14,15]. It uses O(n) blocks of space and answers
a query using O(logBn+t) I/Os. It is also simple
enough to be efficient in practice.

6. Conclusions
We presented external memory approximate and
worst-case mechanisms for indexing mobile objects
that move on the plane, in order to efficiently answer
range queries about their location in the future.

Acknowledgements
The authors would like to thank the Operational
Program for Educational and Vocational
Training II (EPEAEK II) and particularly the
Program PYTHAGORAS, for funding the above
work.

References
[1] L. Arge, V. Samoladas, and J.S. Vitter. On Two-

Dimensinal Indexability and Optimal Range
Search Indexing. In Proc. of the 18th ACM Symp.
on Principles of Database Systems (PODS),
pages 346–357, June 1999.

[2] N. Beckmann, H. Kriegel, R. Schneider, and B.
Seeger. The R*-tree: An Efficient and Robust
Access Method for Points and Rectangles. In
Proc. of the 1990 ACM SIGMOD International
Conference on Management of Data, pages 322–
331, Atlantic City, May 1998.

[3] J. Goldstein, R. Ramakrishnan, U. Shaft, and J.B.
Yu. Processing Queries By Linear Constraints. In
Proc. 16th ACM PODS Symposium on Principles
of Database Systems, pages 257–267, Tuscon,
Arizona, 1997.

[4] A. Guttman. R-trees: A Dynamic Index Structure
for Spatial Searching. In Proc. ACM SIGMOD,

pages 47–57, Boston, Mass, June 1984.
[5] H. V. Jagadish. On Indexing Line Segments. In

Proc. 16th. International Conference on Very
Large Data Ba`ses, pages 614–625, Brisbane,
Queensland, Australia, August 1990.

[6] G. Kollios, D. Gunopulos, and V. Tsotras. On
Indexing Mobile Objects. In Proc. of the 18th
ACM Symp. on Principles of Database Systems
(PODS), pages 261–272, June 1999.

[7] S. Saltenis, C. Jensen, S. Leutenegger, and Mario
A. Lopez. Indexing the Positions of Continuously
Moving Objects. In Proceedings of the ACM
SIGMOD, pages 331–342, May 2000.

[8] S. Saltenis and C. S. Jensen. Indexing of Moving
Objects for Location-Based Services. In Proc.
18th. Inter. Conference on Data Engineering,
San Jose, CA, Feb 2002. pages 507–518,
Brighton, England, September 1987.

[9] A. P. Sistla, O. Wolfson, S. Chamberlain, and S.
Dao. Modeling and Querying Moving Objects. In
Proceedings of the 13th ICDE, Birmingham, U.K,
pages 422–432, April 1997. Indexing Method.
The Computer Journal, 41(3):185–200, 1998.

[10] O. Wolfson, S. Chamberlain, S.Dao, L. Jiang,
and G. Mendez. Cost and Imprecision in
Modeling the Position of Moving Objects. In
Proc. 14th IEEE Inter. Conf. on Data
Engineering, pages 588–596, Orlando, Florida,
February 1998.

[11] O. Wolfson, B. Xu, S. Chamberlain, and L.
Jiang. Moving Objects Databases: Issues and
Solutions. In Proc. of 11th Int. Conf. on Scientfic
and Statistical Database Management, pages
111–122, Capri, Italy, Jul 1998.

[12] P.K.Agarwal, L.Arge,J.Erickson, P.G.Franciosa,
J.S.Vitter: Efficient Searching with Linear
Constraints, Journal of Computer and System
Sciences 61, 194-216 (2000).

[13] B. Chazelle, Filtering Search:a new approach to
query-answering, SIAM J. Comput. 15 (1986),
703-724.

[14] B. Chazelle, R. Cole, F.P. Preparata, C.K. Yap,
New upper bounds for neighbor searching,
Inform. Control 68(1986), 105-124.

[15] B. Chazelle, F.P.Preparata, Halfspace range
search: An algorithmic application of k-sets,
Descrete Comput. Geom. 1 (1986), 83-93.

[16] M. Vazirgiannis, A foundation for Representing
and Querying Moving Objects, ACM
Transactions on Database Systems, Vol. 25,
No.1, March 2000, Pages 1-42.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp348-356)

