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Abstract - Web services are becoming an important enabler of the Semantic Web. In this paper, we present a 
new P2P infrastructure for Web Services discovery. Peers that store Web Services information, such as data 
item descriptions, are efficiently located using a scalable and robust data indexing structure for Peer-to-Peer 
data networks, EST-GRID (Exponential Search Tree). EST-GRID provides support for processing Exact match 
Queries of the form “given a key, map the key onto a node”. EST-GRID adapts efficiently update queries as 
nodes join and leave the system, and can answer queries even if the system is continuously changing. Results 
from theoretical analysis show that the communication cost of the query and update operations scaling both in 

)log( nO  time where n the number of nodes.  
 
Key – Words: -P2P Networks, Indexing, Web Services, Data Structures, Grid Infrastructures  
 
1. Introduction 
Recently, P2P architectures that are based on 
Distributed Hash Tables (DHTs) have been 
proposed and have since become very popular, 
influencing research in Peer-to-Peer (P2P) systems 
significantly. DHT – based systems provide 
efficient processing of the routing/location 
operations that, given a query for a document id, 

they locate (route the query to) the peer node that 
stores this document. Thus, they provide support 
for exact-match queries. DHT-based systems are 
referred as structured P2P systems because in 
general they rely on lookups of a distributed hash 
table, which creates a structure in the system 
emerging by the way that peers define their 
neighbors. Related P2P systems like Gnutella [1], 
MojoNation [2], etc, do not create such a structure, 
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since neighbors of peers are defined in rather ad 
hoc ways. 

There are several P2P DHTs architectures like 
Chord [3], CAN [4], Pastry [5], Tapestry [6], etc. 
From these, CAN and Chord are the most 
commonly used supporting more elaborate queries. 

There are also other than DHTs structured P2P 
systems, which build distributed, scalable indexing 
structures to route search requests, such as P-Grid. 
P-Grid ([7]) is a scalable access structure based on 
a virtual distributed search tree. It uses randomized 
techniques to create and maintain the structure in 
order to provide complete decentralization. 

In this work we present a new efficient grid 
structure for Peer-to-Peer (P2P) Data Networks, 
named EST-GRID. EST-GRID provides support 
for processing Exact match Queries of the form 
“given a key, map the key onto a node”. EST-
GRID uses a virtual Exponential Search Tree to 
guide key based searches. Data location can be 
easily implemented on top of EST by associating a 
key with each data item, and storing the key/data 
item pair at the node to which the key maps. We 
suppose that each node stores an ordered set of 
keys and the mapping algorithm runs in such way 
that locally ordered key_sets are also disjoint each 
other. EST-Grid adapts efficiently update queries 
as nodes join and leave the system, and can answer 
queries even if the system is continuously 
changing. Results from theoretical analysis show 
that the communication cost of the query and 
update operations scaling double-logarithmically 
with the number of EST-GRID nodes. 
Furthermore, our system is also robust on failures.  

The rest of this paper is structured as follows. 
Section 2 remind us the fundamentals of 
hierarchical protocols giving examples, section 3 
presents the EST-GRID, our new efficient and 
scalable P2P lookup system. In this section we also 
describe and resolve the communication cost of 
search and join/leave operations. Section 4 presents 
the results from theoretical analysis. Finally, we 
outline items for future work and summarize our 
contributions in section 5. 
 

2. Preliminaries  
This section reminds us the hierarchical and tree 
based algorithms that are useful in peer-to-peer 
contexts.  
 
 
2.1 Hierarchical protocols  
Hierarchical protocols is nothing new, but provides 
an interesting approach to the balance between 

scalability and performance. The most well known 
service in use today that uses a hierarchical 
protocol is DNS. The purpose of DNS is to 
translate a human friendly domain name, such as 
www.ietf.org, to its corresponding IP address (in 
this case 4.17.168.6). The DNS architecture 
consists of the following:  

• Root name servers  
• Other name servers  
• Clients  

The other name servers can also be classified as 
authorative name servers for some domains. The 
early Internet forced all hosts to maintain a copy of 
a file named hosts.txt, which contained all 
necessary translations. As the network grew the 
size and frequent changes of the file became 
unfeasible. The introduction of DNS remedied this 
problem and has worked successfully since then. 
 
 
2.2 An example of a DNS lookup  
Assume a host is located in the domain 
sourceforge.net. The following scenario shows 
what a DNS lookup could look like in practice.  

1. If a user on the aforementioned host, in the 
sourceforge.net domain, directs his web 
browser to http://www.ietf.org the web 
browser issues a DNS lookup for the name 
www.ietf.org.  

2. The request is sent to the local name server 
of the sourceforge.net domain.  

3. The name server at sourceforge.net is not 
able to answer the question directly, but it 
knows the addresses of the root name 
servers and contacts one of them.  

4. There are 12 root name servers (9 in the 
US, 1 in the UK, 1 in Sweden and 1 in 
Japan). The root name server knows the 
address of a name server for the org 
domain. This address is sent in response to 
the question from the local name server at 
sourceforge.net.  

5. The name server at sourceforge.net asks the 
name server of the org domain, but it does 
not have the answer either, but the name 
server of the org domain knows the name 
and address of the authorative name server 
for the ietf.org domain.  

6. The name server at sourceforge.net 
contacts the name server at ietf.org and 
once again asks for the address of 
www.ietf.org. This time an answer is found 
and the IP address 4.17.168.6 is returned.  

7. The web browser can continue its work by 
opening a connection to the correct host.  
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Note that a question sent to a name server can be 
either recursive or iterative. A recursive question 
causes the name server to continue asking other 
name servers until it receives an answer, which 
could be that the name does not exist. An iterative 
query returns an answer to the host asking the 
question immediately. If a definite answer cannot 
be given, suggestions on which servers to ask 
instead are given.  
 
2.3 Caching in DNS  
Caching plays an important part in DNS. In the 
example above the local name server will cache the 
addresses obtained for the name server of the org 
domain and the ietf.org domain as well as the final 
answer, the address of www.ietf.org. This causes 
subsequent translations of www.ietf.org to be 
answered directly by the local name server, and 
translations of other hosts in the domain ietf.org 
can bypass the root name server and the org server. 
The translation of an address such as www.gnu.org 
bypasses the root name server and asks the name 
server for the org domain directly. 
 
 
2.4 Redundancy and fault tolerance in DNS  
To make DNS fault tolerant any name server can 
hold a set of entries as the answer to a single 
question. A name server can answer a question 
such as ``What is the address of www.gnu.org'' 
with something like Table 1, which provides the 
names of name servers for the gnu.org domain. The 
results were obtained using the dig utility available 
on most Unix systems. In reality the response is 
much more compact.  
 

  ;; ANSWER SECTION: 
  gnu.org.                86385   IN      NS      nic.cent.net. 
  gnu.org.                86385   IN      NS      ns1.gnu.org. 
  gnu.org.                86385   IN      NS      ns2.gnu.org. 
  gnu.org.                86385   IN      NS      ns2.cent.net. 
  gnu.org.                86385   IN      NS      ns3.gnu.org. 
   
  ;; ADDITIONAL SECTION: 
  nic.cent.net.           79574   IN       A       140.186.1.4 
  ns1.gnu.org.            86373   IN      A       199.232.76.162 
  ns2.gnu.org.            86385   IN      A       195.68.21.199 
  ns2.cent.net.           79574   IN       A       140.186.1.14 

Table 1: Sample response from a DNS query 
 
The example shows that the gnu.org domain 

appears to have five name servers (NS), of which 
four of their addresses are known to us. The 
question of the address of www.gnu.org can be sent 
to anyone of the four servers. This means that we 

can receive an answer to our question as long as at 
least one of the name servers is reachable.  
 
 
3. The EST-GRID architecture  
The EST-GRID provides an Exponential Search 
Tree-like structure where key based searching can 
be performed. In terms of bandwidth usage 
searching scales very well since no broadcasting or 
other bandwidth consuming activities takes place 
during searches. Since all searches are key based 
there are two possibilities:  

• Let each host implement the same 
translation algorithm, that translates a 
sequence of keywords to a binary key.  

• Let another service provide the binary key. 
This service accepts keyword based queries 
and can respond with the corresponding 
key.  

The second approach is more precise. It is also 
possible to use a more centralized implementation 
for such a service. From now on we assume that the 
key is available. The paper describes an algorithm 
for the first case. We also suppose that the set of 
keys on each host retain a global order. Details are 
described on next paragraph.  
 
 
3.1 Preliminary Structures 
 
 
3.1.1 The Structure of B-Trees [14] 
Unlike a binary-tree, each node of a b-tree may 
have a variable number of keys and children. The 
keys are stored in non-decreasing order. Each key 
has an associated child that is the root of a subtree 
containing all nodes with keys less than or equal to 
the key but greater than the preceeding key. A node 
also has an additional rightmost child that is the 
root for a subtree containing all keys greater than 
any keys in the node. 

A b-tree has a minimum number of allowable 
children for each node known as the minimization 
factor. If t is this minimization factor, every node 
must have at least t - 1 keys. Under certain 
circumstances, the root node is allowed to violate 
this property by having fewer than t - 1 keys. Every 
node may have at most 2t - 1 keys or, equivalently, 
2t children. 

Since each node tends to have a large branching 
factor (a large number of children), it is typically 
necessary to traverse relatively few nodes before 
locating the desired key.  
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3.1.1 Fusion Trees [12] 
The Fusion tree is a static data structure which 
permits O(logN/loglogN) amortised time queries in 
linear space. This structure is used to implement a 
B-tree [14] where only the upper levels in the tree 
contain B-tree nodes, all having the same degree 
(within a constant factor). At the lower levels, 
weight balanced trees are used. The amortised cost 
for searches and updates is O(logN/logd + logd) for 
any d = O(w1/6). The first term corresponds to the 
number of B-tree levels and the second to the 
height of the weighted-balanced trees. 
The Fusion tree has the following properties: 

For any d, d = O(w1/6), a static data structure 
containing d keys can be constructed in O(d4) time 
and space, such that it supports neighbour queries 
in O(1) worst-case time. 

The main advantage of the fusion technique is 
that we can decide in time O(1) in which subtree to 
continue the searching by compressing the k-keys 
of every B-tree node using w - bit words. 
 
 
3.1.2 Exponential Search Trees [8] 
The Exponential Search tree answers queries in 
one-dimensional space. It is a multi-way tree where 
the degrees of the nodes decrease exponentially 
down the tree. Auxiliary information is stored in 
each node in order to support efficient searching 
queries. The Exponential Search tree has the 
following properties: 
• Its root has degree Θ(Nl/5). 
• The keys of the root are stored in a local data 
structure. During a search, the local data structure 
is used to determine in which subtree the search is 
to be continued. 
• The subtrees are exponential search trees of size 
Θ (N4/5). 

The local data structure at each node of the tree 
is a combination of van Emde Boas trees [11] and 
perfect hashing [13] thus achieving 
O(logwloglogN) worst case cost for a search. 
Anderson, by using an exponential search tree in 
the place of B-trees [14] in the Fusion tree structure 
[12], avoids the need for weight-balanced trees at 
the bottom while at the same time improves the 
complexity for large word sizes. This structure 
further improves exact match searching by 
achieving O(√logN) time using O(N) storage. 
 

 
3.2 EST-Grid Infrastructure 
The EST-Grid is an exponential tree T where the 
degree of the nodes at level i is defined to be 

( ) ( )itid =  and ( )it  indicates the number of nodes 
present at level i. This is required to hold for , 
while 

1≥i
( ) 20 =d  and ( ) 10 =t . It is easy to see that we 

also have ( ) ( ) ( )11 −−= id

1 ( )id

it

≥i

it , so putting together the 
various components, we can solve the recurrence 
and obtain for : . One of 
the merits of this tree is that its height is 

( ) 11 22 2,2
−−

=
ii

it=

( )nO loglog , where n is the number of elements 
stored in it. 
 
 
3.2.1 Peers in EST-Grid Infrastructure   
We distinguish between leaf_peers and node_peers: 
If peer i, henceforth denoted pi, is a key_host_peer 
(leaf) of the EST-Grid network it maintains the 
following:  
� A number of ordered k-bit binary keys ki = 

b1...bk, where k is less than or equal to n1, for 
some bounded constant n1 which is the same 
for all pi. This ordered set of keys denotes 
key space that the peer is responsible for. Let 
K the number of k-bit binary keys and n the 
number of key_host_peers. While we can 
initially distribute the keys in that way such 
as each host peer (leaf) stores a load of 

)/( nKΘ keys it is not at all obvious how to 
bound the load of the host peers, during 
update operations. In [9], an idea of general 
scientific interest was presented: modeling 
the insertions/deletions as a combinatorial 
game of bins and balls, the size of each host 
peer is expected w.h.p. , for keys 
that are drawn from an unknown 
distribution. 

)(ln nΘ

� The key sets njnKikS ij ≤≤Θ≤≤= 1)},/(1|{

,,1,1, qjnqnjq

 
retain a global order. That 
means, ,SS j ≠≤≤≤≤∀  if 

}qSmin{}jmin{S <  then }min{)max{ qj SS < . 
Thereupon, we are sorting the key_sets 
above providing a leaf oriented data 
structure as you can see in figure 1. 
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Fig. 1: The EST-Grid Infrastructure 

If pi, is a node_peer (root or internal node) of 
the EST-Grid network is associated with the 
following:  
� A local table of sample elements , 

one for each of its subtrees. The REF table 
is called the reference table of the peer and 
the expression denotes the set of 
addresses at index r in the table. Each REF 
table is organized as the innovative linear 
space indexing scheme presented in [8] by 
Anderson which achieves an 

IPREF

][rREF
IP

)log( nO worst-case time bound for 
dynamic updating and searching operations, 
where n the number of stored elements. We 
will use this solution as the base searching 
routine on the local table of each network 
node. 

For each node pi we explicitly maintain parent, 
child, and sibling pointers. Pointers to sibling nodes 
will be alternatively referred to as level links. The 
required pointer information can be easily 
incorporated in the construction of the EST-Grid 
search tree.  

 
 

3.3 Lookup Complexity  
Theorem 1: Suppose a EST-grid network Then, 
Exact Match operations require )log( nO hops 
where n denotes the current number of peers. 

Proof: Assume that a key_host_peer p performs 
a search for key k. We first check whether k is to 
the left or right of p, say k is to the right of p. Then 
we walk towards the root, say we reached node u. 
We check whether k is a descendant of u or u’s 
right neighbor on the same level by searching the 
REF table of u or u’s right neighbor respectively. If 
not, then we proceed to u’s father. Otherwise we 
turn around and search for k in the ordinary way. 

Suppose that we turn around at node w of height 
h. Let v be that son of w that is on the path to the 
peer p. Then all descendants of v’s right neighbor 
lie between the peer p and the key k. The subtree 
Tw is an EST-tree for n′≤n elements, and it’s height 
is h=Θ(loglog n′). 

So, we have to visit the appropriate search path 
w,w1, w2,…..wr from internal node w to leaf node 
wr .In each node of this path we have to search for 
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the key k using the  indices, 1≤i≤r and 

r=O(loglogn),  consuming  
iwREF

))(log iwd(O  worst-
case time, where d(wi) the degree of node wi.  This 
can be expressed by the following sum: 

∑ =

=

)log(log

1
logdOr

i
d )( iw  

Let L1, Lr the levels of W1 and Wr respectively. So, 

and  
12

1 2)(
L

wd =
Lr

rwd 22)( =

But, Lr=O(loglogn). Now, the previous sum can 
be expressed as follows: 

)log(log............
1

22

1

1

1

11

nOn
LL

LL

=++
+

+
+

 
To perform the search a connection to a peer p 

in the EST-Grid is established and the call 
bdtgrid_search(p, k) is performed. The function 
bdtgrid_search is shown in figure 2.  

 
 Node p ESTtgrid_search (p, k) 
{ 
int j; 
bool move_right=false;     
 
if (p=host_key && p is responsible for this k) 
return p; 
if (someone else is responsible) 
{ 
 Check whether k is to the left or right of p; \\ say k is to the right of p\\ 
p_next=father(p) 
 
While )_&&]_[( _ falserightmovemostrightREFk nextp =>  
{ 
p′=right_sibling of  p_next; 
 
if   ])_[( ' mostrightREFk p<=
{ 
p_next= p′; 
move_right=true; 
} 
else 
p_next=father (p_next); 
 
host = send_search(p_next, k); 
} 
While (p_next is not a key_host) 
{ 
j=search (k, p_next);  
\\ Where search (key, node) denotes the procedure [8] which returns an integer position j indicating 
the appropriate descendant we must continue the further searching\\  
p_next =&REFp-next [j]; 
host = send_search(p_next, k); 
} 
p=p_next; 
return p; 
} 

Figure 2: Pseudo-code for EST-Grid searches 

 

 
 
3.4 Key_Host_Peers Join and Leave the System 

What will happen when a key_host_peer overflows 
(or underflows)?? In the first case we have to 
nearby insert a new host_peer. In the second case 
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we have to mark as deleted the key_host_peer by 
moving first the few remaining keys to the left or 
right neighbors. Obviously after a significant 
number of join/leave operations a global rebuilding 
process is required for cleaning the redundant 
nodes and rebalancing the EST structure. 
 
Procedure INSERT_host_peer (p) 
{ 
Insert a new leaf node p; 
counter=counter+1; 
p_next=father(p); 
 
While (p_next !=root) 
{ 
update REFp_next ; //add one more link according to 
algorithm 
                                 presented in [8] // 
p_next=father(p_next); 
} 
if  then Re ;  )(ncounter Θ= )(Tbuild
 
} 

Figure 3: Pseudo-code for INSERT host_peers 
 
Procedure DELETE_host_peer p 
{ 
search for p; // according to ESTgrid_search routine // 
mark p ; 

counter=counter+1; 

if counter  then ;  )(nΘ= )(Re Tbuild
} 

Figure 4: Pseudo-code for DELETE  host_peers 
 

Procedure  )(Re Tbuild
{ 
Build a new EST_Grid structure; 
Counter=0; 
} 

Figure 5: Pseudo-code for Rebuilding operation 
 

Theorem 2: Suppose a EST-grid network 
Then, join and leave operations require 

)log( nO amortized number of hops where n 
denotes the current number of peers. 

Proof: A join (insert) operation affects the 
path from the new leaf node to the root of the 
EST–GRID. In each path-node wi 

(1≤i≤cloglogn and c is a constant) we have to 
update the index. This process requires 

iwREF

))iw(log( dO  time, where d(wi) the degree of 
the node wi.  This can be expressed by the 
following sum: 

nwddOr

i i log)(log)log(log

1
=∑ =

= . 
The leave (delete) operation requires  

)log( nO  hops for detecting the node and 
O(1) time to mark as deleted that node.  

After )(nΘ update operations we have to 
rebuild the Balanced Distributed backbone. By 
spreading the )(nΘ rebuilding cost to the next 

)(nΘ updates, the theorem’s amortized bound 
follows. 
 
 
4. Evaluation and Outline of 
Contributions 
As you can see in Table 2 below, our contribution 
provides for exact-match queries, improved search 
costs from O(logn) in DHTs to )log( nO in EST-
GRID and adequate and simple solution to the 
range query problem. Update Queries such as WS 
registration and de-registration requests are not 
performed as frequently as a user login and logout 
in a typical P2P data delivery network. Web 
Services are software developed to support 
business structures and procedures which are 
expected to stay available in the WS discovery 
registries more than a P2P user session time span. 
EST -GRID scales very well in the amortized case 
and it is better than Chord in the expected business 
oriented weak – sparse updates. EST -GRID does 
not scale well in worst-case due to a likelihood 
reconstruction overhead, which is not typically met 
in WS registry/catalogue implementation cases, 
though. Additionally, a fault tolerance schema is 
available to support with fidelity an elementary 
web services business solution. 
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P2P Network
Architectures 
 
 

Lookup Messages Update Messages Data Overhead-
Routing 
information 

CHORD O(logn)  O(log2n) with high 
probability  

O(logn) nodes 

BDT-GRID )log( nO  )log( nO  
Amortized 

)(nΘ worst-case 
 

Exponentially 
increasing 

Table 2. Performance Comparison with the best Known Architecture 
 
 
 
5. Simulation and Experimental 
Results 
In this section we evaluate the EST protocol by 
simulation. The simulator generates initially K keys 
drawn by an unknown distribution. After the 
initialization procedure the simulator orders the 
keys and chooses as bucket representatives the 1st 
key, the lnnst key, the 2lnnst key. …and so on. 
Obviously it creates N buckets or N Leaf_nodes 
where N=K/lnn. By modeling the 
insertions/deletions as the combinatorial game of 
bins and balls presented in [9], the size of each 
bucket (host peer) is expected w.h.p. Θ . 
Finally the simulator uses the lookup algorithm in 
Figure 2. We compare the performance of EST 
simulator with the best-known CHORD simulator 
presented in [10]. More specifically we evaluate the 
Load balance and the search path length of these 

two architectures. In order to understand in practice 
the load balancing and routing performance of 
these two protocols, we simulated a network with 
N=2

)(ln n

k nodes, storing K=100x2k keys in all. We 
varied parameter k from 3 to 14 and conducted a 
separate experiment of each value. Each node in an 
experiment picked a random set of keys to query 
from the system, and we measured the path length 
required to resolve each query. For the experiments 
we considered synthetic data sets. Their generation 
was based on several distributions like Uniform, 
Regular, Weibull, Beta and Normal. For anyone of 
these distributions we evaluated the length path for 
lookup queries and the maximum load of each leaf 
node respectively. Then we computed the mean 
values of the operations above for all the 
experiment shots. The figures below depict the 
mean load and path length respectively.  
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Table 3. Load Balance Performance Comparison with the best Known Architecture 
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Lookup Performance
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Table 4. Lookup Performance Comparison with the best Known Architecture 

 
 

From the experimental evaluation derives 
that the mean value of bucket load is 
approximately 15 in EST protocol instead 
of  in CHORD protocol. Obviously, 
for  the EST protocol has better load 
balancing performance.  Considering now the 
lookup performance depicted in Table 4 the 
Path-Length in EST protocol is almost constant 
(between 4 and 8 hops) instead of CHORD 
where the path-length is increased 
logarithmically.  

nln∗
nk 2log∗

15>k

 
 
6. Conclusion 
A Web Service discovery structure over a P2P 
network needs to determine the node that stores the 
web service item or the nodes that store a set of WS 
items, which satisfy a range criterion. In this paper 
we introduced and analyzed EST-GRID, a protocol 
that solves this challenging problem in 
decentralized manner. Current work includes the 
implementation and experimental evaluation of 
EST -GRID for large scale WS discovery when the 
insertion/deletion of WS items draw unknown 
distributions. Furthermore includes a detailed study 
of embedding fault-tolerance techniques into EST-
GRID system. 
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