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Abstract: Optimization is undoubtedly playing an ever more important role in CAD of electronic circuits. As
the complexity of practical designs grows, so does the number of objectives to be optimized simultaneously.
Even though a large number of multiobjective optimization methods have been developed in other disciplines
like Operations Research, they are still generally unknown to electrical engineers and creators of CAD tools.
The present paper provides a brief introduction to multiobjective optimization as such, explains two of the most
frequently used methods, and discusses their advantages as well as their drawbacks. Several application guidelines
and recommendations based on the authors’ experience are proposed. The use of both methods is demonstrated
on a practical example of a video amplifier design followed by evaluation and discussion of the obtained results.
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1 Introduction
Numerical optimization can be used in the process of
electronic circuit design as a means of determining pa-
rameter values in order to bring the designed circuit as
close as possible to some prescribed behavior or a set of
characteristics. Requirements on a designed circuit can
be of two different kinds: a minimization or maximiza-
tion of some quantity (called an objective function) or
a constraint condition that needs to be met by the so-
lution. If the latter kind of requirements is present, a
method for constrained optimization needs to be used.

1.1 Multiobjective Optimization Problem

In practical designs, there are often multiple mutually
contradicting requirements on the designed circuit. In
such cases, our aim is to solve the correspondingmul-
tiobjective optimization problem. This can be formally
written as

minimize
x∈S

{f1(x), f2(x), . . . , fk(x)} , (1)

where we havek objective functionsfi: Rn ← R,
k ≥ 2. The decision vectorsx = (x1, x2, . . . , xn)

T ,
belong to the (nonempty) feasible regionS, S ⊆ Rn,
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Figure 1: Feasible solutions and Pareto front.

which can be defined by a number of equality con-
straints, inequality constraints, and/or bounds on the de-
cision variablesxi.

The vector of objective functions will be denoted by
f(x) = (f1(x), f2(x), . . . , fk(x))

T , and the image of
the feasible region, also called thefeasible objective re-
gion, will be denoted byZ = f(S), Z ⊆ Rk. The
elements ofZ are calledobjective vectors and denoted
by f(x) or z = (z1, z2, . . . , zk)

T , wherezi = fi(x) for
all i = 1, 2, . . . , k are objective values. The geomet-
rical representation can easily be illustrated on a two-
dimensional case, as shown in Figure 1 forn = 2 and
k = 2.
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1.2 Pareto Optimality

The word “minimize” in (1) means that we want to min-
imize all the objective functions simultaneously. How-
ever, because of the contradiction between the objective
functions, it is not possible to find a single solution that
would be optimal for all the objectives simultaneously.
The concept ofnoninferiority, also calledPareto opti-
mality after the French-Italian economist and sociolo-
gist Vilfredo Pareto (1848–1923), who developed this
concept in 1896, must be used to characterize the ob-
jective vectors. A noninferior solution is one in which
an improvement in one objective requires a deteriora-
tion of another. The set of all noninferior solutions is
also called thePareto front. In Figure 1 it is marked by
the thick curve segment between pointszA andzB.

By solving the problem (1) we understand obtaining
a sufficient number of noninferior solutions covering
parts of the Pareto front that are of interest to the de-
signer. This will allow him or her to fully understand
the available trade-offs and to take a qualified decision
based on this knowledge.

2 Multiobjective Optimization Meth-
ods

There exist a large number of conventional multiob-
jective methods [1, 2]. They typically take a number
of controlling parameters and provide a noninferior so-
lution by converting the problem (1) into an uncon-
strained or constrained scalar (i.e., single-objective) op-
timization problem, which is then solved by an ade-
quate scalar optimization method (e.g., the Levenberg-
Marquardt method in case of an unconstrained problem
or the Penalty Function or Sequential Quadratic Pro-
gramming methods for a constrained one).

In this paper, we will present two of the most com-
monly used methods.

2.1 Weighted Sum Strategy

The Weighted Sum Strategy (WSS) converts the mul-
tiobjective problem of minimizing the vectorf(x) into
a scalar problem by constructing a weighted sum of all
the objectives

minimize
x∈S

k∑
i=1

wif
p
i (x), (2)

wherep ∈ R, p ≥ 1, wi ≥ 0 for all i = 1, . . . , k, and∑k
i=1 wi = 1. If the exponentp > 1, it is also assumed

thatfi(x) ≥ 0 for all x ∈ S and for alli = 1, . . . , k.
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Figure 2: Geometrical representation of Weighted Sum Strategy.
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Figure 3: Nonconvex feasible objective region.

By the choice of the weighting vectorw =
(w1, w2, . . . , wk)T we can control the location on the
Pareto front. Only the direction of the vectorw has ef-
fect on the found solution. This direction is perpendic-
ular to the image of the Pareto front in theZp = fp(S)
domain. This is illustrated on a two-dimensional case
in Figure 2. By minimizing the weighted sum (2) we
obtain the objective vectorzp

S in which a straight line L
perpendicular to vectorw touches the imageZp of the
feasible region S.

However, if the objective feasible region is non-
convex, its imageZp may also be nonconvex, which
may make certain noninferior solutions inaccessible, as
shown in Figure 3. This problem can be partially alle-
viated by convexifying the nonconvex Pareto front. The
convexification is performed by choosing a sufficiently
largep under certain assumptions [1, p. 79].

Another disadvantage of WSS relates to its different
properties depending on the Pareto front curvature in
particular areas. In some area a small change in the
weighting coefficients may cause big changes in the ob-
jective vectors while in other areas dramatically differ-
ent weighting coefficients may produce nearly similar
objective vectors.

2.2 Goal Attainment Method

The Goal Attainment Method (GAM) [2] is defined as
a scalar constrained optimization problem of the form
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Figure 4: Geometrical representation of Goal Attainment Method.

minimize
γ∈R, x∈S

γ

subject to fi(x)− wiγ ≤ z∗i ,
i = 1, . . . , k,

(3)

wherefi are the original multiple objective functions
of problem (1),S is the original feasible region,z∗i are
predefineddesign goals associated with the objective
function fi, wi ∈ R are predefined weighting coeffi-
cients, andγ is an auxiliary variable making the new
single objective function.

The method requires2k input parameters (k goalsz∗i
andk weightswi), but only uses2k−1 degrees of free-
dom. This becomes obvious from the geometrical rep-
resentation, again demonstrated on the 2D case in Fig-
ure 4. The goal vectorz∗ = (z∗1 , z∗2)T represents a goal
point in the objective space, either feasible (z∗ ∈ Z,
as in the shown case) or infeasible. The weight vec-
tor w = (w1, w2)T defines the direction of movement
from the goal point (whenγ = 0) to the unique solu-
tion pointzS = (zS1, zS2)T achieved by minimizingγ.
Thus, as in the case of WSS, only the direction of the
vector w is important; any changes in its magnitude
would be compensated by changes in the values ofγ.

Similarly to that in WSS, the weighting vectorw
in GAM enables the designer to express a measure of
the relative trade-offs between the objectives. For in-
stance, settingwi equal toz∗i ensures that the same per-
centage under- or overachievement of the goalsz∗i is
achieved.

However, unlike WSS, GAM allows access to any
noninferior solution, regardless of convexity of the
Pareto front. Also the curvature of the Pareto front
has no adverse effect on the relation between a chosen
weighting vector and the corresponding obtained non-
inferior objective vector. And, by setting some of the
weightswi to zero, hard constraints can easily be incor-
porated into the design.

Among disadvantages of GAM we can count the fact
that there are more parameter values to be given by
the designer than in WSS. Also the increased number

of constraints makes the resulting scalar optimization
problem computationally more difficult.

3 Application Steps

The application of either method consists in performing
the following series of steps:

1. Division of requirements to objective func-
tions and constraints. For each requirement we de-
cide, whether we want it to be represented by an objec-
tive functionfi to be minimized, or by an (in)equality
constraint. We also specify the vector of decision vari-
ablesx.

2. Construction of the objective functions. We
compose suitable objective functionsfi. For an easier
orientation, it is a good idea to apply some kind of a
unifying system. For example, the authors have used a
rule requiring that the objective value of 0 represent an
ideal, only theoretically attainable solution, the value 1
be still practically well acceptable, while the value 10
be an already totally unacceptable solution.

3. Choice of constraints and bounds. We specify
the exact form for any equality constraints, inequality
constraints and bounds on decision variablesxi defining
the feasible regionS.

4. Choice of multiobjective optimization method.
Based on our knowledge about the multiobjective prob-
lem to be solved and our requirements, we choose a
suitable multiobjective optimization methods. While
WSS might be preferable if the the problem is known to
be convex, or if a smaller number of controlling param-
eters is advantageous, GAM is likely to provide a better
control over the accessed parts of the Pareto front, but
only at the cost of higher demands on the designer as
well as on the used computational power.

5. Exploring the Pareto front. Now we repeatedly
choose the values of the required parameters (likewi

in case of WSS and GAM and possiblyz∗i in case
of GAM) and solve the corresponding scalar optimiza-
tion problem using a suitable scalar method to obtain
sample solutions from all parts of Pareto front that
might be of interest. This step can usually be (at least to
some extent) automated.

6. Evaluation of the obtained data. In this stage
the designer has a number of various noninferior so-
lutions, from which, based on his/her judgement and
experience, he/she can select one representing the best
trade-off available.
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Figure 5: Amplifier schematic

4 Example Design Application

Let us now demonstrate the use of optimization meth-
ods on a practical example of high frequency electronic
circuit [3, pp. 913–915]. We are to design a transis-
tor video amplifier with an input matched to a source
impedance75Ω, with its output able to drive a75Ω
load and with1Vpp output capability. The3dB roll off
frequencyfm should be as high as possible, the low-
frequency voltage gainAv should be positive and of
the biggest possible value, and the total DC supply cur-
rent Icc should be as low as possible. A nice way to
achieve the noninverting gain is to use a common-base
input stage with an emitter follower output, as suggested
in Fig. 5. As the decision variables we will use the re-
sistancesR1–R5.

The assignment formulation intentionally does not
define any preferences among the four extreme require-
ments on the circuit. Therefore, multiobjective methods
are used to explore the four-dimensional Pareto front of
the feasible region.

We assume that the capacitorsC1–C3 have suffi-
ciently large capacitances not to influence the low fre-
quency gain. All high-frequency gain characteristics are
thus determined only by the transistors’ inner capaci-
tances. The type 2N5179 was prescribed for both tran-
sistorsQ1 andQ2. The standard Gummel-Poon bipolar
transistor model is used.

As a measure of impedance matching, a low-
frequency voltage standing wave ratio SWR will be

used:

SWR =
1 + |�|
1− |�| , � =

Ri − 75Ω
Ri + 75Ω

. (4)

The considered multiobjective optimization problem
can be written as follows

minimize SWR, Icc

maximize AvdB, fm

subject to Vout ≤ 3.5V,
(5)

where the constraint condition concerning the output
voltageVout ensures the required1Vpp output capabil-
ity.

Before we start the proper multiobjective optimiza-
tion, it is a good idea to examine the best valueszo

i

attainable by the four optimized characteristics if op-
timized alone. Wea priori know thatSWRo = 1, be-
cause with a suitable value ofR1 the input resistance
Ri can be made exactly equal to75Ω. It is also clear
that Io

cc → 0mA. For AvdB the independent maxi-
mum value was found to beAo

v = 40.72dB, for which
Ri = 18.41Ω, SWR = 4.073, Icc = 1.346mA and
fm = 350.7MHz; and the maximumfm found isfo

m =
860.3MHz, for which Ri = 546.1Ω, SWR = 7.282,
Av = 4.281dB, andIcc = 7.532mA.

Both WSS and GAM were used to solve problem (5).

4.1 Weighted Sum Strategy

The following choice of objective functions was made
in accordance with the recommendation in Step 2 of
Section 3:

f1 = 10(SWR − 1),
f2 = Ao

vdB − AvdB,

f3 =
Icc

1mA
,

f4 = log
fo
m

fm
.

(6)

A simple penalty function method is used to convert
the constrained optimization problem into an uncon-
strained one. In this method, constraints are enforced by
means of additive components called penalty functions,
increasing the resulting objective function, and which
are progressively dependent on the amount of the vio-
lation of the constraints. Only one constraint applies in
our case, and is expressed by a penalty function of the
form:

c1 = max
(

Vout − 3.5V
3.5V

, 0
)
× q, (7)
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whereq is a coefficient controlling how much the con-
straint component is emphasized over the usual mini-
mized components in the objective function,q = 100.

The resulting single objective function used is

fP(x) =
4∑

i=1

wif
2
i (x) + c2

1(x), (8)

with the usual normalizing condition

4∑
i=1

wi = 1. (9)

The objective functionfP is minimized using the
Levenberg-Marquardt method. The needed derivatives
of fP are determined by finite differences for relative
changes of10−2. The iterations end when the maxi-
mum relative change in the decision variables between
iterations is less than10−4 or after reaching a maximum
allowed number of iterations.

In order to diminish the danger of finding only a local
minimum different from the global one, the computa-
tion for each set of weights is divided in two stages. In
the first stage, up to 15 iterations are performed from
each of a chosen set of 162 starting points. These
162 starting points are generated by 5 nested loops
combining the following values of resistancesR1–R5:
R1 ∈ {20Ω, 50Ω}, R2 ∈ {500Ω, 1 kΩ, 2 kΩ}, R3 ∈
{2 kΩ, 5 kΩ, 10 kΩ}, R4 ∈ {1 kΩ, 2 kΩ, 5 kΩ}, and
R5 ∈ {10 kΩ, 20 kΩ, 50 kΩ}. Ten best results of the
first stage are printed in the order of increasing objec-
tive function values. The result with the smallest objec-
tive function value is used as the starting point in the
second stage, where up to 100 iteration of the same al-
gorithm are performed to further increase the accuracy
of the found minimum.

4.2 Goal Attainment Method

To allow comparisons, the same set of objective func-
tions fi is assumed as that used with WSS (6). The
constraint penalty functionc1 (7) remains in action, but
we also have four new penalty functions related to func-
tionsfi, q = 100:

g1 = max
(
10(SWR− 1)− w1γ − P

P
, 0

)
× q,

g2 = max
(

Ao
vdB − AvdB − w2γ − P

P
, 0

)
× q,

g3 = max
(

Icc/1mA− w3γ − P

P
, 0

)
× q,

g4 = max
(
log(f o

m/fm)− w4γ − P

P
, 0

)
× q,

(10)

with the single objective function to be minimized:

f(x) = γ. (11)

Note that, for simplicity, we have set all design goalsz∗i
equal to the same scalar valueP . This is allowed by the
special choice of objective functionsfi (6). The single
minimized objective function is then formed as follows

fP(x) = γ2 +
4∑

i=1

gi(x)2 + c1(x)2. (12)

The same two-stage procedure based on the
Levenberg-Marquardt method is used to obtain solu-
tions for chosen values ofwi andP as that with WSS.

5 Obtained Results
5.1 Results by WSS (Table 1)

SWR Av Icc fm S1 St

Nr. w1 w2 w3 w4 (–) (dB) (mA) (MHz) (%) (%)
1 0.25 0.25 0.25 0.251.016 40.05 0.4863 127.6 – 62.5
2 0.4 0.2 0.2 0.2 1.004 40.02 0.4849 126.9 75 65.6
3 0.2 0.4 0.2 0.2 1.019 40.10 0.4792 126.4 75 71.9
4 0.2 0.2 0.4 0.2 1.012 40.34 0.3755 112.1 50 71.9
5 0.2 0.2 0.2 0.4 1.015 40.04 0.4869 127.6 50 65.6
6 0.7 0.1 0.1 0.1 1.002 40.04 0.4775 125.4 75 68.8
7 0.1 0.7 0.1 0.1 1.066 40.23 0.4810 128.0 50 62.5
8 0.1 0.1 0.7 0.1 1.003 40.15 0.3106 94.3 50 65.6
9 0.1 0.1 0.1 0.7 1.027 40.07 0.4884 128.4 75 78.1

Single-run average correl. 62.5 62.5 50.0 75.0 62.5 –
Total average correlation 72.2 59.7 66.7 73.6 – 68.1

Table 1: Results obtained by WSS.

A number of optimization runs was performed, each
with a different vector of weighting coefficientswi.
The final solution obtained by minimizing the objec-
tive function provides the four numeric characteristics
of the resulting amplifier: SWR,AvdB, Icc, and fm.
They are given in the same order as their correspond-
ing weightswi. Thus we can see that, for example,
increasing the value ofw1 in row Nr. 2 has decreased
(i.e., improved) the value of SWR with respect to that
in row Nr. 1. This is what is wanted and expected. We
would also expect, that such an improvement will be
reached only at the cost of deterioration in the remain-
ing three characteristics. This happens withAv andfm,
but not with Icc, which is also lowered. Thus three
of the four characteristics have changed in accordance
with their weights and one has changed in the opposite
direction. In the table this is expressed by the “success
rate” S1, describing the correlation between the direc-
tions of changes in the individual weightswi and those
of the corresponding results with respect to case Nr. 1.
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The expected directions of changes are actually derived
from the changes of the ratio

wi√
4∑

j=1
w2

j

, (13)

which is related to the “angle” between vectorw and
theith axis in the four-dimensional space of vectorsz =
(z1, z2, z3, z4)T .

This concept of correlation can be generalized by an
arbitrary choice of the reference row. If we take row
Nr. i as the reference case (instead of Nr. 1), we obtain
the respective correlationSi. The last column in Table 1
then gives the total correlation rateSt, defined for each
row j as the average ofSi over all possible choices of
reference rows:

Stj =
1

n − 1

n∑
i=1
i�=j

Sij. (14)

Also individual column values ofS1 andSt averaged
over rows are given in % in the 2 additional rows of the
table.

Considering the fact that a 50% average correlation
means that exactly a half of the changes is in the oppo-
site direction than required, the averageS1 of 62.5%
and the total averageSt of 68.1% look quite pes-
simistic. However, all the 37.5 and 31.9 % of “fail-
ures” occur only for the unemphasized characteristics;
all those with an increasedwi have actually improved
or (asfm of Nr. 5) at least remained the same.

Another characteristic worth examining may be the
noninferiority test. If an obtained solution is to be a
valid candidate for noninferior solution, none of the find
solutions in the same table may have all its characteris-
tics better than those of the candidate solution in ques-
tion. To perform this test for alln cases in a table, a
total of n(n − 1) comparisons need to be done. All of
the 9 solutions in Table 1 have passed.

5.2 Results by GAM (Table 2)
Even though the meaning of the weighting coeffi-
cientswi here is somewhat different from that in WSS,
eachwi still corresponds with a single objective. If
the reference pointz∗ is located in the feasible objec-
tive region, then increasingwi usually allows for larger
changes in its objective. in the required direction. Thus
increasing awi should lead to an improvement in the re-
lated objective value, and, conversely, a decrease inwi

should deteriorate the obtained objective value.

The structure of the table remains the same with the
exception that an ‘Inf.’ column was added. It informs
about whether in the remaining 22 rows there is a so-
lution to which the one in question is inferior. This is
the case for row Nr. 11, which is inferior to row Nr. 14.
The average correlation rates of80.7% and79.5% look
much better than those of the WSS results.

SWR Av Icc fm S1 St

Nr. w1 w2 w3 w4 (–) (dB) (mA) (MHz) Inf. (%) (%)
1 1 1 1 1 1.071 40.01 0.5051 133.6 no – 80.7
2 1 0 0 0 1.000 32.38 0.8442 302.2 no 75 76.1
3 0 1 0 0 1.183 40.45 0.4769 129.1 no 75 75.0
4 0 0 1 0 1.630 30.72 0.4036 173.7 no 75 78.4
5 0 0 0 1 1.671 30.72 1.7975 583.1 no 100 83.0
6 1 1 0 0 1.058 40.11 0.4908 130.0 no 75 71.6
7 1 0 1 0 1.025 37.08 0.3521 128.1 no 100 86.4
8 1 0 0 1 1.025 30.71 1.2605 404.1 no 100 85.2
9 0 1 1 0 1.169 40.35 0.4767 129.2 no 100 88.6
10 0 1 0 1 1.957 40.16 1.0966 228.4 no 100 83.0
11 0 0 1 1 1.366 31.36 0.5877 237.8yes 75 72.7
12 1 1 1 0 1.058 40.11 0.4908 130.0 no 100 81.8
13 1 1 0 1 1.071 40.01 0.5051 133.6 no 25 75.0
14 1 0 1 1 1.042 32.74 0.5143 253.5 no 75 80.7
15 0 1 1 1 1.121 40.04 0.5317 140.3 no 75 75.0
16 2 1 1 1 1.000 38.89 0.9729 130.8 no 100 85.2
17 1 2 1 1 1.183 40.45 0.4769 129.1 no 75 76.1
18 1 1 2 1 1.176 35.57 0.4625 154.0 no 75 85.2
19 1 1 1 2 1.476 35.53 0.8479 295.5 no 100 79.5
20 2 2 2 1 1.059 40.12 0.4908 130.0 no 100 78.4
21 2 2 1 2 1.045 40.00 0.4908 130.0 no 25 75.0
22 2 1 2 2 1.018 35.45 0.4999 203.3 no 100 78.4
23 1 2 2 2 1.119 39.97 0.4769 129.4 no 50 77.3
Single-run average 95.5 86.4 68.2 72.7 – 80.7 –
Total average 84.2 89.5 69.4 74.9 – – 79.5

Table 2: Results obtained by GAM,P = 10.

5.3 Infeasible Reference Point (Table 3)

When the reference pointz∗ is infeasible and “below”
the Pareto front, it can only be made feasible by wors-
ening one or more its coordinates. The relative amount
of deterioration can be controlled by the weightswi, as
shown in Table 3. As all objective functions are scaled
so that their typical values can be expected around 1,
P = 0.2 should already position the reference pointz∗

outside of the feasible region. That this is probably the
case can be seen from the first several rows of Table 3.
Most of the emphasized objectives are significantly de-
teriorated (with row Nr. 4 being an exception). There-
fore the “controlling logic” is inverse to that in the pre-
vious tables: increasing the weightswi worsens the cor-
responding objective value and vice versa. Considering
this fact, the overall performance is slightly worse than,
but still comparable to, that of Table 2: 3 inferior cases
(Nr. 1 is inferior to Nr. 15), and the average correlations
worse by6.8% and0.9%.
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SWR Av Icc fm S1 St

Nr. w1 w2 w3 w4 (–) (dB) (mA) (MHz) Inf. (%) (%)
1 1 1 1 1 1.073 39.30 0.6192 129.9yes – 73.9
2 1 0 0 0 1.601 40.52 0.5872 165.7 no 100 75.0
3 0 1 0 0 1.020 28.45 0.4062 442.5 no 100 87.5
4 0 0 1 0 1.031 40.13 0.4809 127.1 no 50 51.1
5 0 0 0 1 1.020 40.35 0.3853 111.8 no 100 89.8
6 1 1 0 0 3.450 16.13 0.3731 502.4 no 100 86.4
7 1 0 1 0 1.973 40.34 0.8512 231.9 no 100 83.0
8 1 0 0 1 1.245 40.44 0.4118 115.7 no 100 86.4
9 0 1 1 0 1.019 27.86 1.5166 564.4 no 100 89.8
10 0 1 0 1 1.020 39.78 0.3292 100.6 no 75 81.8
11 0 0 1 1 1.025 40.18 0.4777 120.2 no 75 73.9
12 1 1 1 0 1.795 32.77 1.5167 541.1 no 100 81.8
13 1 1 0 1 1.098 39.95 0.2889 90.5 no 75 81.8
14 1 0 1 1 1.964 40.35 0.8473 230.8 no 75 76.1
15 0 1 1 1 1.020 39.45 0.4908 130.4 no 25 72.7
16 2 1 1 1 1.126 39.91 0.7124 132.4 no 75 77.3
17 1 2 1 1 1.082 39.31 0.5159 130.5 no 50 77.3
18 1 1 2 1 1.073 39.30 0.6192 129.9yes 25 72.7
19 1 1 1 2 1.073 39.30 0.6192 129.9yes 25 72.7
20 2 2 2 1 1.010 39.24 0.6769 130.6 no 75 68.2
21 2 2 1 2 1.064 39.53 0.4769 129.6 no 50 81.8
22 2 1 2 2 1.141 39.92 0.6224 129.5 no 100 80.7
23 1 2 2 2 1.064 39.53 0.4769 129.6 no 50 81.8
Single-run average 77.3 63.6 72.7 81.8 – 73.9 –
Total average 82.4 79.8 73.3 78.1 – – 78.4

Table 3: Results obtained by GAM,P = 0.2.

5.4 Increased Iterations Limits (Table 4)
The last table was obtained for the same feasible ref-
erence point ofP = 10 as Table 2, but with a signifi-
cant increase in the limits on the numbers of Levenberg-
Marquardt iterations. In the first and second stages,
the values 100 and 1000 were used instead of 15 and
150, respectively. Even though it turned out that only
in about a half of the cases any further iterations were
performed in the second stage, a slight improvement of
about1% is obtained in both correlation rates. Three
rows of Table 4 exhibit improvement inS1 over those
in Table 2. Interestingly, the last two rows lost25%
in S1 each. A closer examination showed that even in
these rows the achieved values of the minimized objec-
tive functionfP were below those of Table 2.

6 Conclusion
All four tables of results show that the objective values
of obtained solution can be controlled by the choice of
weighting coefficientswi. However, even in the best
case observed, about20% of changes inwi have the
opposite effect on the related goal then expected. Also,
in a few cases, the obtained solutions were found to be
inferior to solutions with a different weighting vector.

These problems can have several possible explana-
tions. First, the iteration process of the Levenberg-
Marquardt method may have, in some cases, converged

SWR Av Icc fm S1 St

Nr. w1 w2 w3 w4 (–) (dB) (mA) (MHz) Inf. (%) (%)
1 1 1 1 1 1.071 40.01 0.5051 133.6 no – 81.8
2 1 0 0 0 1.000 37.42 0.6208 154.7 no 75 80.7
3 0 1 0 0 1.183 40.45 0.4769 129.1 no 75 78.4
4 0 0 1 0 1.553 30.72 0.1629 131.1 no 100 86.4
5 0 0 0 1 2.001 30.71 1.8962 759.9 no 100 81.8
6 1 1 0 0 1.048 40.18 0.4812 127.5 no 75 72.7
7 1 0 1 0 1.020 39.86 0.3054 94.6 no 100 86.4
8 1 0 0 1 1.024 30.71 1.2347 405.2 no 100 85.2
9 0 1 1 0 2.000 40.39 0.4338 120.8 no 100 87.5
10 0 1 0 1 2.000 40.27 0.8697 237.6 no 100 84.1
11 0 0 1 1 1.470 30.71 0.5117 238.0yes 75 76.1
12 1 1 1 0 1.049 40.18 0.4812 127.6 no 100 87.5
13 1 1 0 1 1.071 40.01 0.5051 133.6 no 25 76.1
14 1 0 1 1 1.011 32.80 0.5045 259.1 no 100 83.0
15 0 1 1 1 1.614 40.09 0.6595 186.5 no 75 78.4
16 2 1 1 1 1.000 38.89 0.9729 130.8 no 100 84.1
17 1 2 1 1 1.183 40.45 0.4769 129.1 no 75 84.1
18 1 1 2 1 1.486 39.08 0.2782 91.0 no 100 83.0
19 1 1 1 2 1.518 35.53 1.5207 324.7 no 100 78.4
20 2 2 2 1 1.059 40.12 0.4908 130.0 no 100 80.7
21 2 2 1 2 1.045 40.00 0.4908 130.0 no 25 73.9
22 2 1 2 2 1.057 35.42 0.5901 212.5 no 75 81.8
23 1 2 2 2 1.042 39.98 0.4908 130.1 no 25 72.7
Single-run average 90.9 86.4 68.2 81.8 – 81.8 –
Total average 84.4 89.5 69.4 81.0 – – 81.1

Table 4: Results by GAM,P = 10, more iterations

too slowly and thus in the limited number of itera-
tions provided a solution still too remote from the opti-
mum. This might be caused by imprecise calculation of
derivatives due to numerical noise of the embedded iter-
ation process for determining quiescent operating point
of the circuit. Another explanation may be that only
local optima still far from the global one were reached
in some cases. And thirdly, perhaps the chosen defi-
nition of correlation rate between the weighting vector
and obtained objective values based solely on the signs
of differences from a reference case is too simple, as it
ignores the absolute values of the differences.

Therefore our future improvements will be aimed at
trying a greater number of starting iterations and replac-
ing the penalty function method by a more efficient al-
ternative for solving the constrained optimization prob-
lem, e.g., Sequential Quadratic Programming [4].
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