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Abstract: Optimization is undoubtedly playing an ever more important role in CAD of electronic circuits. As

the complexity of practical designs grows, so does the number of objectives to be optimized simultaneously.
Even though a large number of multiobjective optimization methods have been developed in other disciplines
like Operations Research, they are still generally unknown to electrical engineers and creators of CAD tools.
The present paper provides a brief introduction to multiobjective optimization as such, explains two of the most
frequently used methods, and discusses their advantages as well as their drawbacks. Several application guideline
and recommendations based on the authors’ experience are proposed. The use of both methods is demonstrate
on a practical example of a video amplifier design followed by evaluation and discussion of the obtained results.
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1 Introduction 2 2
Numerical optimization can be used in the process of “B
electronic circuit design as a means of determining pa- f

rameter values in order to bring the designed circuit as . za R
close as possible to some prescribed behavior or a set of ' T ' 21
characteristics. Requirements on a designed circuit can

be of two different kinds: a minimization or maximiza- Figure 1: Feasible solutions and Pareto front.

tion of some quantity (called an objective function) or
a constraint condition that needs to be met by the so-
lution. If the latter kind of requirements is present, a

method for constrained optimization needs to be usegi-h can be defined by a number of equality con-

S o straints, inequality constraints, and/or bounds on the de-
11 M U|t|0bj ective Opt| mization PrOblem cision Variab|e3(;i_

In practical designs, there are often multiple mutually

contradicting requirements on the designed circuit. InThe vector of objective functions will be denoted by

T .
such cases, our aim is to solve the correspondiny £(X) = (f1(x), f2(x), ..., fs(x))", and the image of
tiobjective optimization problem. This can be formally the feasible region, also called tfeasible objective re-
written as gion, will be denoted byZ = f(S), Z C R*. The

elements ofZ are calledobjective vectors and denoted
minimize  {f1(x), f2(x),..., fa(x)}, (1) byf(x)orz = (z1,2,...,2)", wherez; = f;(x) for
ves alli = 1,2,...,k areobjective values. The geomet-
where we have: objective functionsf;: R™ «— R, rical representation can easily be illustrated on a two-
k > 2. The decision vectors = (z1,z2,... ,xn)T, dimensional case, as shown in Figure 1o 2 and
belong to the (nonempty) feasible regish S C R", k= 2.
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1.2 Pareto Optimality pt

Z2
The word “minimize” in (1) means that we want to min-
imize all the objective functions simultaneously. How- 7P
ever, because of the contradiction between the objective S
functions, it is not possible to find a single solution that L,
would be optimal for all the objectives simultaneously. 21

The concept ohoninferiority, also calledPareto opti-
mality after the French-Italian economist and socioloFigure 2: Geometrical representation of Weighted Sum Strategy.
gist Vilfredo Pareto (1848-1923), who developed this

A

concept in 1896, must be used to characterize the ob- P

jective vectors. A noninferior solution is one in which

an improvement in one objective requires a deteriora-

tion of another. The set of all noninferior solutions is \
also called théPareto front. In Figure 1 it is marked by

the thick curve segment between poigtsandzg. b
By solving the problem (1) we understand obtaining !
a sufficient number of noninferior solutions covering
parts of the Pareto front that are of interest to the de-
signer. This will allow him or her to fully understand
the available trade-offs and to take a qualified decisiongy the choice of the weighting vectow =

based on this knowledge. (w1, wa, ..., w)” we can control the location on the
Pareto front. Only the direction of the vecterhas ef-

2 Multiobjective Optimization Meth- fect on the found solution. This direction is perpendic-

ods ular to the image of the Pareto front in th& = f7(.5)

domain. This is illustrated on a two-dimensional case

There exist a large number of conventional multioln Figure 2. By minimizing the weighted sum (2) we

jective methods [1, 2]. They typically take a numbejbtain the objective vecterf, in which a straight line L

of controlling parameters and provide a noninferior sgerpendicular to vectow touches the imag&? of the

lution by converting the problem (1) into an uncorfeasible region S.

strained or constrained scalar (i.e., single-objective) OPHowever, if the objective feasible region is non-

timization problgm_, which is then solved by an ad%'onvex, its imageZ? may also be nonconvex, which
quate scalar optimization method (€.9., the Levenbefga,, \are certain noninferior solutions inaccessible, as
Marguardt method in case of an uncc_mstramed Pmbl‘?,ﬁbwn in Figure 3. This problem can be partially alle-
or the Penalty Function or Sequential Quadratic P{gaye py convexifying the nonconvex Pareto front. The

gramming methods for a constrained one). convexification is performed by choosing a sufficiently
In this paper, we will present two of the most Con]érgep under certain assumptions [1, p. 79].
monly used methods.

Figure 3: Nonconvex feasible objective region.

Another disadvantage of WSS relates to its different
: properties depending on the Pareto front curvature in
21 Weighted Sum Strategy particular areas. In some area a small change in the
The Weighted Sum Strategy (WSS) converts the mweighting coefficients may cause big changes in the ob-
tiobjective problem of minimizing the vectdi(x) into jective vectors while in other areas dramatically differ-

a scalar problem by constructing a weighted sum of &t weighting coefficients may produce nearly similar
the objectives objective vectors.

k
minirgize > wiff (%), (2)
e i=1 2.2 Goal Attainment Method

wherep e R,p > 1,w; > 0foralli =1,...,k, and
Sk w; = 1. If the exponenp > 1, it is also assumed The Goal Attainment Method (GAM) [2] is defined as
that f;(x) > Oforallx € Sandforalli =1,... k. a scalar constrained optimization problem of the form
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z | Z w of constraints makes the resulting scalar optimization
2 i -~ problem computationally more difficult.
Zs2 Zg
+ . 3 Application Steps
Zs1 zi" er

The application of either method consists in performing
Figure 4: Geometrical representation of Goal Attainment Methoc{he following series of steps:

1. Division of requirements to objective func-
tions and constraints. For each requirement we de-

Teirlllr';iezse v cide, whether we want it to be represented by an objec-
subjectto f;(z) — wiy < 7, (3) tive function f; to be minimized, or by an (in)equality
i=1,....k, constraint. We also specify the vector of decision vari-
ablesx.

wheref; are the original multiple objective functions 2. Construction of the objective functions. We

of problem (1),5 is the original feasible region;’ are compose suitable objective functioris For an easier

predefineddesign goals associated with the ObjeCtiveorientation, it is a good idea to apply some kind of a

fl_JnC:'on fin wi € R ar$_ predefl_nﬁfl We'?(ht'n?hcoeﬁ"unifying system. For example, the authors have used a
cients, andy is an auxiliary variable making the NeWle requiring that the objective value of O represent an

sm_lg_:]rlle Objeﬁtl\ée fungt;z.. " s ideal, only theoretically attainable solution, the value 1
e method requireBk input parametersy(goalsz; be still practically well acceptable, while the value 10

andk weightswy), but only use<k — 1 degrees of free- . already totally unacceptable solution.
dom. This becomes obvious from the geometrical rep-

resentation, again demonstrated on the 2D case in Iil!‘f'f Ch??e of (f:onstramts aJr? boundts. _Vl/e s_pemfyl_t
ure 4. The goal vectar* = (27, z5)” represents a goal exact Torm for any equaiity constraints, inequaity

point in the objective space, either feasibi (€ Z, constraints and bounds on decision variablgdefining

as in the shown case) or infeasible. The weight vetg-e feasible regiors.

torw = (wy,ws)” defines the direction of movement 4 Choice of multiobjective optimization method.
from the goal point (when, = 0) to the unique solu- Based on our knowledge about the multiobjective prob-

tion pointzg = (281’282)T achieved by minimizing. lem to be solved and our requirements, we choose a

Thus, as in the case of WSS, only the direction of tif¥itable multiobjective optimization methods. While
vector w is important; any changes in its magnitudé/SS might be preferable if the the problem is known to
would be compensated by changes in the values of be convex, or if a smaller number of controlling param-

Similarly to that in WSS, the weighting vector ©ters is advantageous, GAM is likely to provide a better

in GAM enables the designer to express a measurecgptrol over the accgssed parts of the Pareto front, but
the relative trade-offs between the objectives. For iA0lY @t the cost of higher demands on the designer as
stance, setting; equal toz* ensures that the same petell as on the used computational power.
centage under- or overachievement of the gaalss 5. Exploring the Pareto front. Now we repeatedly
achieved. choose the values of the required parameters (like
However, unlike WSS, GAM allows access to arif case of WSS and GAM and possibly in case
noninferior solution, regardless of convexity of thef GAM) and solve the corresponding scalar optimiza-
Pareto front. Also the curvature of the Pareto frofien problem using a suitable scalar method to obtain
has no adverse effect on the relation between a chosafple solutions from all parts of Pareto front that
weighting vector and the corresponding obtained ndhight be of interest. This step can usually be (at least to
inferior objective vector. And, by setting some of theome extent) automated.
weightsw; to zero, hard constraints can easily be incor- 6. Evaluation of the obtained data. In this stage
porated into the design. the designer has a number of various noninferior so-
Among disadvantages of GAM we can count the fakttions, from which, based on his/her judgement and
that there are more parameter values to be given dxperience, he/she can select one representing the best
the designer than in WSS. Also the increased numlexde-off available.



Proceedings of the 5th WSEAS/IASME Int. Conf. on SYSTEMS THEORY and SCIENTIFIC COMPUTATION, Malta, September 15-17, 2005 (pp213-219)

Ve BV used:
1+ |0 Ry —75Q
Rs 1—|Q|’ e R; +75Q “)
|< The considered multiobjective optimization problem
R can be written as follows
> Q2

4‘ ; p where the constraint condition concerning the output

out L
»—o—| minimize SWR, I
I Cy Q1 Cy R ma>_<imize AvaB, fm (5)
e R, 75LQ subjectto Vo < 3.5V,
mn Ry
Gy B = = voltageV,,; ensures the requiredV ,, output capabil-
2 .
ity.
Before we start the proper multiobjective optimiza-
— tion, it is a good idea to examine the best valugs
_ 3 _ attainable by the four optimized characteristics if op-
Figure5: Amplifier schematic timized alone. Wea priori know thatSWR® = 1, be-
cause with a suitable value @; the input resistance
| . licati R; can be made exactly equal 16 Q2. It is also clear
4 Example Design Application that I, — O0mA. For A,4p the independent maxi-

mum value was found to bé{ = 40.72dB, for which

Let us now demonstrate the use of optimization meth: = 18.41Q, SWR = 4.073, I.. = 1.346mA and
ods on a practical example of high frequency electronie = 350.7 MHz; and the maximunf,, found is f, =
circuit [3, pp. 913-915]. We are to design a transi§60.3 MHz, for which R; = 546.1(, SWR = 7.282,

tor video amplifier with an input matched to a sourcédv = 4.281dB, and/. = 7.532mA.

impedance75 2, with its output able to drive 45Q  Both WSS and GAM were used to solve problem (5).
load and withl V,,, output capability. Th& dB roll off

frequency f,, should be as high as possible, the lovd.1 Weighted Sum Strategy

frequency voltage gaim, should be positive and OfTlhe following choice of objective functions was made
the bi t ibl I d the total DC I -
© Piggest possible vaiue, and the to'a SUPPY ¢y accordance with the recommendation in Step 2 of

rent I.. should be as low as possible. A nice way {

achieve the noninverting gain is to use a common-ba %ctlon 3

input stage with an emitter follower output, as suggested fi = 10(SWR —1),

in Fig. 5. As the decision variables we will use the re- fo = A — Aws,

sistances?|—Rs. I ©)
The assignment formulation intentionally does not o= ImA’

define any preferences among the four extreme require- fi = log f_r'%

ments on the circuit. Therefore, multiobjective methods fm

are useql to exp!ore the four-dimensional Pareto front ofA simple penalty function method is used to convert
the feasible region.

the constrained optimization problem into an uncon-

We assume that the capacitof§—C3 have suffi- strained one. In this method, constraints are enforced by
ciently large capacitances not to influence the low frgreans of additive components called penalty functions,
quency gain. All high-frequency gain characteristics afgcreasing the resulting objective function, and which
thus determined only by the transistors’ inner capaeire progressively dependent on the amount of the vio-
tances. The type 2N5179 was prescribed for both tragion of the constraints. Only one constraint applies in
sistorsQ; and@». The standard Gummel-Poon bipolagur case, and is expressed by a penalty function of the
transistor model is used. form:

()

As a measure of impedance matching, a low- Vout — 3.5V
frequency voltage standing wave ratio SWR will be €1 = max (Wao) X q,
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wheregq is a coefficient controlling how much the conwith the single objective function to be minimized:
straint component is emphasized over the usual mini-
mized components in the objective functign= 100. fx) ="1. (11)

The resulting single objective function used is L :
gsing J Note that, for simplicity, we have set all design gogis

equal to the same scalar valite This is allowed by the
special choice of objective function’ (6). The single
minimized objective function is then formed as follows

4
fo(e) = wiff(z) + ¢i(x), 8)
=1
with the usual normalizing condition
4 4
S w=1. (9) fo(@) =7+ g’ +a@? (12
=1 =1

The ObjeCtive fUnCtioan is minimized USing the The same two_stage procedure based on the
Levenberg-Marquardt method. The needed deriVati\LQ&/enberg-Marquardt method is used to obtain solu-

of fp are determined by finite differences for relativgons for chosen values af; and P as that with WSS.
changes ofl0—2. The iterations end when the maxi-

_mum.relat_lve change I,rl the decision \_/arlables petwegn Obtained Results

iterations is less thatD~* or after reaching a maximum

allowed number of iterations. 5.1 Resultsby WSS (Table 1)

.In_ ordertg diminish the danger of finding only a local SR A4 . . 5
minimum different from the global one, the computanr. | w; we ws wa | ) (@B) (MA) (MHz)| (%) | (%)
tion for each set of weights is divided in two stages. |nt |9:25 0.25 0.25 0.251.016 40.05 0.4863 127 — | 625

: ; : 204 02 02 02/1.004 40.02 0.4849 126.9 75 | 65.6
the first stage, up to 15 iterations are performed from s | 02 04 02 021019 40.10 04792 126.k 75 | 71.9
each of a chosen set of 162 starting points. Thesé | 0.2 02 04 021012 4034 03755 112.1 50 | 71.9
162 starting points are generated by 5 nested lodylb| 9202 92 041015 4901 odsco 121550 s
combining the following values of resistanc®—Rs5: | 7 | 0.1 07 0.1 0.1/1.066 40.23 0.4810 128.p 50 | 62.5
Ry € {209,509}, Ry € {5009, 1kQ,2kQ}, Ry € | 8|01 01 07 01/1.003 40.15 03106 94.3 50 | 65.6

901 01 01 07/1.027 40.07 0.4884 128475 |78.1
{2k, 5k0,10kOQ}, Ry € {1kQ,2kD,5kN}, and [Single-run average corre| 625 625 500  75.0/625] —
Rs € {10kQ,20kQ,50kN}. Ten best results of the[Total average correlation| 72.2__59.7 _66.7 _ 73.6] — |68.1
first stage are printed in the order of increasing objec-

tive function values. The result with the smallest objec-

tive funCtion Value iS Used as the Starting pOiI’l'[ in theA number Of optimization runs was performed1 each
second stage, where up to 100 iteration of the same alyith a different vector of weighting coefficients;.
gorithm are performed to further increase the accuragpe final solution obtained by minimizing the objec-

Table 1. Results obtained by WSS.

of the found minimum. tive function provides the four numeric characteristics
_ of the resulting amplifier: SWRA.4B, Ie., and fy,.
4.2 Goal Attainment Method They are given in the same order as their correspond-

. L ing weightsw;. Thus we can see that, for example,

To allow comparisons, the same set of objective funI%-r i1 the value o in row Nr. 2 has decr d

tions f; is assumed as that used with WSS (6). T .eC egs g Ihe value aby 0 C as decrease
. . o . I.e., improved) the value of SWR with respect to that

constraint penalty function, (7) remains in action, butinr W Nr. 1. This is what is wanted and expected. W

we also have four new penalty functions related to func- 0 - s IS what Is wanted and expected. TWe

tions £, ¢ = 100: would also expect, that such an improvement will be

20 .

reached only at the cost of deterioration in the remain-
N (10(SWR —1) —wiy - Pj 0) ing three characteristics. This happens withand f,.,,

g = X q, . . .
Ao A P_ wor — P but not with I.., which is also lowered. Thus three
go = max | —dB Vd]BD 2 ,0> x ¢,  of the four characteristics have changed in accordance
_ _ with their weights and one has changed in the opposite
Icc/1 mA — w3y — P . . ..
g3 = max Iz 0] x g, direction. In the table this is expressed by the “success
log(f2/fm) — wyy — P rate” S, describing the correlation between the direc-
g4 = Imax ( 2 0) xq, tions of changes in the individual weights and those

(10) of the corresponding results with respect to case Nr. 1.
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The expected directions of changes are actually derived he structure of the table remains the same with the
from the changes of the ratio exception that an ‘Inf.” column was added. It informs
about whether in the remaining 22 rows there is a so-

w;
4Z ; (13) lution to which the one in question is inferior. This is
> wJQ. the case for row Nr. 11, which is inferior to row Nr. 14.

j=1 The average correlation ratessf7 % and79.5 % look

which is related to the “angle” between vecterand Much better than those of the WSS results.
theith axis in the four-dimensional space of vectars

SWR A, I Jm S1 | St
(21, 22, 23, 24) 1. N | wiwowsws | (5 (dB)  (MA)  (MHZ)| Inf. | (%) | (%)
This concept of correlation can be generalized by agd 1071 4001 0.5051 133bno| — |80.7

1.000 32.38 0.8442 302.2no | 75 |76.1
1.183 40.45 0.4769 129.no| 75 |75.0
1.630 30.72 0.4036 173.fyno| 75 |78.4
1.671 30.72 1.7975 583.Lno | 100|83.0
1.058 40.11 0.4908 130.pno| 75 |71.6
1.025 37.08 0.3521 128.1no | 100 |86.4

arbitrary choice of the reference row. If we take row;
Nr. ¢ as the reference case (instead of Nr. 1), we obtaif
the respective correlatia$. The last column in Table 1 Z
then gives the total correlation ratg, defined for each | 7

. . . 8 1.025 30.71 1.2605 404.Lno | 100 | 85.2
row j as the average df; over all possible choices of 9 1160 40.35 04767 1295 no | 100 | 886
reference rows: 10 1.957 40.16 1.0966 228.ino | 100 | 83.0
. " 11 1.366 31.36 0.5877 237.8yes| 75 |72.7

1.058 40.11 0.4908 130.p no | 100|81.8

Sij = —125ij- (14) |13 1.071 40.01 05051 133.6n0| 25 |75.0

n—L413 14 1.042 32.74 0.5143 253.5no| 75 |80.7

i#j 15 1.121 40.04 0.5317 140.8no | 75 | 75.0

1.000 38.89 0.9729 130.8no | 100 | 85.2
1.183 40.45 0.4769 1294 no| 75 |76.1
1176 35.57 0.4625 1540pno | 75 |85.2
1.476 35.53 0.8479 295.bno | 100|79.5
1.059 40.12 0.4908 130.pno | 100 | 78.4
1.045 40.00 0.4908 130.pno | 25 |75.0

Also individual column values of; and S; averaged | 17
over rows are given in % in the 2 additional rows of thelg
table. 0

Considering the fact that a 50% average correlatippt

o 2 1.018 35.45 0.4999 203.3no | 100 | 78.4

means that exactly a half of the changes is in the opp§3 2 2 201119 3997 04769 129.4mo | 50 | 7.3
site direction than required, the avera§ig of 62.5% [Single-run average| 955 86.4 68.2 72.7] — | 80.7| —
and the total average; of 68.1% look quite pes- [Totalaverage 842 895 694 749 - | - |795
simistic. However, all the 37.5 an_d 31.9 % of “fai_l- Table 2: Results obtained by GAMP = 10.
ures” occur only for the unemphasized characteristics;
all those with an increased; have actually improved

or (asfy, of Nr. 5) at least remained the same. 53 Infeasible Reference Point (Table 3)
Another characteristic worth examining may be the

noninferiority test. If an obtained solution is to be ayxhen the reference point is infeasible and “below”
valid candidate for noninferior solution, none of the finghe Pareto front, it can only be made feasible by wors-
solutions in the same table may have all its characteing one or more its coordinates. The relative amount
tics better than those of the candidate solution in quegdeterioration can be controlled by the weights as
tion. To perform this test for alk cases in a table, ashown in Table 3. As all objective functions are scaled
total of n(n — 1) comparisons need to be done. All 0fo that their typical values can be expected around 1,

RPNNPRPRNRRORRORROOROOROR
NRPNRPNRPRPRRPRRORRFROROROOR OO
NNRNRRPRRPRRPRRLRORROROOROOOR

-
N
PNNNPRPRPRPNMNORPRPROOCOR R ROOCORR

N

the 9 solutions in Table 1 have passed. P = 0.2 should already position the reference paihit
outside of the feasible region. That this is probably the
5.2 Resultsby GAM (Table 2) case can be seen from the first several rows of Table 3.

Even though the meaning of the weighting coeffMost of the emphasized objectives are significantly de-
cientsw; here is somewhat different from that in WSSeriorated (with row Nr. 4 being an exception). There-
eachw; still corresponds with a single objective. Ifore the “controlling logic” is inverse to that in the pre-
the reference point* is located in the feasible objecvious tables: increasing the weighisworsens the cor-
tive region, then increasing; usually allows for larger responding objective value and vice versa. Considering
changes in its objective. in the required direction. Thfss fact, the overall performance is slightly worse than,
increasing av; should lead to an improvement in the réaut still comparable to, that of Table 2: 3 inferior cases
lated objective value, and, conversely, a decrease in(Nr. 1 is inferior to Nr. 15), and the average correlations
should deteriorate the obtained objective value. worse by6.8 % and0.9 %.
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SWR A, Ice fm S1 | St SWR A, Ice fm S1 | St

NrL|wiwrwswy | (B (@B) (MA) (MHZ)|Inf. | (%) | (%) NL|wiwowsws | () (dB)  (MA) (MHZ)|Inf. | (%) | (%)
11 1 1 11073 39.30 0.6192 129.9yes| — |73.9 11 1 1 11071 40.01 0.5051 133.6no| — |81l8
211 0 0O 01601 4052 0.5872 165.Y no | 100 | 75.0 211 0 O 01000 37.42 0.6208 154.fyno | 75 |80.7
3|10 1 0 0/]1.020 28.45 0.4062 442.5no | 100 |87.5 310 1 0 01183 4045 04769 129.1lno| 75 |78.4
410 0 1 01031 40.13 0.4809 127.Lno| 50 [51.1 410 0 1 01553 30.72 0.1629 131.Lno | 100 | 86.4
510 0 0 11020 40.35 0.3853 111.8no | 100 89.8 510 0 0 1|2001 30.71 1.8962 759.9no | 100 81.8
61 1 0 0]3450 16.13 0.3731 502.4no | 100 | 86.4 61 1 O 01048 40.18 0.4812 127.5no | 75 |72.7
711 0 1 01973 40.34 0.8512 231.9no | 100|83.0 711 0 1 01020 39.86 0.3054 94.9 no | 100 | 86.4
8|1 0 O 1]|1.245 40.44 0.4118 115.fy no | 100 | 86.4 81 0 O 11024 30.71 1.2347 405.2no | 100 | 85.2
910 1 1 01019 27.86 1.5166 564.4no | 100 |89.8 910 1 1 02000 40.39 0.4338 120.8no | 100 |87.5
10 0 1 0 1]1.020 39.78 0.3292 100.6no | 75 |81.8 10 0 1 0 12000 40.27 0.8697 237.6no | 100 |84.1
11| 0 0 1 11025 40.18 0.4777 120.2no | 75 |73.9 111 0 0 1 11470 30.71 0.5117 238.pyes| 75 |76.1
1211 1 1 01795 3277 1.5167 541.1no | 100|81.8 121 1 1 1 0 |1.049 40.18 0.4812 127.6no | 100|87.5
1311 1 0 1]1.098 39.95 0.2889 905 no| 75 [81.8 131 1 1 0 1]1.071 40.01 0.5051 133.6no| 25 |[76.1
1411 0 1 11964 40.35 0.8473 2308no| 75 |76.1 141 1 0 1 1 |1.011 32.80 0.5045 259.1no | 100|83.0
15/ 0 1 1 1 |1.020 39.45 0.4908 130.4no | 25 |72.7 151 0 1 1 11614 40.09 0.6595 186.bno| 75 |78.4
16| 2 1 1 11126 3991 0.7124 1324no| 75 |77.3 161 2 1 1 1 |1.000 38.89 0.9729 130.8no | 100|84.1
1711 2 1 11082 39.31 0.5159 130.bno| 50 |77.3 171 1 2 1 11183 4045 04769 129.1no| 75 |84.1
181 1 1 2 1 |1.073 39.30 0.6192 129.9yes| 25 |72.7 181 1 1 2 11486 39.08 0.2782 91.4 no | 100|83.0
1911 1 1 21073 39.30 0.6192 129.9yes| 25 |72.7 191 1 1 1 21518 3553 1.5207 324.Yyno | 100| 78.4
200 2 2 2 1(1.010 39.24 0.6769 130.6no | 75 |68.2 200 2 2 2 11059 40.12 0.4908 130.pno | 100|80.7
21 2 2 1 2|1.064 39.53 04769 129.6no | 50 |81.8 211 2 2 1 2 |1.045 40.00 0.4908 130.pno| 25 |73.9
221 2 1 2 2 (1141 39.92 0.6224 129.5no | 100 | 80.7 221 2 1 2 21057 3542 05901 2125no| 75 |81.8
231 2 2 2[1.064 39.53 04769 129.6no | 50 |81.8 23| 1 2 2 21042 39.98 0.4908 130.Lno | 25 |72.7
Single-run average| 77.3 63.6 72.7 81.8| — | 73.9| - Single-run average| 90.9 86.4  68.2 81.8| — |81.8| -

Total average 824 798 733 78.1 — — | 78.4 Total average 844 895 694 81.0 — - |81l1

Table 3: Results obtained by GAMP = 0.2. Table 4: Results by GAM,P = 10, more iterations
5.4 Increased Iterations Limits (Table 4) too slowly and thus in the limited number of itera-

The last table was obtained for the same feasible ripns Provided a solution still too remote from the opti-
erence point of? — 10 as Table 2, but with a signifi-MUM- This might be caused by imprecise calculation of

cant increase in the limits on the numbers of Levenbe rivatives due to numerical noise of the embedded iter-
Marquardt iterations. In the first and second stag@Lion process for determining quiescent operating point

’

the values 100 and 1000 were used instead of 15 &idN€ circuit. Another explanation may be that only
150, respectively. Even though it turned out that On!@cal optima still far from the global one were reached_
in about a half of the cases any further iterations wdfeSOMe cases. And thirdly, perhaps the chosen defi-

performed in the second stage, a slight improvement#fon of correlation rate between the weighting vector
about1 % is obtained in both correlation rates. Thre@nd obtained objective values based solely on the signs

rows of Table 4 exhibit improvement ii; over those of differences from a reference case is too simple, as it

in Table 2. Interestingly, the last two rows Izt % 9nores the absolute values of the differences.
in S, each. A closer examination showed that even inTherefore our future improvements will be aimed at

these rows the achieved values of the minimized objéd/Ng & greater number of starting iterations and replac-
tive function fp were below those of Table 2. ing the penalty function method by a more efficient al-
ternative for solving the constrained optimization prob-

_ lem, e.g., Sequential Quadratic Programming [4].
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