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Abstract: - This paper presents a method for tuning Linear Quadratic Gaussian/Loop-Transfer Recovery (LQG/LTR)
controller combined with a fault detection and isolation (FDI) filter design, which is applied and tested for F-16
aircraft by simulation. LQG/LTR controller is adjusted for design specifications, aided with a procedure where
genetic algorithms are used for parameters tuning. The FDI filter is based on robust residual generator design
via multi-objective optimization and genetic algorithms (MOO-GA), and it is made sensitive to roll and sideslip
sensors. A systematic design procedure is proposed composed with two phases for LQG/LTR controller and for
FDI respectively, by means of which design specifications are satisfied.
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1 Introduction

At present control systems are becoming highly
complex and control algorithms more and more
sophisticated. Consequently, the issue of available,
reliability, operating safety are of major importance.
For safety critical systems, the consequence of faults
can be extremely serious in terms of human mortality
and environmental impact. Therefore, there is a
growing need for on-line supervision and fault
diagnosis to increase the reliability of such safety
critical systems [1], [2],[6],[15] .

A traditional approach to fault diagnosis in the
wider application context is based on hardware
redundancy methods which use multiple sensors,
actuators, computers and software to measure and
control a particular variable. In analytical redundancy
schemes, the resulting difference generated from the
consistency checking of different variables is called
as a residual signal. The residual should be
sufficiently small (close to zero) when the system is
normal operation, and should diverge from zero when
a fault occurs in the system. This zero and non-zero
property of the residual is used to determine whether
or not faults have occurred. Analytical redundancy
makes use of a mathematical model and the goal is
the determination of faults of a system from the
comparison of available system measurements with a
priori information represented by the mathematical
model, through generation of residual quantities and
their analysis, [1], [2],[6],[15] .

Significant advances to residual generation in
model-based FDI approaches has been achieved [2] ,
[13] ,[15] such us: Kalman filter, diagnostic
observers, parity relations and parameters estimation.
Nevertheless, in both case the design parameters
selection is difficult in order to achieve engineering
specifications. Several optimization techniques,
denominated as “intelligent” (genetic algorithms,
neural networks, simulated annealing, tabu search),
can be used for obtaining residual generator
parameters directly, or in order to select design
parameters [6] , [8] , [11], [14] . In this work the
second option has been implemented based on
genetic algorithms (GA).

To ensure reliable operation of control systems,
hard faults in system components are not tolerable
and must be detected before they actually occur.
Hence, the most important issue of reliable system
operation is to detect and isolate incipient faults as
early as possible. However, the detection of incipient
faults presents a challenge to model-based FDI
techniques due to the inseparable mixture between
fault effects and modelling uncertainty. The fault can
be detected by placing an appropriate threshold on
the residual.

One common theoretical approach treats the
modelling uncertainty as an additive disturbance term
in the dynamics equation [1], [2], [6], [15] . There
are no requirements to use information about the
distribution of the disturbance or uncertainty,
although this information can be used if it is



available. Robust residual generation can be
considered as a multi-objective optimization problem,
i.e. the maximization of fault effects and the
minimization of uncertainty effects, [2], [13].

In this paper we introduce a optimal residual
approach which is based on the combination of multi-
objective optimization and genetic algorithm
(MOOGA). In this approach the residual is generated
via an observer. In order to make the residual
insensitive to modelling uncertainty and sensitive to
sensor and actuator faults, a number of performance
indices are define to achieve good fault diagnosis
performance. Some performance indices (PI) are
defined in the frequency domain to take into account
the fact that modelling uncertainty effects and faults
occupy different frequency bands.

The numerical optimization technique is used to
find the observer gain by means of eigenstructure
assignment method. The information on frequency
distribution ranges of faults, noise and modelling
uncertainty can be incorporated into a robust residual
design. In this paper we use the method of
inequalities to solve this multi-objective optimization
problem, the genetic algorithm (GA) is used to search
an optimal solution to satisfy inequality constraints.

The rest of the paper is organized in sections as
follows: in section two the proposed procedure based
on MOO-GA for robust residual generator design is
described, in section three FDI system is applied to a
fault tolerance flight control system and simulation
results are analyzed in section four; finally,
conclusions are resumed.

2 Robust Residual Generator

The residual generator shown in figure 1 is based on
a full-order observer. The idea is to estimate the
system output from the measurements using an
observer. The weighted output estimation error is
then used as a residual.

In order to achieve robust FDI a multi-objective
optimization problem will be solved by means of four
performance indices. The observer design problem
can be formulated in its dual form as a controller
design problem, so that techniques for controller
design can be applied. In this paper, the
eigenstructure assignment method is chosen to get a
satisfactory gain matrix K, , which, at less, must

guarantee the stability of the observer,[2] , [3], [9] ,
[10],[13].

A solution which minimizes multiple performance
indices (MPI) can not exist in practice, and therefore
some compromises and trade-offs must be considered
for solving the design problem. The trade-offs are
based on relative importance of objectives. The MOO
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can be solved using numerical search algorithms. In
this work, we have used the method of inequalities.

Fig. 1. Robust residual generator block diagram.

The main philosophy behind the method of
inequalities is to replace the minimization of the MPI
by an inequality constraint on the MPI. The
optimisation problem is posed as the satisfaction of a
set of inequalities, rather than the minimization of
some objective functions with inequalities acting as
constraints.

For the robust residual generator problem, the
MOO problem is being reformulated into that of
searching for a design parameter set {Z W,0} to
satisfy the following inequalities:

J(Zw,0)<e, i=12734 (1)

where the real number &, represents the numerical

bound on the PI required by the designer. If
J! (ZWQ) is the minimal value of J,(Z,W,0), as a

general rule, the performance boundaries &; should
be set as:

J:(Zl.,W,. ,Q:)<8ié max {J:(Z;,W;,Q;)} @

ji.jel1.4]

The problem of MOO is to find a parameter set to
make all performance indices lie in an acceptable
region. By adjusting the bounds, different emphasis
on each of the objectives can be placed. Zakian
suggests an algorithm for satisfying the inequalities
which it is called the moving-boundaries algorithm.
The Genetic optimization version of this algorithm
have been implemented in this work to solve the



multi-objective optimization problem by means of the
method of inequalities, [2], [7], [10], [13].

2.1 Design Procedure

In order to design a robust FDI system we have
implemented a robust residual generator design
procedure, which uses genetic algorithms (GA) to
solve multiple objective optimization problems.

The following steps are considered in our design
methodology:

Step I: Four frequency weighting penalty functions
are selected to separate the effects of noise and
disturbances of faults, where the plant dynamics will
be take into account.

Step 2: In order to search the interval of values for ¢,

that satisfies (2), MOO-GA algorithm is executed and
performance indices are minimized individually.

Step 3: The bounds are selected from the intervals
computed in step 2; with this, relative weighting
performance indices are selected. Adjusting the
bounds &, one can place a different emphasis on each

of the objectives.

Step 4: Sensor and Actuator fault residual generator
is designed via MOO-GA. The observer gain matrix
K, is computed by means of design parameters to
achieve robust FDI, a multi-objective optimization
problem will be solved.

Step 5: The detection thresholds are selected taking
into account incipient faults detection and false
alarms rejection. Adaptive threshold and/or several
levels of safety can be implemented.

Step 6: Simulation results of the plant are analyzed in
order to evaluate the FDI system.

Step 7: If simulations results are not satisfactory, Go
to step 3; else End procedure.

3 Fault Detection and Isolation

Application
In this section, we shall illustrate the MOO-GA
technique for a FDI system design applied a lateral
aircraft control augmented system (CAS). The sensor
fault detection filter is sensitive to roll and sideslip
sensors. The actuator fault detection filter is sensitive
to ailerons and rudder actuators. The FDI filter is
implemented in linear and non-linear F-16 aircraft
and is tested by means of LQG/LTR lateral track
controller.

The tracking control system and aircraft lateral
dynamic is meant to provide coordinated turns by
causing the bank angle ¢(r) to follow a desired

command while maintaining the sideslip angle A(¢)
at zero. It is a two-channel or MIMO system.
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Computations and  simulations have  been
implemented using MATLAB  environment,
Simulink, the Control System Toolbox and the GA
toolbox, [4], [5], [10], [12], [16].

3.1 FDI Objectives

One of the biggest challenges in design of flight
control system (FCS) is a requirement for the flight of
the aircraft to recover safely from structural damage
and/or system faults. Reliable fault diagnostic
information is extremely important to the pilot.
Prompt presentation of fault information to the pilot
could enable him to take accommodating action to
the malfunction, using system redundancy. Sensors
are the most important components for flight control
and aircraft safety due to its roles in flight control and
navigation. Any sensor fault must be detected as early
as possible to prevent serious accident.

To diagnose incipient faults, a FDI system will be
made robust against modelling uncertainty and noise.
The technique presented in this paper is used to
design robust residuals to diagnose incipient sensor
faults in a FCS, [4] ,[16] ,[17] .

3.2 Design Procedure

Sensor residual generator. An observer is designed to
generate sensor residual signal for FDI. The effects of
noise and faults can be separated by selecting
different frequency weighting penalty functions and
including into performance indices expressions (step
1):

200

Wl(S)Zm» W,y(s)=1 3)
1
Wz@)-ma W,(s)=1

which places emphasis on the residuals at low
frequencies and on noise at high frequencies.

To apply the method of inequalities, we begin
searching for the ¢, values intervals that satisfy (2),

MOO-GA algorithm is executed and performance
indices are minimized individually. Table 1 lists the
MPI for different observer gains. In this table, Ki*
represents the observer gain matrix which minimizes
Ji (i=1,2,3,4). It can be seen that a design which
minimizes a particular performance function makes
all other performance functions unacceptably large
(step 2).

In order to use the method of inequalities to solve

this problem, a set of MPI bounds &; is chosen as

shown in the table 1 (bounds row) (step 3). Sensor
fault residual generator is designed via MOO-GA

(step 4).



TABLE 1. Performance indices for different designs
5 s I3 14

K, 0.47 29580.25 2004.05 101169.61

*

K, 1530 1274.74 2033.55 11441.93

K" 4.45 10312.98 2002.11 54472.70

Ky 3644 94641 2008.58  90.23
Bounds 500.00 3000.00 3000.00 200.00

Actuator residual generator. The same procedure is
applied to the observer design to generate actuator
residual signal for the FDI system. In this case, Table
2 list the MPI for different observer gains.

TABLE 2. Performance indices for different designs

5 s I3 Iy
K, 585.04 3705.49 2150.07 13779.28
K," 76673.06 7.21 75048520 34917.65
K;" 611.12 14855.85 2002.13 605425.77
Ky 609.44 111994 2009.05 87.60
Bounds 1000.00  500.00  3000.00 200.00

3.3 Fault Description

Sensor fault. The inertial navigation system (INS)
detects aircraft motion and provides acceleration,
velocity, present position, pitch, roll and true heading
to related systems. Typical inertial navigation unit
contains a gyro stabilized platform which contains
three accelerometers and two gyros which are
isolated from external angular motion by a set of four
gimbals. Each accelerometer is mounted so that the
unit is sensitive to motion on a specific axis. The
accelerometers provide accelerations for system
computations. The gimbals position provide 360°
freedom of rotation. The gyros provide the
stabilization of the platform to maintain accurate
outputs. The INS must be alignment before take-off,
a bad alignment provides excessive tolerance for
errors and must be considered a fault in roll and
sideslip angle sensors since sideslip is computed by

V=Vl

= @)
Vi cosf

p

where v is the lateral velocity and V. is the true
airspeed, [4], [9], [16] .
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Actuator fault. Typical lateral and rudder control
system consists of the control stick, pedals, high
speed stop unit, spring feel unit, trim actuator, cables,
control rods, hydraulic actuators and control surfaces.
One or more of these elements can be degraded due
to fatigue and must be considered a fault in actuators
command position, [4], [16] .

4 Simulation Results
During design process we have carried out simulation
tests using linear and non-linear model of the plant.

4.1 Linear model of the plant

The simulation is used to assess the performance of
the observer-based residual generator in the detection
of incipient sensor and actuator faults. The control
command (set point) for roll angle is a unit step and
for sideslip angle is zero. To take into account noise
in sensors and actuators, control channels are
perturbed by means of band-limited white noise. In
order to detect incipient faults in sensors and
actuators, incipient faults are modeled by means of
0.01 deg/s ramp signal.

The simulated fault is added to the roll angle
sensor. To illustrate the small nature of the incipient
fault, Fig. 2 shows the plot of both sensor (faulty) and
observer measurements of the roll angle ¢r). The

fault takes place at the 2 sec., the residual signal
activates the alarm when the signal reaches the
threshold (t = 5 sec).

Roll angle sensor fault
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Fig. 2. Roll angle sensor fault.

A new simulated fault is added to the sideslip
angle sensor. The simulation result of the FDI filter
can be seen in Fig. 3, the residual shows a noisier
signal due to the fact that g(r) is computed by means

of discrete version of (4). Incipient fault alarm take



places at 5.3 sec, when the error is smaller than 0.01
degrees.

Another type of fault take places when an actuator
(ailerons or rudder) has a loss in effectiveness. Fig. 4
and 5 show the plots of both aileron and rudder
actuator faults. Respective faults take place at 2 sec.,
the residual signals activate alarms when the signals
reach the threshold at 3.0 and 3.4 sec, respectively.
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Fig. 3. Sideslip angle sensor fault.

Aileron actuator fault
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Fig. 4. Aileron actuator fault.

From the analysis with the linear model of the
plant we have obtained that FDI filter shows good
properties, due to the fact that fault alarm signals are
activated when the fault is incipient. The thresholds
detection are set with a sufficient margin to avoid
false alarms.

4.2 Non-linear simulation

The next step in the analysis and design procedure is
to test the FDI filter with the non-linear model of the
plant. As in linear case, the sensors and actuators
control channels are perturbed by means of band-
limited white noise and the faults are modelled by
means of 0.01 deg/s ramp signal.
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Rudder actuator fault

Roll angle (deg)
o
o o =
\
m
g
i |

|
=3
o
o

o
IS
T

I

|

Sideslip angle (deg)
o
N
T
|

!
=3
)

T
I

o
Q
N

° o
S o o
o o -
S 2 &

Residual (deg)

=)

Fig. 5. Rudder actuator fault.

Fig. 6 and 7 show sideslip sensor and aileron
actuator faults. As it can be seen, very similar
behaviours are obtained from comparison with Fig.
4 and 5 (linear model simulations), respectively.

Non-Linear F-16. Sideslip angle sensor fault
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Fig. 6. Non-linear F-16 sideslip sensor fault.

Non-Linear F-16. Aileron actuator fault
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Fig. 7. Non-linear F-16 Aileron sensor fault.




In order to test the FDI system robustness and
behaviour for flight conditions different to nominal
case, closed loop simulations are made with a fixed
observer. This can be seen in Fig. 8, where the fault
takes place at 2 sec and satisfactory behaviour is
obtained. In order to achieve incipient fault detection
and false alarm rejection, the threshold must be
increasing for non-nominal operation of FDI system.
For greater variations in flight conditions a new
observer must be designed for good performance.

Nominal and other flight conditions
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Fig. 8. Another flight conditions comparison.

5 Conclusion

In this paper a systematic procedure for FDI system
design has been presented and applied. The FDI
system is designed for robustness and incipient faults
detection requirements that are obtained using multi-
objective optimization and genetic algorithm.

Incipient fault detection, suitable time responses
as well as satisfactory robustness properties are
obtained, where genetic algorithms are employed to
satisfy design specifications for a fault tolerance
flight control system.

Our work combines a robust FDI technique and a
robust numerical optimization method (GA).

In future works, an expert system based on design
specifications and plant knowledge will be
incorporated for selecting the design parameters and
for adapting controller and FDI system to different
flight conditions.
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