
EST-Grid: An Efficient Scalable Peer-to-Peer Infrastructure for Web
Service Discovery

S. SIOUTAS

Computer Engineering and Informatics department
University of Patras

Building B, University Campus, 26500, Rion, Patras
GREECE

L. DROSSOS

Technological Institute of Messolongi,
Department of Applied Informatics in Administration and Economics

Technological Institute Campus, 30200, Messolongi
GREECE

D.TSOLIS
Computer Engineering and Informatics department

University of Patras
Building B, University Campus, 26500, Rion, Patras

GREECE

T. S. PAPATHEODOROU

Computer Engineering and Informatics department
University of Patras

Building B, University Campus, 26500, Rion, Patras
GREECE

Abstract - Web services are becoming an important enabler of the Semantic Web. In this paper, we present a
new P2P infrastructure for Web Services discovery. Peers that store Web Services information, such as data
item descriptions, are efficiently located using a scalable and robust data indexing structure for Peer-to-Peer
data networks, EST-GRID (Exponential Search Tree). EST-GRID provides support for processing Exact match
Queries of the form “given a key, map the key onto a node”. EST-GRID adapts efficiently update queries as
nodes join and leave the system, and can answer queries even if the system is continuously changing. Results
from theoretical analysis show that the communication cost of the query and update operations scaling both in

)log(nO time where n the number of nodes.

Key – Words: -P2P Networks, Indexing, Web Services, Data Structures, Grid Infrastructures

1. Introduction
Recently, P2P architectures that are based on
Distributed Hash Tables (DHTs) have been
proposed and have since become very popular,
influencing research in Peer-to-Peer (P2P) systems
significantly. DHT – based systems provide
efficient processing of the routing/location
operations that, given a query for a document id,

they locate (route the query to) the peer node that
stores this document. Thus, they provide support
for exact-match queries. DHT-based systems are
referred as structured P2P systems because in
general they rely on lookups of a distributed hash
table, which creates a structure in the system
emerging by the way that peers define their
neighbors. Related P2P systems like Gnutella [1],
MojoNation [2], etc, do not create such a structure,

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp110-119)

since neighbors of peers are defined in rather ad
hoc ways.

There are several P2P DHTs architectures like
Chord [3], CAN [4], Pastry [5], Tapestry [6], etc.
From these, CAN and Chord are the most
commonly used supporting more elaborate queries.

There are also other than DHTs structured P2P
systems, which build distributed, scalable indexing
structures to route search requests, such as P-Grid.
P-Grid ([7]) is a scalable access structure based on
a virtual distributed search tree. It uses randomized
techniques to create and maintain the structure in
order to provide complete decentralization.

In this work we present a new efficient grid
structure for Peer-to-Peer (P2P) Data Networks,
named EST-GRID. EST-GRID provides support
for processing Exact match Queries of the form
“given a key, map the key onto a node”. EST-
GRID uses a virtual Exponential Search Tree to
guide key based searches. Data location can be
easily implemented on top of EST by associating a
key with each data item, and storing the key/data
item pair at the node to which the key maps. We
suppose that each node stores an ordered set of
keys and the mapping algorithm runs in such way
that locally ordered key_sets are also disjoint each
other. EST-Grid adapts efficiently update queries
as nodes join and leave the system, and can answer
queries even if the system is continuously
changing. Results from theoretical analysis show
that the communication cost of the query and
update operations scaling double-logarithmically
with the number of EST-GRID nodes.
Furthermore, our system is also robust on failures.

The rest of this paper is structured as follows.
Section 2 remind us the fundamentals of
hierarchical protocols giving examples, section 3
presents the EST-GRID, our new efficient and
scalable P2P lookup system. In this section we also
describe and resolve the communication cost of
search and join/leave operations. Section 4 presents
the results from theoretical analysis. Finally, we
outline items for future work and summarize our
contributions in section 5.

2. Preliminaries
This section reminds us the hierarchical and tree
based algorithms that are useful in peer-to-peer
contexts.

2.1 Hierarchical protocols
Hierarchical protocols is nothing new, but provides
an interesting approach to the balance between

scalability and performance. The most well known
service in use today that uses a hierarchical
protocol is DNS. The purpose of DNS is to
translate a human friendly domain name, such as
www.ietf.org, to its corresponding IP address (in
this case 4.17.168.6). The DNS architecture
consists of the following:

• Root name servers
• Other name servers
• Clients

The other name servers can also be classified as
authorative name servers for some domains. The
early Internet forced all hosts to maintain a copy of
a file named hosts.txt, which contained all
necessary translations. As the network grew the
size and frequent changes of the file became
unfeasible. The introduction of DNS remedied this
problem and has worked successfully since then.

2.2 An example of a DNS lookup
Assume a host is located in the domain
sourceforge.net. The following scenario shows
what a DNS lookup could look like in practice.

1. If a user on the aforementioned host, in the
sourceforge.net domain, directs his web
browser to http://www.ietf.org the web
browser issues a DNS lookup for the name
www.ietf.org.

2. The request is sent to the local name server
of the sourceforge.net domain.

3. The name server at sourceforge.net is not
able to answer the question directly, but it
knows the addresses of the root name
servers and contacts one of them.

4. There are 12 root name servers (9 in the
US, 1 in the UK, 1 in Sweden and 1 in
Japan). The root name server knows the
address of a name server for the org
domain. This address is sent in response to
the question from the local name server at
sourceforge.net.

5. The name server at sourceforge.net asks the
name server of the org domain, but it does
not have the answer either, but the name
server of the org domain knows the name
and address of the authorative name server
for the ietf.org domain.

6. The name server at sourceforge.net
contacts the name server at ietf.org and
once again asks for the address of
www.ietf.org. This time an answer is found
and the IP address 4.17.168.6 is returned.

7. The web browser can continue its work by
opening a connection to the correct host.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp110-119)

Note that a question sent to a name server can be
either recursive or iterative. A recursive question
causes the name server to continue asking other
name servers until it receives an answer, which
could be that the name does not exist. An iterative
query returns an answer to the host asking the
question immediately. If a definite answer cannot
be given, suggestions on which servers to ask
instead are given.

2.3 Caching in DNS
Caching plays an important part in DNS. In the
example above the local name server will cache the
addresses obtained for the name server of the org
domain and the ietf.org domain as well as the final
answer, the address of www.ietf.org. This causes
subsequent translations of www.ietf.org to be
answered directly by the local name server, and
translations of other hosts in the domain ietf.org
can bypass the root name server and the org server.
The translation of an address such as www.gnu.org
bypasses the root name server and asks the name
server for the org domain directly.

2.4 Redundancy and fault tolerance in DNS
To make DNS fault tolerant any name server can
hold a set of entries as the answer to a single
question. A name server can answer a question
such as ``What is the address of www.gnu.org''
with something like Table 1, which provides the
names of name servers for the gnu.org domain. The
results were obtained using the dig utility available
on most Unix systems. In reality the response is
much more compact.

 ;; ANSWER SECTION:
 gnu.org. 86385 IN NS nic.cent.net.
 gnu.org. 86385 IN NS ns1.gnu.org.
 gnu.org. 86385 IN NS ns2.gnu.org.
 gnu.org. 86385 IN NS ns2.cent.net.
 gnu.org. 86385 IN NS ns3.gnu.org.

 ;; ADDITIONAL SECTION:
 nic.cent.net. 79574 IN A 140.186.1.4
 ns1.gnu.org. 86373 IN A 199.232.76.162
 ns2.gnu.org. 86385 IN A 195.68.21.199
 ns2.cent.net. 79574 IN A 140.186.1.14

Table 1: Sample response from a DNS query

The example shows that the gnu.org domain

appears to have five name servers (NS), of which
four of their addresses are known to us. The
question of the address of www.gnu.org can be sent
to anyone of the four servers. This means that we

can receive an answer to our question as long as at
least one of the name servers is reachable.

3. The EST-GRID architecture
The EST-GRID provides an Exponential Search
Tree-like structure where key based searching can
be performed. In terms of bandwidth usage
searching scales very well since no broadcasting or
other bandwidth consuming activities takes place
during searches. Since all searches are key based
there are two possibilities:

• Let each host implement the same
translation algorithm, that translates a
sequence of keywords to a binary key.

• Let another service provide the binary key.
This service accepts keyword based queries
and can respond with the corresponding
key.

The second approach is more precise. It is also
possible to use a more centralized implementation
for such a service. From now on we assume that the
key is available. The paper describes an algorithm
for the first case. We also suppose that the set of
keys on each host retain a global order. Details are
described on next paragraph.

3.1 Preliminary Structures

3.1.1 The Structure of B-Trees [14]
Unlike a binary-tree, each node of a b-tree may
have a variable number of keys and children. The
keys are stored in non-decreasing order. Each key
has an associated child that is the root of a subtree
containing all nodes with keys less than or equal to
the key but greater than the preceeding key. A node
also has an additional rightmost child that is the
root for a subtree containing all keys greater than
any keys in the node.

A b-tree has a minimum number of allowable
children for each node known as the minimization
factor. If t is this minimization factor, every node
must have at least t - 1 keys. Under certain
circumstances, the root node is allowed to violate
this property by having fewer than t - 1 keys. Every
node may have at most 2t - 1 keys or, equivalently,
2t children.

Since each node tends to have a large branching
factor (a large number of children), it is typically
necessary to traverse relatively few nodes before
locating the desired key.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp110-119)

3.1.1 Fusion Trees [12]
The Fusion tree is a static data structure which
permits O(logN/loglogN) amortised time queries in
linear space. This structure is used to implement a
B-tree [14] where only the upper levels in the tree
contain B-tree nodes, all having the same degree
(within a constant factor). At the lower levels,
weight balanced trees are used. The amortised cost
for searches and updates is O(logN/logd + logd) for
any d = O(w1/6). The first term corresponds to the
number of B-tree levels and the second to the
height of the weighted-balanced trees.
The Fusion tree has the following properties:

For any d, d = O(w1/6), a static data structure
containing d keys can be constructed in O(d4) time
and space, such that it supports neighbour queries
in O(1) worst-case time.

The main advantage of the fusion technique is
that we can decide in time O(1) in which subtree to
continue the searching by compressing the k-keys
of every B-tree node using w - bit words.

3.1.2 Exponential Search Trees [8]
The Exponential Search tree answers queries in
one-dimensional space. It is a multi-way tree where
the degrees of the nodes decrease exponentially
down the tree. Auxiliary information is stored in
each node in order to support efficient searching
queries. The Exponential Search tree has the
following properties:
• Its root has degree Θ(Nl/5).
• The keys of the root are stored in a local data
structure. During a search, the local data structure
is used to determine in which subtree the search is
to be continued.
• The subtrees are exponential search trees of size
Θ (N4/5).

The local data structure at each node of the tree
is a combination of van Emde Boas trees [11] and
perfect hashing [13] thus achieving
O(logwloglogN) worst case cost for a search.
Anderson, by using an exponential search tree in
the place of B-trees [14] in the Fusion tree structure
[12], avoids the need for weight-balanced trees at
the bottom while at the same time improves the
complexity for large word sizes. This structure
further improves exact match searching by
achieving O(√logN) time using O(N) storage.

3.2 EST-Grid Infrastructure
The EST-Grid is an exponential tree T where the
degree of the nodes at level i is defined to be

() ()itid = and ()it indicates the number of nodes
present at level i. This is required to hold for ,
while

1≥i
() 20 =d and () 10 =t . It is easy to see that we

also have () () ()11 −−= id

1 ()id

it

≥i

it , so putting together the
various components, we can solve the recurrence
and obtain for : . One of
the merits of this tree is that its height is

() 11 22 2,2
−−

=
ii

it=

()nO loglog , where n is the number of elements
stored in it.

3.2.1 Peers in EST-Grid Infrastructure
We distinguish between leaf_peers and node_peers:
If peer i, henceforth denoted pi, is a key_host_peer
(leaf) of the EST-Grid network it maintains the
following:
� A number of ordered k-bit binary keys ki =

b1...bk, where k is less than or equal to n1, for
some bounded constant n1 which is the same
for all pi. This ordered set of keys denotes
key space that the peer is responsible for. Let
K the number of k-bit binary keys and n the
number of key_host_peers. While we can
initially distribute the keys in that way such
as each host peer (leaf) stores a load of

)/(nKΘ keys it is not at all obvious how to
bound the load of the host peers, during
update operations. In [9], an idea of general
scientific interest was presented: modeling
the insertions/deletions as a combinatorial
game of bins and balls, the size of each host
peer is expected w.h.p. , for keys
that are drawn from an unknown
distribution.

)(ln nΘ

� The key sets njnKikS ij ≤≤Θ≤≤= 1)},/(1|{

,,1,1, qjnqnjq

retain a global order. That
means, ,SS j ≠≤≤≤≤∀ if

}qSmin{}jmin{S < then }min{)max{ qj SS < .
Thereupon, we are sorting the key_sets
above providing a leaf oriented data
structure as you can see in figure 1.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp110-119)

]2[0 levelthREF −

key-host_1 key-host_2

Root-node

]4[1 levelstREF −

key-host_n
Leaf-nodes

Internal-nodes

linkshost −= _42
12 linkshost −= _42

12

linkshost −= _22
02

linkshost
i

−_22

]2[2i

levelithREF −]2[2i

levelithREF −

]4[1 levelstREF −

Fig. 1: The EST-Grid Infrastructure

If pi, is a node_peer (root or internal node) of
the EST-Grid network is associated with the
following:
� A local table of sample elements ,

one for each of its subtrees. The REF table
is called the reference table of the peer and
the expression denotes the set of
addresses at index r in the table. Each REF
table is organized as the innovative linear
space indexing scheme presented in [8] by
Anderson which achieves an

IPREF

][rREF
IP

)log(nO worst-case time bound for
dynamic updating and searching operations,
where n the number of stored elements. We
will use this solution as the base searching
routine on the local table of each network
node.

For each node pi we explicitly maintain parent,
child, and sibling pointers. Pointers to sibling nodes
will be alternatively referred to as level links. The
required pointer information can be easily
incorporated in the construction of the EST-Grid
search tree.

3.3 Lookup Complexity
Theorem 1: Suppose a EST-grid network Then,
Exact Match operations require)log(nO hops
where n denotes the current number of peers.

Proof: Assume that a key_host_peer p performs
a search for key k. We first check whether k is to
the left or right of p, say k is to the right of p. Then
we walk towards the root, say we reached node u.
We check whether k is a descendant of u or u’s
right neighbor on the same level by searching the
REF table of u or u’s right neighbor respectively. If
not, then we proceed to u’s father. Otherwise we
turn around and search for k in the ordinary way.

Suppose that we turn around at node w of height
h. Let v be that son of w that is on the path to the
peer p. Then all descendants of v’s right neighbor
lie between the peer p and the key k. The subtree
Tw is an EST-tree for n′≤n elements, and it’s height
is h=Θ(loglog n′).

So, we have to visit the appropriate search path
w,w1, w2,…..wr from internal node w to leaf node
wr .In each node of this path we have to search for

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp110-119)

the key k using the indices, 1≤i≤r and

r=O(loglogn), consuming
iwREF

))(log iwd(O worst-
case time, where d(wi) the degree of node wi. This
can be expressed by the following sum:

∑ =

=

)log(log

1
logdOr

i
d)(iw

Let L1, Lr the levels of W1 and Wr respectively. So,

and
12

1 2)(
L

wd =
Lr

rwd 22)(=

But, Lr=O(loglogn). Now, the previous sum can
be expressed as follows:

)log(log............
1

22

1

1

1

11

nOn
LL

LL

=++
+

+
+

To perform the search a connection to a peer p

in the EST-Grid is established and the call
bdtgrid_search(p, k) is performed. The function
bdtgrid_search is shown in figure 2.

 Node p ESTtgrid_search (p, k)
{
int j;
bool move_right=false;

if (p=host_key && p is responsible for this k)
return p;
if (someone else is responsible)
{
 Check whether k is to the left or right of p; \\ say k is to the right of p\\
p_next=father(p)

While)_&&]_[(_ falserightmovemostrightREFk nextp =>
{
p′=right_sibling of p_next;

if])_[(' mostrightREFk p<=
{
p_next= p′;
move_right=true;
}
else
p_next=father (p_next);

host = send_search(p_next, k);
}
While (p_next is not a key_host)
{
j=search (k, p_next);
\\ Where search (key, node) denotes the procedure [8] which returns an integer position j indicating
the appropriate descendant we must continue the further searching\\
p_next =&REFp-next [j];
host = send_search(p_next, k);
}
p=p_next;
return p;
}

Figure 2: Pseudo-code for EST-Grid searches

3.4 Key_Host_Peers Join and Leave the System

What will happen when a key_host_peer overflows
(or underflows)?? In the first case we have to
nearby insert a new host_peer. In the second case

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp110-119)

we have to mark as deleted the key_host_peer by
moving first the few remaining keys to the left or
right neighbors. Obviously after a significant
number of join/leave operations a global rebuilding
process is required for cleaning the redundant
nodes and rebalancing the EST structure.

Procedure INSERT_host_peer (p)
{
Insert a new leaf node p;
counter=counter+1;
p_next=father(p);

While (p_next !=root)
{
update REFp_next ; //add one more link according to
algorithm
 presented in [8] //
p_next=father(p_next);
}
if then Re ;)(ncounter Θ=)(Tbuild

}

Figure 3: Pseudo-code for INSERT host_peers

Procedure DELETE_host_peer p
{
search for p; // according to ESTgrid_search routine //
mark p ;

counter=counter+1;

if counter then ;)(nΘ=)(Re Tbuild
}

Figure 4: Pseudo-code for DELETE host_peers

Procedure)(Re Tbuild
{
Build a new EST_Grid structure;
Counter=0;
}

Figure 5: Pseudo-code for Rebuilding operation

Theorem 2: Suppose a EST-grid network
Then, join and leave operations require

)log(nO amortized number of hops where n
denotes the current number of peers.

Proof: A join (insert) operation affects the
path from the new leaf node to the root of the
EST–GRID. In each path-node wi

(1≤i≤cloglogn and c is a constant) we have to
update the index. This process requires

iwREF

))iw(log(dO time, where d(wi) the degree of
the node wi. This can be expressed by the
following sum:

nwddOr

i i log)(log)log(log

1
=∑ =

= .
The leave (delete) operation requires

)log(nO hops for detecting the node and
O(1) time to mark as deleted that node.

After)(nΘ update operations we have to
rebuild the Balanced Distributed backbone. By
spreading the)(nΘ rebuilding cost to the next

)(nΘ updates, the theorem’s amortized bound
follows.

4. Evaluation and Outline of
Contributions
As you can see in Table 2 below, our contribution
provides for exact-match queries, improved search
costs from O(logn) in DHTs to)log(nO in EST-
GRID and adequate and simple solution to the
range query problem. Update Queries such as WS
registration and de-registration requests are not
performed as frequently as a user login and logout
in a typical P2P data delivery network. Web
Services are software developed to support
business structures and procedures which are
expected to stay available in the WS discovery
registries more than a P2P user session time span.
EST -GRID scales very well in the amortized case
and it is better than Chord in the expected business
oriented weak – sparse updates. EST -GRID does
not scale well in worst-case due to a likelihood
reconstruction overhead, which is not typically met
in WS registry/catalogue implementation cases,
though. Additionally, a fault tolerance schema is
available to support with fidelity an elementary
web services business solution.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp110-119)

P2P Network
Architectures

Lookup Messages Update Messages Data Overhead-
Routing
information

CHORD O(logn) O(log2n) with high
probability

O(logn) nodes

BDT-GRID)log(nO)log(nO
Amortized

)(nΘ worst-case

Exponentially
increasing

Table 2. Performance Comparison with the best Known Architecture

5. Simulation and Experimental
Results
In this section we evaluate the EST protocol by
simulation. The simulator generates initially K keys
drawn by an unknown distribution. After the
initialization procedure the simulator orders the
keys and chooses as bucket representatives the 1st
key, the lnnst key, the 2lnnst key. …and so on.
Obviously it creates N buckets or N Leaf_nodes
where N=K/lnn. By modeling the
insertions/deletions as the combinatorial game of
bins and balls presented in [9], the size of each
bucket (host peer) is expected w.h.p. Θ .
Finally the simulator uses the lookup algorithm in
Figure 2. We compare the performance of EST
simulator with the best-known CHORD simulator
presented in [10]. More specifically we evaluate the
Load balance and the search path length of these

two architectures. In order to understand in practice
the load balancing and routing performance of
these two protocols, we simulated a network with
N=2

)(ln n

k nodes, storing K=100x2k keys in all. We
varied parameter k from 3 to 14 and conducted a
separate experiment of each value. Each node in an
experiment picked a random set of keys to query
from the system, and we measured the path length
required to resolve each query. For the experiments
we considered synthetic data sets. Their generation
was based on several distributions like Uniform,
Regular, Weibull, Beta and Normal. For anyone of
these distributions we evaluated the length path for
lookup queries and the maximum load of each leaf
node respectively. Then we computed the mean
values of the operations above for all the
experiment shots. The figures below depict the
mean load and path length respectively.

Load Balance Performance

0

50

100

150

200

250

0 5 10 15

parameter - k

A
ve

ra
ge

 L
oa

d
B

al
an

ce

Load (CHORD)

Load(EST-GRID)

Table 3. Load Balance Performance Comparison with the best Known Architecture

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp110-119)

Lookup Performance

0

2

4

6

8

10

12

14

16

0 5 10 15

parameter - k

A
ve

ra
ge

 P
at

h
- L

en
gt

h
Path_Length
(CHORD)
Path_Length (EST)

Table 4. Lookup Performance Comparison with the best Known Architecture

From the experimental evaluation derives
that the mean value of bucket load is
approximately 15 in EST protocol instead
of in CHORD protocol. Obviously,
for the EST protocol has better load
balancing performance. Considering now the
lookup performance depicted in Table 4 the
Path-Length in EST protocol is almost constant
(between 4 and 8 hops) instead of CHORD
where the path-length is increased
logarithmically.

nln∗
nk 2log∗

15>k

6. Conclusion
A Web Service discovery structure over a P2P
network needs to determine the node that stores the
web service item or the nodes that store a set of WS
items, which satisfy a range criterion. In this paper
we introduced and analyzed EST-GRID, a protocol
that solves this challenging problem in
decentralized manner. Current work includes the
implementation and experimental evaluation of
EST -GRID for large scale WS discovery when the
insertion/deletion of WS items draw unknown
distributions. Furthermore includes a detailed study
of embedding fault-tolerance techniques into EST-
GRID system.

Acknowledgements
The authors would like to thank the
Operational Program for Educational and
Vocational Training II (EPEAEK II) and
particularly the Program PYTHAGORAS, for
funding the above work.

References
[1] Andersen D.. Resilient overlay networks.

Master’s Thesis, Department of EECS, MIT,
May 2001,

[2] Bakker A., Amade E., Ballintijn G., Kuz I.,
Verkaik P., Van Der Wijk I.. Van Steen M., and
Tanenbaum A.. The Globe Distribution
Network. In Proc. 2000 USENIX Annual Conf.
(FREENIX track) (San Diego, CA, June 2000),
pp. 141 – 152.

[3] Chen Y., Edler J., Goldberg A., Gottlieb A.,
Sobti S., and Yianilos P.. A prototype
implementation of archival intermemory. In
Proceedings of the 4th ACM Conference on
Digital libraries (Berkeley, CA, Aug. 1999),
pp. 28-37.

[4] Clarke I. A distributed decentralized
information storage and retrieval system.
Master’s Thesis, University of Edinburgh,
1999.

[5] Clarke I., Sandberg O., Willey B., and Hong
T.W. Freenet: A distributed anonymous
information storage and retrieval system. In
Proceedings of the ICSI Workshop on Design
Issues in Anonymity and Unobservability

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp110-119)

(Berkeley, California, June 2000).
http://freenet.sourceforge.net.

[6] Dabek F., Brunskill E., Kaashoek M.F., Karger
D., Morris R., Stoica I., and Balakrishnan H..
Building P2P systems with Chord, a distributed
location service. In Proccedings of the 8th IEEE
Workshop on Hot Topics in Operating Systems
(HotOS-VIII) (Elmau/Oberbayern, Germany,
May 2001), pp. 71-76.

[7] Dabek F., Brunskill E., Kaashoek M.F., Karger
D., Morris R., and Stoica I.. Wide-area
cooperative storage with CFS. In Proceedings
of the 18th ACM Symposium on Operating
Systems Principles (SOSP ’01) (To appear;
Banff, Canada, Oct. 2001).

[8] Anderson, “Faster deterministic sorting and
Searching in linear space”, TR- LU-Cs-TR:95-
160, Department of Computer Science, Lund
University, 1995.

[9] Kaporis, Ch. Makris, S. Sioutas, A. Tsakalidis,
K. Tsichlas, Ch. Zaroliagis, “Improved Bounds
for Finger Search on a RAM”, LNCS 2832, pp
325-336, 11th Annual European Symposium on
Algorithms (ESA 2003) – Budapest, 15-20
September, 2003.

[10] I. Stoica, R. Morris, D. Karger, M.F.
Kaashoek, H. Balakrishnan, “Chord: A
Scalable Peer – to – Peer Lookup Service for
Internet Applications”, ACM-SIGCOMM,
2001.

[11] van Emde Boas, “Preserving Order in a forest
in less than logarithmic time and linear space”,
IPL 6(3), 80-82, 1977.

[12] M. L. Fredman and D. E. Willard, “Surpassing
the information theoretic bound with fusion
trees”, J. Computer Systems Science 47, pp:
424-436, 1994.

[13] Martin Dietzfelbinger, Anna Karlin, Kurt
Mehlhorn, Friedhelm Meyer Auf Der Heide,
Hans Rohnert, and Robert E. Tarjan, Dynamic
Perfect Hashing: Upper and Lower Bounds.,
SIAM J. Comput. Volume 23, Number 4 pp.
738-761

[14] Comer, D., “The ubiquitous B-tree”, ACM
Computing Surveys, 11(2) 1979.

Proceedings of the 5th WSEAS Int. Conf. on APPLIED INFORMATICS and COMMUNICATIONS, Malta, September 15-17, 2005 (pp110-119)

	EST-Grid: An Efficient Scalable Peer-to-Peer Infrastructure for Web Service Discovery
	Fig. 1: The EST-Grid Infrastructure
	Figure 2: Pseudo-code for EST-Grid searches
	�
	�
	References
	[1] Andersen D.. Resilient overlay networks. Mast
	[2] Bakker A., Amade E., Ballintijn G., Kuz I., V
	[3] Chen Y., Edler J., Goldberg A., Gottlieb A., Sobti S., and Yianilos P.. A prototype implementation of archival intermemory. In Proceedings of the 4th ACM Conference on Digital libraries (Berkeley, CA, Aug. 1999), pp. 28-37.
	[4] Clarke I. A distributed decentralized informa
	[5] Clarke I., Sandberg O., Willey B., and Hong T.W. Freenet: A distributed anonymous information storage and retrieval system. In Proceedings of the ICSI Workshop on Design Issues in Anonymity and Unobservability (Berkeley, California, June 2000). htt
	[6] Dabek F., Brunskill E., Kaashoek M.F., Karger D., Morris R., Stoica I., and Balakrishnan H.. Building P2P systems with Chord, a distributed location service. In Proccedings of the 8th IEEE Workshop on Hot Topics in Operating Systems (HotOS-VIII) (
	[7] Dabek F., Brunskill E., Kaashoek M.F., Karger
	[8] Anderson, “Faster deterministic sorting and S
	[9] Kaporis, Ch. Makris, S. Sioutas, A. Tsakalidi
	[10] I. Stoica, R. Morris, D. Karger, M.F. Kaasho
	[11] van Emde Boas, “Preserving Order in a forest
	[12] M. L. Fredman and D. E. Willard, “Surpassing
	[13] Martin Dietzfelbinger, Anna Karlin, Kurt Mehlhorn, Friedhelm Meyer Auf Der Heide, Hans Rohnert, and Robert E. Tarjan, Dynamic Perfect Hashing: Upper and Lower Bounds., SIAM J. Comput. Volume 23, Number 4 pp. 738-761

